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Abstract

Background: Transcriptomic approaches (microarray and RNA-seq) have been a tremendous advance for molecular
science in all disciplines, but they have made interpretation of hypothesis testing more difficult because of the
large number of comparisons that are done within an experiment. The result has been a proliferation of techniques
aimed at solving the multiple comparisons problem, techniques that have focused primarily on minimizing Type I
error with little or no concern about concomitant increases in Type II errors. We have previously proposed a novel
approach for setting statistical thresholds with applications for high throughput omics-data, optimal α, which
minimizes the probability of making either error (i.e. Type I or II) and eliminates the need for post-hoc adjustments.

Results: A meta-analysis of 242 microarray studies extracted from the peer-reviewed literature found that current
practices for setting statistical thresholds led to very high Type II error rates. Further, we demonstrate that applying
the optimal α approach results in error rates as low or lower than error rates obtained when using (i) no post-hoc
adjustment, (ii) a Bonferroni adjustment and (iii) a false discovery rate (FDR) adjustment which is widely used in
transcriptome studies.

Conclusions: We conclude that optimal α can reduce error rates associated with transcripts in both microarray and
RNA-seq experiments, but point out that improved statistical techniques alone cannot solve the problems
associated with high throughput datasets – these approaches need to be coupled with improved experimental
design that considers larger sample sizes and/or greater study replication.

Keywords: Microarrays, RNA-seq, Type I and II error rates, High throughput analysis, Multiple comparisons, Post-hoc
corrections, Optimal α

Background
Microarrays and next generation sequencing (NGS) have
been described as technological advances that provide
global insight into cellular function and tissue responses
at the level of the transcriptome. Microarray and NGS
are used in experiments in which researchers are testing
thousands of single-gene hypotheses simultaneously. In
particular, microarrays and NGS are often used to test
for differences in gene expression across two or more
biological treatments. These high-throughput methods
commonly use p-values to distinguish between differ-
ences that are too large to be due to sampling error and

those that are small enough to be assumed to be due to
sampling error. There is little doubt that microarrays/
NGS have made a large contribution to our understand-
ing of how cells respond under a variety of contexts, for
example in environmental, developmental, and the med-
ical sciences [1–3].
High throughput methods have, however, made inter-

pretation of hypothesis testing more difficult because of
the large number of comparisons that are done in each
experiment [4]. That is, researchers will examine the
effects of one or more treatment on the abundance of
1000s of transcripts. For each gene, there will be replica-
tion and a null hypothesis test of whether there is a
statistically significant difference in relative expression
levels among treatments. In most cases, the statistical
threshold for rejecting the null hypothesis (i.e. α) is
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α = 0.05 although it may occasionally be set at a lower
value such as 0.01 or 0.001. Thus, for any individual
comparison, the probability of rejecting the null hypoth-
esis when it is true is 5% (if the threshold is set at 0.05).
When multiple tests are conducted on 1000’s of tran-
scripts, this creates the potential for hundreds of false
positives (i.e. Type I error) at the experiment-wide scale,
with the expected number of false positives depending
on both the number of tests conducted (known) and the
number of those tests where the treatment has no effect
on gene expression (unknown). Researchers identified
this problem early on and have used a variety of post-
hoc approaches to controlling for false positives [5–9].
Approaches for adjusting p-values and reducing false

‘positives’ when testing for changes in gene expression,
such as Bonferroni or Benjamini-Hochberg procedures,
are designed to control experiment-wide error probabil-
ities when many comparisons are being made. Typically
they reduce the α for each test to a value much smaller
than the default value of 0.05, so that the experiment-wide
error is not as inflated due to the large number of compar-
isons being made. They all share the characteristic that
they only explicitly address probabilities of Type I errors
[4]. This has the effect of increasing the probability of false
negatives (i.e. Type II errors) to varying degrees. This
focus on Type I errors implies that it is much worse to
conclude that gene expression is affected by a treatment
when it is not than to conclude that expression is not af-
fected by a treatment when, in reality, it is. Although there
has been some focus on methods designed to balance
Type I and Type II error rates [10], researchers rarely dis-
cuss the Type II implications of controlling Type I errors,
and we believe this suggests that most researchers simply
are not considering the effect of post-hoc adjustments on
Type II error rates. Krzywinski and Altman [4] note the
problem and offer practical advice, “we recommend al-
ways performing a quick visual check of the distribution
of P values from your experiment before applying any of
these methods”. Our position is that this does not go far
enough; we assert that post-hoc corrections to control
Type I errors don’t make sense unless (1) the researcher
knows their Type II error probability (i.e. power) and (2)
has explicitly identified the relative costs of Type I and II
errors. We have recently developed a solution, optimal α,
that balances α (the acceptable threshold for Type I errors
– usually 0.05) and β (the acceptable threshold for Type II
errors – often 0.20 but the standard practice is more vari-
able than for α), minimizing the combined error rates and
eliminating the need for any post-hoc adjustment [11–13].
In the context of transcriptomics, this reduces the overall
error rate in identifying differentially expressed genes by
finding the best trade-off between minimizing false detec-
tions of differential expression and minimizing nondetec-
tion of true differential expression.

While we have demonstrated this approach in the
context of detecting environmental impacts of pulp and
paper mills [13], it is of particular value in fields such as
transcriptomics where many tests are conducted simul-
taneously. While microarrays and RNA-seq have been
tremendous technological advances for transcriptomics,
when coupled with low sample sizes, it magnifies mul-
tiple comparisons problems. The objectives of this paper
were to apply optimal α to a set of published microarray
data to demonstrate that using the optimal α approach
reduces the probabilities of making errors and eliminates
the need for any post-hoc adjustments. In addition, we
discuss modifications to the experimental design of
microarray data that directly address the problem of
multiple comparisons.

Methods
Data collection
We collected data on microarray experiments conducted
in teleost fishes spanning a period of 10 years (see Add-
itional file 1: Data S1). Environmental toxicology is the
research focus of one of the authors, however we point
out here that this approach is not confined to aquatic
toxicology and is applicable across disciplines. The
search for microarray fish studies was conducted from
January 2011–August 2011 using the search engines
Web of Science, Science Direct, PubMed (National Center
for Biotechnology Information), and Google Scholar. Key-
words and combinations of key words used in the search
engine included “microarray”, “gene expression”, “DNA
chip”, “transcriptomics”, “arrays”, “fish”, “teleost”, and
“aquatic”. In addition, references from papers were reviewed
for information on manuscripts not identified by the search
engines. This intensive search resulted in representation of
studies encompassing a wide range of teleost fishes and
scientific disciplines (e.g. physiology, toxicology, endocrin-
ology, and immunology). There were a total of 242 studies
surveyed for information (Additional file 1: Data S1).
The extracted data from microarray experiments

included fish species, family, sex, analyzed entity (e.g.
cell, tissue), experimental treatment, concentration (if
applicable), duration, exposure type, microarray plat-
form, type of normalization, number of biological rep-
licates, endpoints assessed, number of differentially
expressed genes (DEGs) identified by the researchers,
total gene probes on the array, average fold change of
DEGs, and the method of post hoc analysis. Approxi-
mately 50% of these studies applied an FDR threshold
as the method of choice for detecting differentially
expressed genes. All microarray data were normalized
by the authors of the original studies using the method
of their choice (there are different methods but they
differ only slightly).
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Calculating optimal Α
For each study, we calculated optimal α levels [11] that
minimized the combination of Type I and Type II error
probabilities, and compared the Type I and II error
probabilities resulting from this approach to those asso-
ciated with using α = 0.05. Data are summarized on a
per-paper, not on a per test basis.
The calculation of an optimal α level requires informa-

tion concerning the test type, the number of replicates,
the critical effect size, the relative costs of Type I vs.
Type II errors, and the relative prior probabilities of null
vs. alternate hypotheses. Optimal α calculations are
based on minimizing the combined probability or cost
of Type I and II errors by examining the mean probabil-
ity of making an error over the entire range of possible α
levels (i.e. from 0 to 1). This is a 5 step process. Step 1 –
Choose an α level between 0 and 1. Step 2 – Calculate β
for the chosen α, sample size, critical effect size and vari-
ability of the data (this can be achieved using a standard
calculation of statistical power for the statistical test be-
ing used, beta is 1 – statistical power), Step 3 – Calcu-
late the mean of α and β, Step 4 – Choose a new α
slightly smaller than the previous α and compare the
mean error probability with the previous iteration. If it is
larger choose a new α slightly larger than the previous α.
If it is smaller choose a new α slightly smaller than the
current α, Step 5 – Keep repeating until the improve-
ment in mean error probability fails to exceed the
chosen threshold – at this stopping point you have iden-
tified optimal α. Several assumptions or constraints were
made to enable consistent optimal α analysis of studies
with a wide degree of technical and statistical
methodologies:

Assumptions
(1) We used the number of biological replicates in each
group as the level of replication in each study. Microar-
rays were sometimes repeated on the same biological
replicates but this was not treated as true replication, re-
gardless of whether it was treated as replication within
the study. Similarly, spot replicates of each gene on a
microarray were not treated as replication, regardless of
whether it was treated as replication within the study
There were 39 studies which had levels of biological rep-
lication of n = 1, or n = 2. These studies were omitted
from further statistical analysis, leaving 203 studies with
biological replication of n ≥ 3.
(2) Two hundred and three of the 242 studies identified

were suitable for analysis and to ensure that the optimal α
value in all 203 studies were calculated on the same test
and are comparable, we analyzed each study as an inde-
pendent, two-tailed, two-sample t-test even though some
studies used confidence interval, randomization or Bayesian
analyses instead of t-tests. ANOVA was also occasionally

used instead of t-tests but even in cases where ANOVA
was used, it was the post-hoc pairwise comparisons be-
tween each of the experimental groups and a control group
that were the main focus. These post-hoc pairwise compari-
sons are typically t-tests with some form of multiple
comparison adjustment. One-tailed or paired t-tests were
sometimes used instead of two-tailed independent
tests. Although these tests do increase power to
detect effects, they do so by placing restrictions on
the research question being asked.
(3) Critical effect size, in the context of t-tests, is the

difference in the endpoint (in this case, gene expression)
between treatment and control samples that you want to
detect. In traditional null hypothesis testing, β is ignored
and critical effect sizes are not explicitly considered. We
calculated optimal α levels at three potential critical ef-
fect sizes, defined in terms relative to the standard devi-
ation of each gene (1 SD, 2 SD and 4 SD). Fold-changes
or percent changes from the control group were occa-
sionally used as critical effect sizes, but we avoided these
effect sizes to maintain consistency across optimal α
calculations and because we believe the difference in
expression relative to the variability in the gene is more
important than the size of effect relative to the control
mean of the gene. A two-fold change in a gene may be
well within the natural variability in expression of one
gene and far outside the natural variability in expression
of another gene. However, there may be contexts where
fold-changes are more appropriate than standard devia-
tions and optimal alpha can accommodate this by setting
separate optimal alphas for each gene. Separate thresh-
olds would be required because detecting a 2-fold
change in a highly variable gene would result in a larger
optimal alpha than detecting a 2-fold change a gene with
little variability.
(4) We assumed the relative costs of Type I and Type

II errors to be equal, representing a situation where re-
searchers simply want to avoid errors, regardless of type.
However, optimal alpha can accommodate any estimates
of the relative costs of Type I and II errors (See code in
Additional file 2: Appendix S1). So, where there is clear
evidence of different relative Type I and II error costs
they should be integrated into optimal alpha estimates.
Multiple comparison adjustments that reduce Type I
error rates without (1) estimating Type II error probabil-
ity and (2) the relative costs of Type I and II errors are
ill-advised.
(5) We assumed that the prior probabilities for the

meta-analysis and the required within and among-study
replication to be - HA prior probability = 0.50 and Ho

prior probability = 0.50. For the simulations comnparing
optimal alpha error rates relative to traditional multiple
comparisons approaches we used three prior probability
scenarios - Scenario 1: HA prior probability = 0.50 and
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Ho prior probability = 0.50, Scenario 2: HA prior prob-
ability = 0.25 and Ho prior probability = 0.75, and Sce-
nario 3: HA prior probability = 0.10 and Ho prior
probability = 0.90. There has been relatively little empir-
ical work done describing the proportion of genes that
are affected by treatments in microarray studies but [14]
examined the effects of mutations in different subunits
of the transcriptional machinery on the percent of genes
that showed differential expression and concluded that
the percent of genes ranged from 3 to 100% with a mean
of 47.5%. Another estimate by Pounds and Morris [15]
suggested that slightly more than half the genes in a
study examining two strains of mice showed differential
gene expression. In addition, accurate estimation of glo-
bal gene expression has been complicated by inappropri-
ate assumptions about gene expression data [16, 17] and
further research in this area is critical. There is no way
of being certain of how many true positives and true
negatives there are in each study but in the absence of
any prior knowledge the rational assumption is that the
probabilities are equal (Laplace’s principle of indiffer-
ence). However, in the context of gene expression a dif-
ferential expression prior probability of 0.50 is at the
high end and so we also examined HA prior probabilities
of 0.25 and 0.10. Prior probabilities other than equal can
be accommodated by optimal α and using other prior
probabilities would result in quantitative differences in
the results. However, the general conclusion that optimal
alpha error rates will always be as low or lower than
traditional approaches does not depend on the assumed
prior probabilities.

Analyses
Minimum average of α and β for each of the 203 studies
at 3 different critical effect sizes (1, 2, and 4 SD’s): We
calculated the average of α and β using optimal α and
the traditional approach of setting α = 0.05. To do this
we calculated optimal α for each of the 203 studies as
described above, extracted the β associated with optimal
α for each of the 203 studies, and calculated the average
of α and β. Similarly, we extracted the β associated with
α = 0.05 for each of the 203 studies when and then cal-
culated the average of α and β. We could then compare
the average of α and β for optimal α and α = 0.05.

Effect of post-hoc corrections on error rates (see Additional
file 3: Data S2)
We simulated 15,000 tests of the effect of a treatment
for each of 3 prior probability scenarios and 3 effect size
scenarios. The prior probability scenarios were Scenario
1: HA prior probability = 0.50 and Ho prior probabil-
ity = 0.50, Scenario 2: HA prior probability = 0.25 and
Ho prior probability = 0.75, and Scenario 3: HA prior
probability = 0.10 and Ho prior probability = 0.90. The

effect size scenarios were Scenario 1: 1 SD, Scenario 2: 2
SD, and Scenario 3: 4 SD. All comparisons were made
using two-tailed, two-sample t-tests. Based upon experi-
ence and the literature, gene expression studies vary
widely in the proportion of genes that are differ entially
expressed and usually show a small effect (1 SD). We
only select larger values (2 and 4 SD) above to illustrate
the application of the optimal α compared to other post-
hoc tests. All differences between treatment and control
were chosen from normal distributions that reflected the
‘true’ differences (i.e. 0, 1, 2 or 4 SD’s). We calculated
error rates using optimal α, α = 0.05, α = 0.05 with a
Bonferroni correction and α = 0.05 with a Benjamini-
Hochberg False Discovery Rate correction. We then
compared the total number of errors across all 15,000
tests for the four different approaches. For example,
using Scenario 1 for both effect size and prior probabil-
ity we compared the 4 approaches under the assumption
that half the genes were affected by the treatment and
the size of the effect for those 7500 genes was 1 SD. By
contrast, using Scenario 3 for both prior probability and
effect size we assumed that 1500 of the genes were dif-
ferentially expressed and the size of the effect was 4 SD.

Minimum number of within-study replicates needed to meet
desired error rate
The same iterative process that can be used to calculate
minimum average error rate for a specific sample size
can be used to calculate minimum sample size for a
specific average error rate. Here we identified a range of
minimum acceptable average error rates from 0.00001 to
0.125 (reflecting the common practice of α = 0.05 and
β = 0.2) and calculated the minimum sample size
required to achieve the desired error rates for 3 different
effect sizes (i.e. 1, 2, and 4 SD’s).

Minimum among-study replication needed to meet desired
error rate
An alternative to large within-study replication is to
synthesize similar studies that have been replicated sev-
eral times. Here we simply identified how often a study
would have to be repeated at a specific optimal α to
achieve a desired error rate. For example, to detect a 1
SD difference between treatment and control using a 2-
sample 2-tailed t-test with a sample size of 4 the optimal
α is 0.29. If optimal α is 0.29 but the desired error rate is
0.00001 we solve for x in 0.00001 = 0.29^x and conclude
that 10 studies showing a significant difference between
treatment and control expression would be necessary to
meet our desired threshold. Similarly, β at this optimal α
is 0.38 and we would need 12 studies showing no signifi-
cant difference between treatment and control to meet
our desired error rate.
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Results
Meta-analysis
Across all studies, the median number of genes tested
with ≥3 replicates was 14,900 and the median number of
replicates ≥3 was 4 (Fig. 1). Using optimal α instead of
α = 0.05 resulted in a reduced probability of the combin-
ation of Type I and II errors of 19–29% (Table 1). One im-
portant conclusion is that under current practices, tests
intended to detect effect sizes of 1 SD will make errors in
5% of tests if there are no treatment effects on any of the
genes but the median level of replication (3 replicates per
treatment) will make errors in more than 77% of tests if
all the genes are affected by the treatment(s) and will
make errors in more than 41% of the tests if half the genes
are affected by treatment(s). That is, they will maintain
the probability of making Type I errors at 0.05 but have
highly inflated Type II error probabilities (i.e. low power).
For tests intended to detect a 2 SD effect size, again the
overall error rate will be 5% if none of the genes are af-
fected by treatment(s) but will be more than 34% with me-
dian replication if all the genes are affected by the
treatment(s) and almost 20% if half the genes are affected
by treatment(s). So, current experimental design practices
for microarrays are inadequate, especially with respect to
Type II errors, and post-hoc corrections are not mitigating
this problem (see below). It is important to note that we
do not know the true error rates – for that we would have
to know how many and which genes were actually differ-
entially expressed. These are estimated error rates under
the assumptions that (1) prior probabilities for HA and H0

are equal and (2) critical effect sizes are SD =1,2, or 4.

Sample size estimates (within-study replication)
Many microarray and RNA-seq studies (n = 3 per treat-
ment) are only appropriate for detecting effects sizes at
least of 4 SD at Type I and II error rates of 0.05 or

greater. Traditionally, the least conservative acceptable
error rates have been set at 0.05 for Type I errors and,
when they consider Type II errors, at 0.20 for Type II
errors. This implies an average error rate of 0.125 (i.e.
[α + β] / 2 ≤ 0.125, the average of α and β associated
with using α = 0.05 and achieving 80% statistical power).
To detect an effect of 2 SD at an error rate of 0.125
would require sample sizes greater than 5 per treatment,
and detecting an effect of 1 SD would require at least 16
samples per treatment (Table 2).

Repeating the experiment (among- study replication)
Using the optimal α minimize the combined probabilities
of Type I and II errors, to reduce the probability of
making a Type I error for any particular gene to 0.10 for
an effect size of 1 SD using a sample size at the high end
of what is usually used in microarray studies (i.e. 10 repli-
cates per treatment), an experiment would have to show a
statistically significant effect for a gene in two consecutive
experiments. To reduce the probability to 0.001, the
experiment would have to show a statistically significant
effect for a gene in 4 consecutive experiments. Similarly,
to reduce the probability of missing a real effect to 0.10
for an effect size of 1 SD, an experiment with 10 replicates
per treatment would have to show no statistically signifi-
cant effect for a gene in two consecutive experiments. To
reduce this probability to 0.001, there would have to be no
statistically significant results in 5 consecutive expe-
riments. On the other hand, if the critical effect size is 4
SD, one experiment is all that would be needed for most
traditional sample sizes and error rates (Tables 3a and b)

Optimal α versus no post-hoc and traditional post-hoc
analyses
We used three sets of simulated scenarios of 15,000 tests
with 4 replicates per group. The scenarios differed in the
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Fig. 1 Distribution of the number of biological replicates per treatment group over 203 fish microarray papers published between 2002 and 2011
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assumed prior probability of the null and alternate
hypotheses with Scenario 1 assuming a 50% probability
of the alternate being true, Scenario 2 a 25% probability
and Scenario 3 a 10% probability. Each scenario exam-
ined 3 different critical effect sizes, 1, 2, and 4 SD.

Optimal α consistently resulted in fewer or the same
overall errors when compared to any of the following
approaches; no post-hoc test, Bonferroni correction,
or an FDR (Table 4A-C).
Optimal α reduced the number of overall errors (α

and β) relative to other approaches by as much as 96%.
When the assumed prior probability of HA is low (i.e.
10%) and the critical effect size is small (i.e. 1 SD)
Bonferroni and FDR adjustments do as well as optimal
alpha because the threshold is so stringent that they find
no significant results. Thus, the only error that is made
is a Type II error and these approaches miss all 1500
true effects. Optimal alpha makes slightly fewer Type II
error, at 1495. In addition, half of the 10 significant re-
sults found using the optimal alpha threshold are false
positives resulting in the same number of errors which
was 1500 and the same number as for Bonferroni or FDR
adjustments. No post-hoc adjustments under these circum-
stances result in many more true effects being detected but
also many more type I errors – more than half of the statis-
tically significant results are false positives. The most

Table 1 Type I and II error rates: Median, 1st and 3rd quartiles, minimum and maximum α, β, average of α and β, and implied costs of
Type I/II errors, evaluated for the standard α = 0.05 and for the optimal α approach, at 3 critical effect sizes (1, 2, and 4 SD), for 203 fish
microarray papers with tests that have at least 3 replicates, published between 2002 and 2011 (assuming two-tailed, two-sample t-tests)

Critical effect size Decision threshold Statistical parameter Minimum 1st quartile Median 3rd quartile Maximum

1 standard deviation standard α α 0.05 0.05 0.05 0.05 0.05

β 0.088 0.71 0.78 0.84 0.84

(α + β)/2 0.069 0.38 0.41 0.45 0.45

Implied Type I/II error cost ratio 1.5 2.6 3.1 3.4 3.9

optimal α α 0.064 0.26 0.29 0.32 0.32

β 0.070 0.34 0.38 0.42 0.42

(α + β)/2 0.067 0.30 0.33 0.37 0.37

Implied Type I/II error cost ratio 1 1 1 1 1

2 standard deviations standard α α 0.05 0.05 0.05 0.05 0.05

β 0.0000015 0.21 0.34 0.54 0.54

(α + β)/2 0.025 0.13 0.20 0.29 0.29

Implied Type I/II error cost ratio 0.00011 3.4 4.5 5.1 5.1

optimal α α 0.0011 0.11 0.15 0.21 0.21

β 0.00094 0.10 0.13 0.18 0.18

(α + β)/2 0.0010 0.10 0.14 0.19 0.19

Implied Type I/II error cost ratio 1 1 1 1 1

4 standard deviations standard α α 0.05 0.05 0.05 0.05 0.05

β 0 0.00023 0.0038 0.052 0.052

(α + β)/2 0.025 0.025 0.027 0.051 0.051

Implied Type I/II error cost ratio 0.00011 0.014 0.19 1.9 1.9

optimal α α 0.000000031 0.013 0.028 0.065 0.065

β 0.000000017 0.0065 0.014 0.031 0.031

(α + β)/2 0.000000024 0.0096 0.021 0.048 0.048

Implied Type I/II error cost ratio 1 1 1 1 1

Table 2 Replicate estimates: Number of replicates per treatment
needed to achieve maximum acceptable averages of α and β of
0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, and 0.125, at critical effects
sizes of 1, 2, and 4 SD, for an independent two-tailed, two sample
t-test

Maximum acceptable
average of α and β

Number of samples required

CES = 1SD CES = 2SD CES = 4SD

0.00001 156 43 15

0.0001 120 33 12

0.001 85 24 9

0.01 50 14 5

0.05 27 8 3

0.1 18 6 3

0.125 16 5 3
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conservative post-hoc adjustment, Bonferroni, routinely
resulted in the largest overall error rate when the critical ef-
fect size was large while not using a post-hoc analysis re-
sulted in fewer errors than either a Bonferroni or FDR
except when the prior probability and critical effect size
were small. Of course, the distribution of Type I and II er-
rors varies among approaches, with no post hoc adjustment
and the FDR adjustment resulting in a relatively large num-
ber of Type II errors when the critical effect size was 1 or 2
SD. However, no post-hoc adjustment produced relatively
large number of Type I errors when the critical effect size
was 4 SD while the FDR approach still resulted in more
type II errors. Bonferroni resulted in zero Type I errors but

a large number of Type II errors at all effect sizes. Optimal
alpha resulted in a much more even distribution of Type I
and II errors except when the prior probability and critical
effect size was small.

Discussion
Researchers using high throughput expression tech-
niques enjoy the benefits of global analyses, but must
acknowledge the statistical issues associated with an
extremely large number of comparisons. Problems may
become exacerbated as even higher throughput tech-
niques such as RNA-Seq become more common and
genome projects continue to increase the capacity of

Table 3 A and B. Required number of replicates: A) Number of times a study would have to be repeated with the same conclusion to
achieve an α of 0.00001, 0.0001, 0.001, 0.01, 0.05, 0.1, and 0.2, at critical effects sizes of 1, 2, and 4 SD, for an independent two-tailed, two
sample t-test. (B) Number of times a study would have to be repeated with the same conclusion to achieve a β of 0.00001, 0.0001, 0.001,
0.01, 0.05, 0.1, and 0.2, at critical effects sizes of 1, 2, and 4 SD, for an independent two-tailed, two sample t-test

A.

Critical effect size Within-study
replication

Replication of the experiment needed to achieve

α = 0.00001 α = 0.0001 α = 0.001 α = 0.01 α = 0.05 α = 0.1 α = 0.2

1 SD 4 10 8 6 4 3 2 2

6 9 7 5 4 3 2 2

8 8 6 5 3 3 2 2

10 7 6 4 3 2 2 1

2 SD 4 7 5 4 3 2 2 1

6 5 4 3 2 2 1 1

8 4 4 3 2 1 1 1

10 4 3 2 2 1 1 1

4 SD 4 4 3 2 2 1 1 1

6 3 2 2 1 1 1 1

8 2 2 2 1 1 1 1

10 2 2 1 1 1 1 1

B.

Critical effect size Within-study
replication

Replication of the experiment needed to achieve

β = 0.00001 β = 0.0001 β = 0.001 β = 0.01 β = 0.05 β = 0.1 β = 0.2

1 SD 4 12 10 8 5 4 3 2

6 10 8 6 4 3 2 2

8 9 7 6 4 3 2 2

10 8 6 5 3 2 2 2

2 SD 4 6 5 4 3 2 2 1

6 5 4 3 2 2 1 1

8 4 3 3 2 1 1 1

10 4 3 2 2 1 1 1

4 SD 4 3 3 2 2 1 1 1

6 2 2 2 1 1 1 1

8 2 2 1 1 1 1 1

10 2 2 1 1 1 1 1
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Table 4 A-C. A comparison of the mean number of significant results among four different procedures for evaluating significance of
multiple comparisons: Type I errors, and Type II errors for 100 iterations of 15,000 simulated differential gene expression test using (1) α = 0.05
for all tests, (2) a Bonferroni correction to adjust the family-wise error rate (FWER) to 0.05, (3) the Benjamini-Hochberg procedure to adjust the
false-discovery rate (FDR) to 0.05, and (4) optimal α
Critical effect size (CES) Average of 100 iterations of 15,000 tests α = 0.05 Bonferroni

FWER = 0.05
Benjamini-Hochberg
FDR = 0.05

Optimal α

A.

CES = 1SD # of significant results 2046 0 1 6776

# of Type I errors 376 0 0 2143

# of Type II errors ≥ CES 5829 7500 7499 2867

# of Type I and II errors 6205 7500 7499 5010

% error reduction by using optimal α 19.3% 33% 33% -

CES = 2SD # of significant results 5298 3 1709 7659

# of Type I errors 379 0 43 1130

# of Type II errors ≥ CES 2581 7497 5834 970

# of Type I and II errors 2960 7497 5876 2100

% error reduction by using optimal α 29% 72% 64% -

CES = 4SD # of significant results 7848 61 7560 7608

# of Type I errors 378 0 190 212

# of Type II errors ≥ CES 30 7439 130 105

# of Type I and II errors 408 7439 320 317

% error reduction by using optimal α 22% 96% 1% -

B.

CES = 1SD # of significant results 1400 0 0 1456

# of Type I errors 562 0 0 590

# of Type II errors ≥ CES 2912 3750 3750 2883

# of Type I and II errors 3474 3750 3750 3473

% error reduction by using optimal α 0.02% 7% 7% -

CES = 2SD # of significant results 3032 1 119 3537

# of Type I errors 562 0 5 791

# of Type II errors ≥ CES 1280 3749 3636 1004

# of Type I and II errors 1842 3749 3641 1795

% error reduction by using optimal α 3% 52% 51% -

CES = 4SD # of significant results 4295 31 3665 3826

# of Type I errors 560 0 136 200

# of Type II errors ≥ CES 15 3719 221 124

# of Type I and II errors 575 3719 358 324

% error reduction by using optimal α 44% 91% 9% -

C.

CES = 1SD # of significant results 1012 0 0 10

# of Type I errors 680 0 0 5

# of Type II errors ≥ CES 1167 1500 1500 1495

# of Type I and II errors 1847 1500 1500 1500

% error reduction by using optimal α 19% 0% 0% -
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microarray platforms. RNA-seq experiments are cur-
rently restricted due to cost to small sample sizes for
each comparison which further exacerbates the error
rates. Researchers have generally dealt with the issue of
multiple comparisons by using one or more post-hoc ad-
justments designed to control Type I error rates [18, 19]
and it is unlikely that one can publish transcriptomic
datasets without using some form of post-hoc correction
(e.g. FDR [20], Bonferroni, Tukey’s range test, Fisher’s
least significant difference and Bayesian algorithms).
Techniques are more conservative (i.e. less likely to re-
sult in a Type I error) or less conservative (more likely
to result in a Type I error) and implicit in choosing one
technique over another is a concern about making a
Type II error. That is, the only reason to use a less con-
servative post-hoc adjustment is if one is concerned
about the increasing Type II error rate associated with
lowering the probability of making a Type I error. This
has, inevitably, led to a large-scale debate that has been
relatively unproductive because it is rarely focused on
the fundamental issue, that all post-hoc adjustments are
designed to reduce Type I error rates (i.e. concluding
gene expression has been affected by a treatment when
it has not) with little or no explicit regard for the inevit-
able increase in Type II error rates (i.e. concluding that
the treatment has had no effect on gene expression
when it has) [21]. Any informed decision about post-hoc
adjustments requires a quantitative understanding of
both α and β probabilities [22, 23] and a clear assess-
ment of the relative costs of Type I and II errors. How-
ever, no post-hoc test currently attempts to explicitly
and quantitatively integrate control of Type I and II er-
rors simultaneously and the result is that none of them
minimize either the overall error rates or costs of mak-
ing an error.

One proposed solution to balancing concerns is to set
Type I and II error thresholds to be equal [24]. However,
the threshold that minimizes the probability of making
an error may not be where the Type I and II error prob-
abilities are equal and if Type I and II errors have equal
costs, then we should seek to minimize their average
probability with no concern for whether the individual
probabilities are equal. This is a critical and underem-
phasized problem in bioinformatics. Our results demon-
strate that using optimal α results in reduced error rates
compared to using p = 0.05 with or without post-hoc
corrections. However, it is unlikely that the improvement
in error rates attributed to using optimal α will be the
same as those estimated here. These results were calcu-
lated based on the assumption that the prior probabil-
ities of the alternate being true were 0.5, 0.25 and 0.10,
that the costs of Type I and II errors are equal, that the
targeted critical effect sizes are 1, 2, or 4 SD and that the
results in these 203 studies are representative of all disci-
plines. But optimal α can accommodate different as-
sumptions about prior probabilities, relative error costs
and critical effect sizes and, though the degree to which
optimal alpha is superior to traditional approaches may
vary, the fundamental conclusion that optimal α error
probabilities are as good or better than traditional ap-
proaches holds under different assumptions about prior
probabilities or critical effect sizes. That said, this is only
certain to hold true when we make the assumption im-
plied in null hypothesis testing, that there is either no ef-
fect (H0) or there is an effect as large as the critical
effect size (HA).

Multiple comparisons problem
One particular advantage of optimal α is that it makes
post-hoc corrections unnecessary and, in fact, undesirable

Table 4 A-C. A comparison of the mean number of significant results among four different procedures for evaluating significance of
multiple comparisons: Type I errors, and Type II errors for 100 iterations of 15,000 simulated differential gene expression test using (1) α = 0.05
for all tests, (2) a Bonferroni correction to adjust the family-wise error rate (FWER) to 0.05, (3) the Benjamini-Hochberg procedure to adjust the
false-discovery rate (FDR) to 0.05, and (4) optimal α (Continued)

CES = 2SD # of significant results 1662 1 3 1083

# of Type I errors 677 0 0 334

# of Type II errors ≥ CES 515 1499 1497 752

# of Type I and II errors 1192 1499 1498 1086

% error reduction by using optimal α 9% 28% 27% -

CES = 4SD # of significant results 2169 12 1261 1539

# of Type I errors 675 0 56 143

# of Type II errors ≥ CES 6 1488 295 105

# of Type I and II errors 681 1488 350 248

% error reduction by using optimal α 64% 83% 29% -

Type II error rates and optimal α levels were evaluated using three different critical effect sizes (CES), representing effects as large as 1, 2, and 4 standard
deviations (SD) of the data. The 15,000 simulated tests had 4 replicates in the experimental and control groups, and were constructed such that (A) HA prior
probability = 0.50, Ho prior probability = 0.50; (B) HA prior probability = 0.25, Ho prior probability = 0.75; (C) HA prior probability = 0.10, Ho prior probability = 0.90
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(correction implies that something desirable has occurred
when that isn’t necessarily so – we were tempted to call it
a post-hoc distortion). This should dispel some of the
complexity and confusion surrounding the analysis of
transcriptomic data. However, while optimal α can
minimize the errors associated with the large number of
comparisons made using microarrays for example, neither
optimal α nor any form of post-hoc correction can elim-
inate the problems associated with multiple comparisons.
Any post-hoc test that is done to lower the probability of
a Type I error will increase the probability of making a
Type II error. While optimal α minimizes the probability
of making an error, there will still be an enormous num-
ber of unavoidable errors made simply because we are
doing a large number of comparisons. There is no simple
solution to solving the effects of multiple comparisons of
error rates. However, progress can be made by developing
new standards for the experimental design of microarray
data including large increases in within-study replication,
increased among study replication and/or use of ‘network’
approaches which broaden hypotheses to include suites
of genes and reduce the total number of hypotheses
being tested.

Experimental design solutions
Our results suggest that standard within-study replica-
tion (i.e. 3–8 replicates per treatment) is adequate for
critical effect sizes of 2 or 4 SD’s at a target overall error
rate of 0.05. Thus, increased replication would only be
warranted if detecting smaller effect sizes were desirable.
However, we question whether error rates = 0.05 are
appropriate when 44 thousand comparisons are being
made because a threshold error rate of 0.05 still results
in thousands of errors. This is a particular problem
when even a handful of statistically significant results
might be considered reason enough for publication. We
suggest that where thousands of comparisons are being
made, the standard for statistical significance must be
higher, say, 0.0001 or 0.00001 but not through the use of
post-hoc corrections that will increase the probability of
Type II errors. To meet these standards and retain high
statistical power, within-study replication would require
dramatic increases in the number of biological replicates
used in experiments. Currently, the standard appears to
be 3–8 biological replicates per treatment. Replication is
limited by a variety of factors including financial costs,
available person hours, sample availability, and physical
space. However, where possible, it would often be prefer-
able to test fewer genes using much larger samples sizes,
especially because the price of microarrays/NGS will
likely to continue to drop, making replication of 50, 100
or 200 possible and, in some cases, warranted. These may
seem like drastic replication recommendations but the
problems associated with high throughput of molecular

data are unusual and perhaps unprecedented and it is not
surprising that when the number of comparisons that can
be made at one time is large the number of replicates per
comparison will also need to be large. Our results suggest
that the number of replicates per treatment required to
maintain acceptable error rates is large, and estimated to
be 15–150, depending on the critical effect size.
An alternative approach is to replicate experiments ra-

ther than increasing the number of replicates within an
experiment. This would involve identifying the number
of times one would have to see the same result repeated,
given a particular experimental design, before we would
be willing to accept the result. Our results suggest that if
8–10 replicates per treatment are used and the critical
effect size is 2 or 4 SD’s then an experiment would not
need to be repeated to meet at error rate = 0.05. How-
ever, the argument for a more stringent acceptable error
rate applies here as well and so at an error rate of 0.0001
experiments would need to be repeated 2–10 times. It’s
not clear whether increased within-experiment or
among experiment replication would be more efficient
and may depend on the limiting factors in particular
labs. However, it is clear that among-experiment replica-
tion adds an additional layer of inferential complexity
because it would require interpretation of cases where a
subset, but not all, of the experiments was consistent.
It’s not clear whether within- or among-study replica-

tion is preferable – which is preferable may depend on
context – but it is clear that one or both are necessary if
conclusions of microarray studies are to be rigorous and
reliable.

Relative costs of type I and II errors
All of our analyses assumed that the costs of Type I and
II errors were equal but we do not preclude the possibil-
ity that Type I and II errors should be weighted differ-
ently [25–27] and an additional advantage of optimal α
is that the cost of error can be minimised rather than
the probability of error. Thus, if the relative costs of
Type I and II error can be estimated they can be inte-
grated into the selection of appropriate statistical thresh-
olds. The question of relative costs of Type I and II
errors is a difficult and relatively unexplored one but the
objectives of a study can often guide setting relative
costs of Type I and II error. For example, preliminary
work ‘fishing’ for genes that may respond to a specific
treatment might be more concerned about missing
genes that were actually affected than identifying genes
as affected when they really weren’t and would choose
to set the cost of Type II errors greater than Type I er-
rors. By contrast, a researcher attempting to identify a
single gene (i.e. biomarker) that is regulated by a specific
treatment or drug might decide that Type I error is a
larger concern.
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Post-hoc multiple comparison adjustments to reduce
Type I errors at the expense of increased Type II errors
imply that Type I errors are more serious than Type II
errors. Although we don’t believe Type I errors are actu-
ally more serious than Type II errors under all circum-
stances in which multiple comparison α adjustments
have been used, similar outcomes can be obtained
through the optimal α approach by selecting a large
Type I / Type II error cost ratio a priori.

SD versus k-fold effect size
One potential complication is that the convention in
microarray analysis is often to use effect sizes expressed
as multiples of the control mean (e.g. 1-fold, 2-fold or 4-
fold change). Unlike effect sizes measured in standard
deviations, which combine the raw effect size with the
variability of the data, k-fold effect sizes, even when
combined with a statistical significance threshold, do not
quantitatively incorporate variability in the data. This
implies that if a constant k-fold effect size was set as the
critical effect size, say 2-fold, that there would be a dif-
ferent optimal α for each comparison, depending on the
variability in expression of each gene. That is, if there
were 44,000 comparisons, it would require 44,000 differ-
ent optimal α levels. However, if k-fold effect sizes are
used, solutions include (i) setting a single optimal α
based on the ‘average’ variability across genes, (ii) group-
ing genes into variability categories and using a single
optimal α for each category based on the average
variability in each category, and (iii) setting an individual
optimal α for each gene. While both –k-fold and SD
effect sizes are reasonable indices of effects, using SD
simplifies the application of optimal alpha. However, for
microarray and RNA-seq, there are approaches such as
Voom [28] that would allow using both k-fold changes
and a single optimal alpha for all genes by making the
variance homoscedastic.

A priori H0 and HA probabilities
The accuracy of estimates of optimal alpha is a function
of assumptions about the a priori probabilities of H0 and
HA. It is inarguably true that estimates of optimal alpha
will be less reliable if estimates of a priori H0 and HA

probabilities are inaccurate. Thus, research into prior
probabilities of global gene expression is critical. One
key advantage of optimal alpha is that it has the explicit
objective of identifying the threshold that will result in
the lowest probability of cost of making a mistake. There
is, indisputably, a true optimal alpha – if we know the
true a priori probabilities of H0 and HA and the true
relative costs of Type I and II errors then the statistical
threshold that minimizes the probability or cost of mak-
ing an error can be calculated for any target critical ef-
fect size. By contrast, the approach of alpha = 0.05 with

post hoc corrections (i.e. Bonferroni or FDR) doesn’t ex-
plicitly address Type II errors, it only explicitly addresses
Type I errors. Of course, there is an implicit concern
about Type II error – if there wasn’t we would simply
always set alpha = 0 and never make a Type I error. We
don’t set alpha = 0.00 because the goal is to make as few
type I errors as possible while also detecting true effects.
This implies that we should explicitly address (1) Type II
errors, (2) the balance between Type I and II errors and
(3) the assumptions about a priori H0 and HA probabil-
ities and relative costs of Type I and II errors. Optimal
alpha does this and alpha = 0.05 with or without post-
hoc corrections does not.

Application
We have included R code (Additional file 2: Appendix
S1) that can be used to calculate optimal α for t-tests
ANOVA’s and regressions. To apply optimal α to micro-
array analysis, you must choose the type of test, sample
size, critical effect size, a priori null/alternate probabil-
ities and relative costs of Type I/II errors.

(1)Type of test: We have written code for t-tests,
ANOVA’s and regressions. Here we have focused on
t-tests. The code allows the choice of 1 or 2-tailed
tests and one-, two- or paired-sample tests.

(2)Sample size: This is usually limited by time and/or
money. Most microarray studies test many genes
with relatively few replicates (3–6) and the result is
a large number of false positives and negatives due
to insufficient power. A different experimental
design may be desired, testing fewer genes with a
higher number of replicates (12–24) to reduce the
number of errors. This includes a priori hypotheses
for specific pathways perturbed by a stressor.

(3)Critical effect size type: This can be measured in
standard deviations (e.g. 1, 2, and 4 SD’s), absolute
differences (e.g. difference in signal intensity) or
relative differences (e.g. fold differences between
treatment and control samples – 0.5, 1, 2× more/
less gene expression). SD’s are less labour intensive
than absolute r relative differences because you set a
single optimal α for all genes. If you target absolute
or relative critical effects, it will require a separate
optimal α for each gene tested in the microarray.
This is because the variability among replicates for
different genes will vary and therefore the power to
detect the same absolute or fold difference will vary
among genes.

(4)Critical effect size value: A single critical effect size
or a range of critical effect sizes can be chosen.
Unless there is a defensible reason for choosing a
single critical effect size, we suggest selecting a range
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of critical effect sizes that span small, moderate and
large effects. Each critical effect will have a different
optimal α (i.e. optimal α for large effects will be
smaller than for moderate effects which will be
smaller than for small effects) and this allows for
different conclusions about small versus moderate
versus large effects. For example, it would be
reasonable to conclude that there is evidence for
small effects but no evidence for moderate or large
effects.

(5)A priori probability of null and alternate hypotheses:
There must be explicit quantitative probabilities for
these values. We suggest assuming these to be equal
(i.e. 0.5 for both) unless you have theoretical or
empirical reasons to believe otherwise.

(6)Relative costs of Type I and II errors: It is not
unreasonable to expect that the costs of missing a
real effect could be different than detecting a false
effect and such difference can be assigned in the
code for calculating optimal α. However, unless
there is a clear, explicit reason for estimating the
costs to be different, we recommend assuming equal
costs of Type I and II errors.

Conclusions
While we don’t have empirical estimates of the true error
rates associated with the studies used in the meta-analysis,
both the meta-analysis and simulations estimated error
rates under simple and reasonable assumptions and
suggest that optimal α provides a simple and superior ap-
proach to setting statistical thresholds for transcriptome
analysis than the traditional α = 0.05 with or without post-
hoc adjustments. Using optimal α will provide significantly
lower probabilities of making errors and will eliminate the
need to use complex and controversial post-hoc adjust-
ments. However, optimal α cannot eliminate the problems
associated with the large number of tests that are tradition-
ally carried out in transcriptome analysis. This problem will
only become exacerbated as new high-throughput tech-
niques such as RNA-Seq become more commonly used
and increasing amounts of information are generated.
Thus, moving forward, researchers should consider setting
new standards for within and among-study replication and
exploring novel approaches to evaluating gene expression
data such as in the case of gene enrichment analyses.
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