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Abstract

Background: For single-cell or metagenomic sequencing projects, it is necessary to sequence with a very high
mean coverage in order to make sure that all parts of the sample DNA get covered by the reads produced. This leads
to huge datasets with lots of redundant data. A filtering of this data prior to assembly is advisable. Brown et al. (2012)
presented the algorithm Diginorm for this purpose, which filters reads based on the abundance of their k-mers.
Methods: We present Bignorm, a faster and quality-conscious read filtering algorithm. An important new algorithmic
feature is the use of phred quality scores together with a detailed analysis of the k-mer counts to decide which reads
to keep.
Results: We qualify and recommend parameters for our new read filtering algorithm. Guided by these parameters,
we remove in terms of median 97.15% of the reads while keeping the mean phred score of the filtered dataset high.
Using the SDAdes assembler, we produce assemblies of high quality from these filtered datasets in a fraction of the
time needed for an assembly from the datasets filtered with Diginorm.
Conclusions: We conclude that read filtering is a practical and efficient method for reducing read data and for
speeding up the assembly process. This applies not only for single cell assembly, as shown in this paper, but also to
other projects with high mean coverage datasets like metagenomic sequencing projects.
Our Bignorm algorithm allows assemblies of competitive quality in comparison to Diginorm, while being much faster.
Bignorm is available for download at https://git.informatik.uni-kiel.de/axw/Bignorm.
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Background
Next generation sequencing systems (such as the Illumina
platform) tend to produce an enormous amount of data—
especially when used for single-cell or metagenomic pro-
tocols — of which only a small fraction is essential for the
assembly of the genome. It is thus advisable to filter that
data prior to assembly.
A coverage of about 20 for each position of the genome

has been empirically determined as optimal for a success-
ful assembly of the genome [1]. On the other hand, in
many setups, the coverage for a large number of loci is
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much higher than 20, often rising up to tens or hundreds
of thousands, especially for single-cell or metagenomic
protocols (see Table 1, “max” column for themaximal cov-
erage of the datasets that we use in our experiments). In
order to speed up the assembly process — or in extreme
cases to make it possible in the first place, given certain
restrictions on available RAM and/or time — a sub-
dataset of the sequencing dataset is to be determined such
that an assembly based on this sub-dataset works as good
as possible. For a formal description of the problem, see
Additional file 1: Section S1.

Previous work
We briefly survey two prior approaches for read pre-
processing, namely trimming and error correction. Read
trimming programs (see [2] for a recent review) try to
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Table 1 Coverage statistics for Bignorm with Q0 = 20, Diginorm,
and the raw datasets

Dataset Algorithm P10 Mean P90 Max

Aceto Bignorm 6 132 216 6801

Diginorm 7 171 295 12,020

Raw 15 9562 17,227 551,000

Alphaproteo Bignorm 10 43 92 884

Diginorm 7 173 481 6681

Raw 25 5302 14,070 303,200

Arco Bignorm 1 98 54 2103

Diginorm 1 362 200 6114

Raw 3 10,850 4091 220,600

Arma Bignorm 8 23 32 358

Diginorm 8 79 141 5000

Raw 17 629 1118 31,260

ASZN2 Bignorm 40 70 83 2012

Diginorm 23 143 354 3437

Raw 50 1738 4784 43,840

Bacteroides Bignorm 3 74 90 6768

Diginorm 3 123 205 7933

Raw 7 6051 8127 570,900

Caldi Bignorm 25 63 110 786

Diginorm 15 67 135 3584

Raw 27 1556 3643 33,530

Caulo Bignorm 7 228 216 10,400

Diginorm 8 362 491 35,520

Raw 8 10,220 9737 464,300

Chloroflexi Bignorm 8 72 101 2822

Diginorm 9 412 878 20,850

Raw 9 5612 7741 316,900

Crenarch Bignorm 8 104 159 3770

Diginorm 10 560 1285 29,720

Raw 10 8086 14,987 316,700

Cyanobact Bignorm 9 144 153 5234

Diginorm 10 756 1450 26,980

Raw 10 9478 11,076 356,600

E.coli Bignorm 37 45 56 234

Diginorm 50 382 922 7864

Raw 112 2522 6378 56,520

SAR324 Bignorm 24 49 71 1410

Diginorm 18 53 107 2473

Raw 26 1086 2761 106,000

cut away the low quality parts of a read (or drop reads
whose overall quality is low). These algorithms can be
classified into two groups: running sum (Cutadapt, ERNE,
SolexaQA with -bwa option [3–5]) and window based
(ConDeTri, FASTX, PRINSEQ, Sickle, SolexaQA, and
Trimmomatic [5–10]). The running sum algorithms take
a quality threshold Q as input, which is subtracted from
the phred score of each base of the read. The algorithms
vary with respect to the functions applied to these differ-
ences to determine the quality of a read, the direction in
which the read is processed, the function’s quality thresh-
old upon which the cutoff point is determined, and the
minimum length of a read after the cutoff to be accepted.
The window based algorithms, on the other hand, first

cut away the reads’s 3’ or 5’ ends (depending on the algo-
rithm) whose quality is below a specifiedminimumquality
parameter and then determine a contiguous sequence of
high quality using techniques similar to those used in the
running sum algorithms.
All of these trimming algorithms generally work on

a per-read basis, reading the input once and process-
ing only a single read at a time. The drawback of this
approach is that low quality sequences within a read are
being dropped even when these sequences are not cov-
ered by any other reads whose quality is high. On the
other hand, sequences whose quality and abundance are
high are added over and over although their coverage is
already high enough, which yields higher memory usage
than necessary.
Most of the error correction programs (see [11] for a

recent review) read the input twice: a first pass gathers
statistics about the data (often k-mer counts) which in a
second pass are used to identify and correct errors. Some
programs trim reads which cannot be corrected. Again,
coverage is not a concern: reads which seem to be correct
or which can be corrected are always accepted. According
to [11], currently the best known andmost used error cor-
rection program is Quake [12]. Its algorithm is based on
two assumptions:

• “For sufficiently large k, almost all single-base errors
alter k-mers overlapping the error to versions that do
not exist in the genome. Therefore, k-mers with low
coverage, particularly those occurring just once or
twice, usually represent sequencing errors.”

• Errors follow a Gamma distribution, whereas true
k-mers are distributed as per a combination of the
Normal and the Zeta distribution.

In the first pass of the program, a score based on
the phred quality scores of the individual nucleotides
is computed for each k-mer. After this, Quake com-
putes a coverage cutoff value, that is, the local minimum
of the k-mer spectrum between the Gamma and the
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Normal maxima. All k-mers having a score higher than
the coverage cutoff are considered to be correct (trusted
or solid in error correction terminology), the others are
assumed to be erroneous. In a second pass, Quake reads
the input again and tries to replace erroneous k-mers
by trusted ones using a maximum likelihood approach.
Reads which cannot be corrected are optionally trimmed
or dumped.
But the main goal of error correctors is not the reduc-

tion of the data volume (in particular, they do not
pay attention to excessive coverage), hence they cannot
replace the following approaches.
Brown et al. invented an algorithm named Diginorm

[1, 13] for read filtering that rejects or accepts reads based
on the abundance of their k-mers. The nameDiginorm is a
short form for digital normalization: the goal is to normal-
ize the coverage over all loci, using a computer algorithm
after sequencing. The idea is to remove those reads from
the input whichmainly consist of k-mers that have already
been observed many times in other reads. Diginorm pro-
cesses reads one by one, splits them into k-mers, and
counts these k-mers.
In order to save RAM, Diginorm does not keep track

of those numbers exactly, but instead keeps appropri-
ate estimates using the count-min sketch (CMS [14], see
Additional file 1: Section S1.2 for a formal description).
A read is accepted if the median of its k-mer counts is
below a fixed threshold, usually 20. It was demonstrated
that successful assemblies are still possible after Diginorm
removed the majority of the data.

Our algorithm—Bignorm
Diginorm is a pioneering work. However, the following
points, which are important from the biological or com-
putational point of view, are not covered in Diginorm. We
consider them as the algorithmic innovation in our work:

(i) We incorporate the important phred quality score
into the decision whether to accept or to reject a
read, using a quality threshold. This allows a tuning
of the filtering process towards high-quality
assemblies by using different thresholds.

(ii) When deciding whether to accept or to reject a read,
we do a detailed analysis of the numbers in the count
vectors. Diginorm merely considers their medians.

(iii) We offer a better handling of the N case, that is, when
the sequencing machine could not decide for a
particular nucleotide. Diginorm simply converts all N
to A, which can lead to false k-mer counts.

(iv) We provide a substantially faster implementation.
For example, we include fast hashing functions
(see [15, 16]) for counting k-mers through the
count-min sketch data structure (CMS), and we use
the C programming language and OpenMP.

A technical description of our algorithm, called Big-
norm, is given in Additional file 1: Section S1.3, which
might be important for computer scientists and mathe-
maticians working in this area.

Methods
Experimental setup
For the experimental evaluation, we collected the follow-
ing datasets. We use two single cell datasets of the UC
San Diego, one of the group of Ute Hentschel (now GEO-
MAR Kiel) and 10 datasets from the JGI Genome Portal.
The datasets from JGI were selected as follows. On the JGI
Genome Portal [17], we used “single cell” as search term.
We narrowed the results down to datasets with all of the
following characteristics:

• status “complete”;
• containing read data and an assembly in the

download section;
• aligning the reads to the assembly using Bowtie 2 [18]

yields an “overall alignment rate” of more than 70%.

From those datasets, we arbitrarily selected one per
species, until we had a collection of 10 datasets. We refer
to each combination of species and selected dataset as a
case in the following. In total, we have 13 cases; the details
are given in Table 2.
For each case, we analyze the results obtained with Dig-

inorm and with Bignorm using quality parameters Q0 ∈
{5, 8, 10, 12, 15, 18, 20, . . . , 45}. Analysis is done on the one
hand in terms of data reduction, quality, and coverage.
On the other hand, we study actual assemblies that are
computed with SPAdes [19] based on the raw and filtered
datasets. For comparison, we also did assemblies using
IDBA_UD [20] and Velvet-SC [21] (for Q0 = 20 only). All
the details are given in the next section.
The dimensions of the count-min sketch are fixed to

m = 1, 024 and t = 10, thus 10 GB of RAM were used.

Results
For our analysis, we mainly considered percentiles and
quartiles of measured parameters. The ith quartile is
denoted byQi, where we useQ0 for the minimum,Q2 for
the median, and Q4 for the maximum. The ith percentile
is denoted by Pi; we often use the 10th percentile P10.

Number of accepted reads
Statistics for the number of accepted reads are given as
a box plot in Fig. 1a. This plot is constructed as follows.
Each of the blue boxes corresponds to Bignorm with a
particular Q0, while Diginorm is represented as the wide
orange box in the background (recall that Diginorm does
not consider quality values). Note that the “whiskers” of
Diginorm’s box are shown as light-orange areas. For each
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Table 2 Selected species and datasets (Cases)

Short name Species/Description Source URL

ASZN2 Candidatus Poribacteria sp. WGA-4E_FD Hentschel Group [27] [28]

Aceto Acetothermia bacterium JGI MDM2 LHC4sed-1-H19 JGI Genome Portal [29]

Alphaproteo Alphaproteobacteria bacterium SCGC AC-312_D23v2 JGI Genome Portal [30]

Arco Arcobacter sp. SCGC AAA036-D18 JGI Genome Portal [31]

Arma Armatimonadetes bacterium JGI 0000077-K19 JGI Genome Portal [32]

Bacteroides Bacteroidetes bacVI JGI MCM14ME016 JGI Genome Portal [33]

Caldi Calescamantes bacterium JGI MDM2 SSWTFF-3-M19 JGI Genome Portal [34]

Caulo Caulobacter bacterium JGI SC39-H11 JGI Genome Portal [35]

Chloroflexi Chloroflexi bacterium SCGC AAA257-O03 JGI Genome Portal [36]

Crenarch Crenarchaeota archaeon SCGC AAA261-F05 JGI Genome Portal [37]

Cyanobact Cyanobacteria bacterium SCGC JGI 014-E08 JGI Genome Portal [38]

E.coli E.coli K-12, strain MG1655, single cell MDA, Cell one UC San Diego [39]

SAR324 SAR324 (Deltaproteobacteria) UC San Diego [39]

box, for each case the raw dataset is filtered using the algo-
rithm and algorithmic parameters corresponding to that
box, and the percentage of the accepted reads is taken into
consideration. For example, if the top of a box (which cor-
responds to the 3rd quartile, also denoted Q3) gives the
value x%, then we know that for 75% of the cases, x% or
less of the reads were accepted using the algorithm and
algorithmic parameters corresponding to this box.
There are two prominent outliers: one for Diginorm

with value ≈ 29% (shown as the red line at the top) and

one for Bignorm for Q0 = 5 with value ≈ 26%. In both
cases, the Arma dataset is responsible, which is the dataset
with the worst mean phred score and the strongest decline
of the phred score over the read length (see Additional
file 1: Section S4 for more information and per base
sequence quality plots). This suggest that the high rate of
read kept is caused by a high error rate of the dataset. For
15 ≤ Q0, even Bignorm’s outliers fall below Diginorm’s
median, and for 18 ≤ Q0 Bignorm keeps less than 5%
of the reads for at least 75% of the datasets. In the range

(a) (b)
Fig. 1 Box plots showing reduction and quality statistics. a Percentage of accepted reads (i.e. reads kept) over all datasets. bMean quality values of
the accepted reads over all datasets
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20 ≤ Q0 ≤ 25, Bignorm delivers similar results for the dif-
ferent values ofQ0, and the gain in reduction for largerQ0
is small up toQ0 = 32. For even largerQ0, there is another
jump in reduction, but we will see that coverage and the
quality of the assembly suffer too much in that range. We
conjecture that in the range 18 ≤ Q0 ≤ 32, we remove
most of the actual errors, whereas for larger Q0, we also
remove useful information.

Quality values
Statistics for phred quality scores in the filtered datasets
are given in Fig. 1. The data was obtained using
fastx_quality_stats from the FASTX Toolkit [7]
on the filtered fastq files and calculating the mean
phred quality scores over all read positions for each
dataset. Looking at the statistics for these overall
means, for 15 ≤ Q0, Bignorm’s median is bet-
ter than Diginorm’s maximum. For 20 ≤ Q0, this
effect becomes even stronger. For all values for Q0,
Bignorm’s minimum is clearly above Diginorm’s median.
Note that an increase of 10 units means reducing error
probability by factor 10.
In Table 3, we give quartiles of mean quality values for

the raw datasets and Bignorm’s datasets produced with
Q0 = 20. Bignorm improves slightly on the raw dataset in
all five quartiles.
Of course, all this could be explained by Bignorm sim-

ply cutting away any low-quality reads. However, the data
in the next section suggests that Bignorm may in fact be
more careful than this.

Table 3 Comparing quality values for the raw dataset and
Bignorm with Q0 = 20

Quartile Bignorm Raw

Q4 (max) 37.82 37.37

Q3 37.33 36.52

Q2 (median) 33.77 32.52

Q1 31.91 30.50

Q0 (min) 26.14 24.34

Coverage
In Fig. 2, we see statistics for the coverage. The data
was obtained by remapping the filtered reads onto the
assembly from the JGI using Bowtie 2 and then using
coverageBed from the bedtools [22] and R [23] for the
statistics. In Fig. 2a, the mean is considered. For 15 ≤ Q0,
Bignorm reduces the coverage heavily. For 20 ≤ Q0, Big-
norm’s Q3 is below Diginorm’s Q1. This may raise the
concern that Bignorm could create areas with insufficient
coverage. However, in Fig. 2b, we look at the 10th per-
centile (P10) of the coverage instead of the mean. We
consider this statistics as an indicator for the impact of
the filtering on areas with low coverage. For Q0 ≤ 25,
Bignorm’s Q3 is at or above Diginorm’s maximum, and
Bignorm’sminimum coincides with Diginorm’s (except for
Q0 = 10, where we are slightly below). In terms of the
median, both algorithms are very similar for Q0 ≤ 25. We
consider all this as a strong indication that we cut away in
the right places.

(a) (b)
Fig. 2 Box plots showing coverage statistics. aMean coverage over all datasets. b 10th percentile of the coverage over all datasets
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For 28 ≤ Q0, there is a clear drop in coverage, so we do
not recommend such Q0 values.
In Table 1, we give coverage statistics for each dataset.

The reduction compared to the raw dataset in terms of
mean, P90, and maximum is substantial. But also the
improvement of Bignorm over Diginorm in mean, P90,
and maximum is considerable for most datasets.

Assessment through assemblies
The quality and significance of read filtering is subject
to complete assemblies, which is the final “road test” for
these algorithms. For each case, we do an assembly with
SPAdes using the raw dataset and those filtered with Dig-
inorm and Bignorm for a selection of Q0 values. The
assemblies are then analyzed using quast [24] and the
assembly from the JGI as reference. Statistics for four
cases are shown in Fig. 3. We give the quality measures
N50, genomic fraction, and largest contig, and in addition
the overall running time (pre-processing plus assembler
Wall time). Each measure is given in percentage relative to
the raw dataset.

Generally, our biggest improvements are for N50 and
running time. For 15 ≤ Q0, Bignorm is always faster
than Diginorm, for three of the four cases by a large
margin. In terms of N50, for 15 ≤ Q0, we observe
improvements for three cases. For E.coli, Diginorm’s N50
is 100%, that we also attain for Q0 = 20. In terms of
genomic fraction and largest contig, we cannot always
attain the same quality as Diginorm; the biggest devia-
tion at Q0 = 20 is 10 percentage points for the ASZN2
case. The N50 is generally accepted as one of the most
important measures, as long as the assembly represents
the genome well (as measured by the genomic fraction
here) [25].
In Tables 4 and 5, we give statistics for Q0 = 20 and

each dataset. In terms of genomic fraction, Bignorm is
generally not as good as Diginorm. However, excluding
the Aceto and Arco cases, Bignorm’s genomic fraction is
still always at least 95%. For Aceto and Arco, Bignorm
misses 3.21% and 3.48%, respectively, of the genome in
comparison to Diginorm. In 8 cases, Bignorm’s N50 is bet-
ter or at least as good as Diginorm’s. The 4 cases where we

Fig. 3 Assembly statistics for four selected datasets; measurements of assemblies performed on the datasets with prior filtering using Diginorm and
Bignorm, relative to the results of assemblies performed on the unfiltered datasets
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Table 4 Filter and assembly statistics for Bignorm with Q0 = 20, Diginorm, and the raw datasets (Part I)

Dataset Algorithm
Reads kept Mean phred Contigs Filter time SPAdes time
in % score ≥ 10 000 in sec in sec

Aceto Bignorm 3.16 37.33 1 906 1708

Diginorm 3.95 27.28 1 3290 4363

Raw 36.52 3 47,813

Alphaproteo Bignorm 3.13 34.65 18 623 420

Diginorm 7.81 28.73 17 1629 11,844

Raw 33.64 17 29,057

Arco Bignorm 2.20 33.77 4 429 207

Diginorm 8.76 21.39 6 1410 1385

Raw 32.27 6 15,776

Arma Bignorm 7.90 28.21 44 240 135

Diginorm 29.30 21.19 50 588 1743

Raw 26.96 44 5371

ASZN2 Bignorm 5.66 37.66 118 1224 1537

Diginorm 12.62 32.73 130 5125 21,626

Raw 36.85 112 47,859

Bacteroides Bignorm 2.85 37.47 6 653 3217

Diginorm 4.94 27.64 5 2124 3668

Raw 37.25 9 32,409

Caldi Bignorm 3.97 37.82 41 842 455

Diginorm 5.61 30.67 36 1838 793

Raw 37.37 38 7563

Caulo Bignorm 2.40 36.95 10 679 712

Diginorm 4.70 25.16 9 2584 765

Raw 36.01 13 18,497

Chloroflexi Bignorm 1.40 31.91 32 694 134

Diginorm 9.70 18.91 33 2304 1852

Raw 30.50 34 15,108

Crenarch Bignorm 1.46 33.18 19 1107 790

Diginorm 9.72 19.80 18 2931 3754

Raw 31.49 26 20,590

Cyanobact Bignorm 1.65 30.45 12 679 450

Diginorm 11.30 17.58 13 1487 1343

Raw 28.49 13 9417

E. coli Bignorm 1.91 26.14 67 2279 598

Diginorm 17.03 19.34 63 9105 3995

Raw 24.34 64 16,706

SAR324 Bignorm 4.34 33.05 55 1222 708

Diginorm 4.69 23.58 52 3706 3085

Raw 32.52 51 26,237
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achieved a smaller N50 are Arco, Caldi, Caulo, Crenarch,
and Cyanobact.
In Table 6, we show the total length of the assemblies for

Q0 = 20 absolute and relative to the length of the refer-
ence. In most cases, all assemblies are clearly longer than
the reference, with Diginorm by trend causing slightly
larger and Bignorm causing slightly shorter assemblies
compared to the unfiltered dataset (see Additional file 1:
Figure S6 for a box plot).
Bignorm’s mean phred score is always slightly larger

than that of the raw dataset, whereas Diginorm’s is always
smaller. For some cases, the difference is substantial; the
quartiles for the ratio of Diginorm’s mean phred score to
that of the raw dataset are given in Table 7 in the first row.
Clearly, our biggest gain is in running time, for the

filtering as well for the assembly. Quartiles of the corre-
sponding improvements are given in rows two and three
of Table 7.

IDBA_UD and Velvet-SC
For a detailed presentation of the results gained with
IDBA_UD and Velvet-SC, please see “Comparison of
different assemblers” section in the Additional file 1. We
briefly summarize the results:

• IDBA_UD does not considerably benefit from read
filtering, while Velvet-SC clearly does.

• Velvet-SC is clearly inferior to both SPAdes and
IDBA_UD, though in some regards the combination
of read filtering and Velvet-SC is as good as
IDBA_UD.

• SPAdes nearly always produced better results than
IDBA_UD, but in median (on unfiltered datasets)
IDBA_UD is about 7 times faster than SPAdes.

• SPAdes running on a dataset filtered using Diginorm
is approximately as fast as IDBA_UD on the
unfiltered dataset while SPAdes on a dataset filtered
using Bignorm is roughly 4 times faster.

Discussion
The quality parameter Q0 that Bignorm introduces as
an innovation to Diginorm has shown to have a strong
impact on the number of reads kept, coverage, and
quality of the assembly. A reasonable upper bound of
Q0 ≤ 25 was obtained by considering the 10th per-
centile of the coverage (Fig. 2b). With this constraint
in mind, in order to keep a small number of reads,
Fig. 1a suggests 18 ≤ Q0 ≤ 25. Given that N50
for E.coli starts to decline at Q0 = 20 (Fig. 3), we
decided for Q0 = 20 as the recommended value.
As presented in detail in Table 4, Q0 = 20 gives good
assemblies for all 13 cases. The gain in speed is con-
siderable: in terms of the median, we only require 31%
and 18% of Diginorm’s time for filtering and assembly,
respectively. This speedup generally comes at the price
of a smaller genomic fraction and shorter largest contig,
although those differences are relatively slight.
We believe that the increase of the N50 and largest

contig for high values of Q0, which we observe for some
datasets just before the breakdown of the assembly (com-
pare for example the results for the Alphaproteo dataset
in Fig. 3), is due to the reduced number of branches
in the assembly graph: SPAdes, as every assembler, ends
a contig when it reaches an unresolvable branch in its
assembly graph. As the number of reads in the input
decreases more and more with increasing Q0, the number
of these branches also decreases and the resulting contigs
get longer.

Table 6 Reference length and total length of assemblies for Bignorm with Q0 = 20, Diginorm, and the raw datasets

Dataset
Reference Raw Diginorm Bignorm

Ref length Total length % of ref Total length % of ref Total length % of ref

Aceto 426,710 750,316 175.80 769,090 180.20 731,850 171.50

Alphaproteo 463,456 405,020 87.40 377,293 81.40 394,979 85.20

Arco 231,937 408,571 176.20 419,403 180.80 380,191 163.90

Arma 1,364,272 2,123,588 155.70 2,131,958 156.30 2,077,037 152.20

ASZN2 3,669,182 4,938,079 134.60 4,930,677 134.40 4,836,216 131.80

Bacteroides 560,676 826,566 147.40 818,799 146.00 792,384 141.30

Caldi 1,961,164 2,044,270 104.20 2,041,841 104.10 2,037,901 103.90

Caulo 423,390 601,709 142.10 616,942 145.70 590,319 139.40

Chloroflexi 863,677 1,317,768 152.60 1,326,848 153.60 1,186,531 137.40

Crenarch 716,004 1,009,122 140.90 1,016,485 142.00 946,606 132.20

Cyanobact 343,353 635,368 185.00 636,876 185.50 591,367 172.20

E. coli 4,639,675 4,896,992 105.50 4,898,422 105.60 4,948,739 106.70

SAR324 4,255,983 4,676,938 109.90 4,674,540 109.80 4,669,774 109.70
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Table 7 Quartiles for comparison of mean phred score, filter and
assembler Wall time in %

Min Q1 Median Mean Q3 Max

Diginorm mean phred score
62 66 74 74 79 89

raw mean phred score

Bignorm filter time
24 28 31 33 38 46

Diginorm filter time

Bignorm SPAdes time
4 08 18 26 35 88

Diginorm SPAdes time

Conclusions
For 13 bacteria single cell datasets, we have shown that
good and fast assemblies are possible based on only 5% of
the reads in most of the cases (and on less than 10% of the
reads in all of the cases). The filtering process, using our
new algorithm Bignorm, also works fast and much faster
than Diginorm. Like Diginorm, we use a count-min sketch
for counting k-mers, so the memory requirements are
relatively small and known in advance. Our algorithm Big-
norm yields filtered datasets and subsequent assemblies
of competative quality in much shorter time. In particular,
the combination of Bignorm and SPAdes gives superior
results to IDBA_UD while being faster. Furthermore, the
mean phred score of our filtered dataset is much higher
than that of Diginorm.

Additional file

Additional file 1: See file ’supplement.pdf’ for formal definitions and
details on results from different assemblers. (PDF 259 kb)
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