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Abstract

Background: Current -omics technologies are able to sense the state of a biological sample in a very wide variety of
ways. Given the high dimensionality that typically characterises these data, relevant knowledge is often hidden and
hard to identify. Machine learning methods, and particularly feature selection algorithms, have proven very effective

over the years at identifying small but relevant subsets of variables from a variety of application domains, including
-omics data. Many methods exist with varying trade-off between the size of the identified variable subsets and the
predictive power of such subsets. In this paper we focus on an heuristic for the identification of biomarkers called
RGIFE: Rank Guided Iterative Feature Elimination. RGIFE is guided in its biomarker identification process by the
information extracted from machine learning models and incorporates several mechanisms to ensure that it creates

minimal and highly predictive features sets.

Results: We compare RGIFE against five well-known feature selection algorithms using both synthetic and real
(cancer-related transcriptomics) datasets. First, we assess the ability of the methods to identify relevant and highly
predictive features. Then, using a prostate cancer dataset as a case study, we look at the biological relevance of the

identified biomarkers.

Conclusions: We propose RGIFE, a heuristic for the inference of reduced panels of biomarkers that obtains similar
predictive performance to widely adopted feature selection methods while selecting significantly fewer feature.
Furthermore, focusing on the case study, we show the higher biological relevance of the biomarkers selected by our
approach. The RGIFE source code is available at: http://ico2s.org/software/rgife.html.
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Background

Recent advances in high-throughput technologies yielded
an explosion of the amount of -omics data available to
scientists for many different research topics. The suffix -
omics refers to the collective technologies used to explore
the roles, relationships, and actions of the various types
of molecules that make up the cellular activity of an
organism. Thanks to the continuous cost reduction of
bio-technologies, many laboratories nowadays produce
large-scale data from biological samples as a routine task.
This type of experiments allows the analysis of the rela-
tionships and the properties of many biological entities
(e.g. gene, proteins, etc.) at once. Given this large amount
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of information, it is impossible to extract insight without
the application of appropriate computational techniques.
One of the major research field in bioinformatics
involves the discovery of driving factors, biomarkers, from
disease-related datasets where the samples belong to dif-
ferent categories representing different biological or clin-
ical conditions (e.g. healthy vs. disease affected patients).
A biomarker is defined as: ‘a characteristic that is objec-
tively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmaco-
logic responses to a therapeutic intervention” [1]. Feature
selection is a process, employed in machine learning and
statistics, of selecting relevant variables to be used in the
model construction. Therefore, the discovery of biomark-
ers from -omics data can be modelled as a typical feature
selection problem. The goal is to identify a subset of
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features (biomarkers), commonly called signature, that
can build a model able to discriminate the category (label)
of the samples and eventually provide new biological or
clinical insights.

Machine learning has been extensively used to solve
the problem of biomarkers discovery [2]. Abeel et al.
presented a framework for biomarkers discovery in a
cancer context based on ensemble methods [3], Wang
et al. showed that a combination of different classifica-
tion and feature selection approaches identifies relevant
genes with high confidence [4]. To achieve efficient gene
selection from thousands of candidate genes, particle
swarm optimisation was combined with a decision tree
classifier [5].

Over the years different feature selection methods have
been designed, some have been created explicitly to tackle
biological problems, others have been conceived to be
more generic and can be applied to a broad variety
of problems. A common approach for feature selection
methods is to rank the attributes based on an importance
criteria and then select the top K [6]. One of the main
drawbacks is that the number K of features to be selected
needs to be set up-front and determine its exact value
is a non-trivial problem. Other methods such as CFS [7]
or mRMR (minimum Redundancy Maximum Relevance)
[8] are designed to evaluate the goodness of a given sub-
set of variables in relation to the class/output variable.
When coupled with a search mechanism (e.g. BestFirst),
they can automatically identify the optimal number of
features to be selected. A large class of feature selection
methods are based on an iterative reduction process. The
core of these methods is to iteratively remove the useless
feature(s) from the original dataset until a stopping condi-
tion is reached. The most well known and used algorithm
based on this paradigm is SVM-RFE [9]. This method
iteratively repeats 3 steps: 1) trains an SVM classifier, 2)
ranks the attributes based on the weights of the classifier
and 3) removes the bottom ranked attribute(s). SVM-RFE
was originally designed and applied to transcriptomics
data, but nowadays it is commonly used in many different
contexts. Several approaches have been presented after
SVM-RFE [10-12].

In this paper, we present an improved heuristic for
the identification of reduced biomarker signatures based
on an iterative reduction process called RGIFE: Ranked
Guided Iterative Feature Elimination. In each iteration,
the features are ranked based on their importance (contri-
bution) in the inferred machine learning model. Within its
process, RGIFE dynamically removes blocks of attributes
rather than in a static (fixed) approach as many of the
proposed methods. RGIFE also introduces the concept of
soft-fail, that is, under certain circumstances, we consider
an iteration successful if it suffered a drop in performance
within a tolerance level.
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This work is an extension of [13] where the heuris-
tic was originally presented. We have thoroughly revis-
ited every aspect of the original work, and in this paper
we extend it by: 1) using a different machine learning
algorithm to rank the features and evaluate the feature
subsets, 2) introducing strategies to reduce the probabil-
ity of finding a local optimum solution, 3) limiting the
stochastic nature of the heuristic, 4) comparing our meth-
ods with some well known approaches currently used in
bioinformatics 5) evaluating the performance using syn-
thetic datasets and 6) validating the biological relevance
of our signatures using a prostate cancer dataset as a case
study.

First, we compared the presented version of RGIFE with
the original method proposed in [13]. Then, we con-
trasted RGIFE with five well-known feature extraction
methods from both a computational (using synthetic and
real-world datasets) and a biological point of view. Finally,
using a prostate cancer dataset as a case study, we focused
on the knowledge associated with the signature identi-
fied by RGIFE. We found that the new proposed heuristic
outperforms the original version both in terms of pre-
diction accuracy and number of selected attribute, while
being less computationally expensive. When compared
with other feature reduction approaches, RGIFE showed
similar prediction performance while constantly select-
ing fewer features. Finally, the analysis performed in the
case study showed higher biological (and clinical) rele-
vance of the genes identified by RGIFE when compared
with the proposed benchmarking methods. Overall, this
work presents a powerful machine-learning based heuris-
tic that when applied to large-scale biomedical data is
capable of identifying small sets of highly predictive and
relevant biomarkers.

Methods

The RGIFE heuristic

A detailed pseudo-code that describes the RGIFE heuris-
tic is depicted in Algorithm 1. RGIFE can work with any
(-omics) dataset as long as the samples are associated with
discrete classes (e.g. cancer vs. normal) as the signature
is identified via the solving of a classification problem.
The first step is to estimate the performance of the origi-
nal set of attributes, this will initially guide the reduction
process (line 29). The function RUN_ITERATION() splits
the dataset into training and test data by implementing
a k-fold cross-validation (by default K = 10) process to
assess the performance of the current set of attributes.
We opted for a k-fold cross-validation scheme, rather
than the leave-one-out used in the previous RGIFE ver-
sion, because of its better performance when it comes
to model selection [14]. In here, to describe the RGIFE
heuristic, the generic term performance is used to refer
to how well the model can predict the class of the test
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samples. In reality, within RGIFE many different mea-
sures can be employed to estimate the model performance
(accuracy, F-measure, AUC, etc.). The N parameter indi-
cates how many times the cross-validation process is
repeated with different training/test partitions, this is
done in order to minimise the potential bias introduced
by the randomness of the data partition. The generated
model (classifier) is then exploited to rank the attributes
based on their importance within the classification task.
Afterwards, the block of attributes at the bottom of the
rank is removed and a new model is trained over the
remaining data (lines 33—35). The number of attributes
to be removed in each iteration is defined by two vari-
ables: blockRatio and blockSize. The former represents the
percentage of attributes to remove (that decreases under
certain conditions), the latter indicates the absolute num-
ber of attributes to remove and is based on the current size
of the dataset. Then, if the new performance is equal or
better than the reference (line 49), the removed attributes
are permanently eliminated. Otherwise, the attributes just
removed are placed back in the dataset. In this case, the
value of startinglndex, a variable used to keep track of
the attributes been tested for removal, is increased. As
a consequence, RGIFE evaluates the removal of the next
blockSize attributes, ranked (in the reference iteration)
just after those placed back. The startinglndex is itera-
tively increased, in increments of blockSize, if the lack
of the successive blocks of attributes keeps decreasing
the predictive performance of the model. With this iter-
ative process, RGIFE evaluates the importance of differ-
ent ranked subsets of attributes. Whenever either all the
attributes of the current dataset have been tested (i.e. have
been eliminated and the performance did not increase),
or there has been more than 5 consecutive unsuccessful
iterations (i.e. performance was degraded), blockRatio is
reduced by a fourth (line 44). The overall RGIFE process is
repeated while blockSize (number of attributes to remove)
is > 1.

An important characteristic of RGIFE is the concept of
soft-fail. After five unsuccessful iterations, if some past
trial failed and suffered a “small” drop in performance
(one misclassified sample more than the reference iter-
ation) we still consider it as successful (line 40). The
reason behind this approach is that by accepting a tem-
porary small degrade in performance, RGIFE might be
able to escape from a local optimum and quickly after
recover from this little loss in performance. Given the
importance of the soft-fail, as illustrated later by the
“Analysis of the RGIFE iterative reduction process”
section, in this new RGIFE implementation, the search-
ing for the soft-fail is not only performed when five
consecutive unsuccessful trials occurs, as in the orig-
inal version, but it occurs before every reduction of
the block size. Furthermore, we extended the iterations
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that are tested for the presence of a soft-fail. While
before only the last five iterations were analysed, now
the searching window is expanded up to the most recent
between the reference iteration and the iteration in
which the last soft-fail was found. Again, this choice
was motivated by the higher chance that RGIFE has
to identify soft-fails when many unsuccessful iterations
occur.

Relative block size

One of the main changes introduced in this new version
of the heuristic is the adoption of a relative block size.
The term block size defines the number of attributes that
are removed in each iteration. In [13], the 25% of the
attributes was initially removed, then, whenever having:
all the attributes tested, or five consecutive unsuccessful
iterations, the block size was reduced by a fourth. How-
ever, our analysis suggested that this policy was prone to
get stalled early in the iterative process and prematurely
reduce the block size to a very small number. This sce-
nario either slows down the iterative reduction process
because successful trials will only remove few attributes
(small block size), or it prematurely stops the whole fea-
ture reduction process if the size of the dataset in hand
becomes too small (few attributes) due to large chunks
of attributes being removed (line 33 in Algorithm 1).
To address this problem, this new implementation of
the heuristic introduces the concept of the relative block
size. By using a new variable, blockRatio, the number of
attributes to be removed is now proportional to the size
of the current attribute set being processed, rather than
to the original attribute set. While before the values of
blockSize were predefined (based on the original attribute
set), now they vary according to the size of the data being
analysed.

Parameters of the classifier

RGIFE can be used with any classifier that is able to pro-
vide an attribute ranking after the training process. In
the current version of RGIFE, we changed the base clas-
sifier from BioHEL [15], a rule-based machine learning
method based on a genetic algorithm, to a random for-
est [16], a well-known ensemble-based machine learning
method. This is mainly due to reduce the computational
cost (see the computational analysis provided in Section
2 of the Additional file 1). We opted for a random forest
classifier as it is known for its robustness to noise and its
efficiency, so it is ideally suited to tackle large-scale -omics
data. The current version of the heuristic is implemented
in Python and uses the random forest classifier available in
the scikit-learn library [17]. In this package, the attributes
are ranked based on the gini impurity. The feature impor-
tance is calculated as the sum over the number of splits
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(across every tree) that includes the feature, proportion-
ally to the number of samples it splits. Default values for all
the parameters of the classifier are used within the heuris-
tic, except for the number of trees (set to 3000 because it
provided the best results in preliminary tests not reported
here).
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RGIFE policies

The random forest is a stochastic ensemble classifier,
given that each decision tree is built by using a ran-
dom subset of features. As a consequence, RGIFE inherits
this stochastic nature, that is each run of the algorithm
results in a potential different optimal subset of features.

Algorithm 1 RGIFE: Ranked Guided Iterative Feature Elimination

Input: dataset data, cross-validation repetitions N
Output: selected attributes

1:

: function REDUCE_DATA (data)

numberOfAttributes <— current number of attributes from data

> If blockSize is larger than the attributes reduce it

blockRatio = blockRatio x 0.25
blockSize = blockRatio x numberOfAttributes
end if
attributesToRemove < attributesRanking|[ starting
Index : (startinglndex + blockSize)]

2
3
4
5: if (startinglndex + blockSize) > numberOfAttributes then
6
7
8
9

10: reducedData <— remove attributesToRemove from data
11: startinglndex = startinglndex + blockSize

12: return reducedData

13: end function

14:

15: function RUN_ITERATION(data)

16: for N times do

17: > generate training and test set folds from data

18: performances < cross-validation over data

19: attributesRank <— get the attributes ranking from the models
20: end for

21: performance = average(performances)

22: attributesRank = average(attributesRank)

23: return performance, attributesRank

24: end function

25:

26: blockRatio = 0.25

27: blockSize = blockRatiox (attributes in data)

28: startinglndex = 0

29: performance, attributesRank = RUN_ITERATION(data)
30: referencePerformance = performance

31:

32: while blockSize > 1 do

33: data = REDUCE_DATA (data)

34: numberOfAttributes < current number of attributes from data
35: performance, attributesRank = RUN_ITERATION(data)

36: if performance < referencePerformance then

37: Jailures = failures + 1

38: if (failures = 5) OR (all attributes have been test) then
39: if there exist a soft-fail then

40: referencePerformance = softFailPerformance
41: numberOfAttributes, selectedAttributes <— attributes of the dataset at the softFail iteration
42: blockSize = blockRatio x numberOfAttributes
43: else

44: blockRatio = blockRatio x 0.25

45: blockSize = blockRatio x numberOfAttributes
46: end if

47: failures = 0; startingIndex = 0

48: end if

49: else

50: referencePerformance = performance

51: selectedAttributes < current attributes from data

52: blockSize = blockRatio x numberOfAttributes

53: failures = 0; startinglndex = 0

54: end if

55: end while
56: return selectedAttributes
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In addition, the presence of multiple optimal solutions is
a common scenario when dealing with high dimensional
-omics data [18]. This scenario is addressed by running
RGIFE multiple times and using different policies to select
the final model (signature):

® RGIFE-Min: the final model is the one with the
smallest number of attributes

® RGIFE-Max: the final model is the one with the
largest number of attributes

® RGIFE-Union: the final model is the union of the
models generated across different executions

In the presented analysis, the signatures were identified
from 3 different runs of RGIFE.

Benchmarking algorithms

We compared RGIFE with five well-known feature selec-
tion algorithms: CFS [7], SVM-RFE [9], ReliefF [19],
Chi-Square [20] and L1-based feature selection [21].
These algorithms were chosen in order to cover different
approaches that can be used to tackle the feature selec-
tion problem, each of them employs a different strategy to
identify the best subset of features.

CEFS is a correlation-based feature selection method. By
exploiting a best-first search, it assigns high scores to sub-
sets of features highly correlated to the class attribute
but with low correlation between each other. Similarly to
RGIFE, CFS automatically identifies the best size of the
signature.

SVM-RFE is a well known iterative feature selection
method that employs a backward elimination procedure.
The method ranks the features by training an SVM clas-
sifier (linear kernel) and discarding the least important
(last ranked). SVM-RFE have been successfully applied in
classification problems involving -omics datasets.

ReliefF is a supervised learning algorithm that consid-
ers global and local feature weighting by computing the
nearest neighbours of a sample. This method is well
employed due to its fast nature as well with its simplicity.

Chi-Square is a feature selection approach that com-
putes chi-squared ()(2) stats between each non-negative
feature and class. The score can be used to select the
K attributes with the highest values for the chi-squared
statistic from the data relative to the classes.

L1-based feature selection is an approach based on the
L1 norm. Using the L1 norm, sparse solutions (models)
are often generated where many of the estimated coef-
ficients (corresponding to attributes) are set to zero. A
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linear model (a support vector classifier, SVC) penalised
with the L1 norm was used to identify relevant attributes
[21]. The features with non-zero coefficients in the model
generated from the training data were kept and used to fil-
ter both the training and the test set. Those were selected
because of their importance when predicting the outcome
(class label) of the samples.

The L1-based feature selection was evaluated using the
scikit-learn implementation of the SVC [17], the other
benchmarking algorithms were tested with their imple-
mentation available in WEKA [22]. Default parameters
were used for all the methods, the list of default values are
listed in Section 3 of the Additional file 1.

Datasets

Synthetic datasets

To test the ability of RGIFE to identify relevant features,
we used a large set of synthetic datasets. The main char-
acteristics of the data are available in Table 1. Different
possible scenarios (correlation, noise, redundancy, non-
linearity, etc.) were covered using the datasets employed
in [23] as a reference (the LED data were not used as they
consist of a 10-class dataset that does not reflect a typical
biological problem).

CorrAL is a dataset with 6 binary features (i.e.
f1:./2.f3,fa.f5.f6) where the class value is determined as
(fi Af2) V (f3 Afa). The feature f5 is irrelevant while fg is
correlated to the class label by 75%. In addition, the data
contains 93 irrelevant features randomly added [24].

XOR-100 includes 2 relevant and 97 irrelevant (ran-
domly generated) features. The class label consists of the
XOR operation between two features: (fl ® fg) [24].

Parity3+3 describes the problem where the output is
f (x1,...x,) = 1 if the number of x;, = 1 is odd. The

Table 1 Description of the synthetic datasets used in the
experiments

Name Attributes Samples Characteristics
CorrAL [24] 99 32 Corr; F>>S
XOR-100 [24] 99 50 NLF>S
Parity3+3 [23] 12 64 NL

Monk3 [25] 6 122 No.

SD1 [26] 4020 75 F>S

SD2 [26] 4040 75 F>S

SD3 [26] 4060 75 F>S
Madelon [27] 500 2400 N.L; No.

Corr. stands for correlation, N.L indicates nonlinearity, F > Sis used for datasets
where the number of features is higher than the number of samples and No.
represents noisy data
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Parity3+3 extends this concept to the parity of three bits
and uses a total of 12 attributes [23].

Monk3 is a typical problem of the artificial robot
domain. The class label is defined as (fs =3 Afa =) V

(fs # 4 A fo #3) [25].

SD1, SD2 and SD3 are 3-class synthetic datasets where
the number of features (around 4000) is higher than the
number of samples (75 equally split into 3 classes) [26].
They contain both full class relevant (FCR) and partial
class relevant (PCR) features. FCR attributes serve as
biomarkers to distinguish all the cancer types (labels),
while PCRs discriminate subsets of cancer types. SD1
includes 20 FCRs and 4000 irrelevant features. The FCR
attributes are divided into two groups (attributes) of ten,
genes in the same group are redundant. The optimal
solution consists of any two relevant features coming
from different groups. SD2 includes 10 FCRs, 30 PCRs
and 4000 irrelevant attributes. The relevant genes are
split into groups of ten; the optimal subset should com-
bine one gene from the set of FCRs and three genes
from the PCRs, each one from a different group. Finally,
SD3 contains only 60 PCRs and 4000 irrelevant fea-
tures. The 60 PCRs are grouped by ten, the optimal
solution consists of six genes, one from each group. Col-
lectively we will refer to SD1, SD2 and SD3 as the SD
datasets.

Madelon is a dataset used in the NIPS2003 feature selec-
tion challenge [27]. The relevant features represent the
vertices of a 5-dimensional hypercube. 495 irrelevant fea-
tures are added either from a random gaussian distri-
bution or multiplying the relevant features by a random
matrix. In addition, the samples are distorted by flipping
labels, shifting, rescaling and adding noise. The character-
istic of Madelon is the presence of many more samples
(2400) than attributes (500).

All the presented datasets were provided by the authors
of [23]. In addition, we generated two-biological con-
ditions (control and case) synthetic microarray datasets
using the madsim R package [28]. Madsim is a flexible
microarray data simulation model that creates synthetic
data similar to those observed with common platforms.
Twelve datasets were generated using default parameters
but varying in terms of number of attributes (5000, 10,000,
20,000 and 40,000) and percentage of up/down regulated
genes (1%, 2% and 5%). Each dataset contained 100 sam-
ples equally distributed in controls and cases. Overall,
madsim was ran with the following parameters: n =
{5000, 10, 000, 20, 000, 40,000} pde = {0.01,0.02,0.05}
and m; = my = 50.
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Real-world datasets

We used ten different cancer-related transcriptomics
datasets to validate our approach (see Table 2). These
datasets represent a broad range of characteristics in
terms of biological information (different types of can-
cers), number of samples and number of attributes
(genes).

Experimental design

While CES and the L1-based feature selection automat-
ically identify the optimal subset of attributes, the other
algorithms require to specify the number of attributes to
retain. To obtain a fair comparison, we set this value to be
equal to the number of features selected by the RGIFE’s
Union policy (as by definition it generates the largest sig-
nature among the policies). For all the tested methods,
default parameter values were used for the analysis of both
synthetic and real-world datasets.

Relevant features identification

We used the scoring measure proposed by Bolon et. al [23]
to compute the efficacy of the different feature selection
methods in identifying important features from synthetic
data. The Success Index aims to reward the identification
of relevant features and penalise the selection of irrelevant
ones:

R I 1R
Success Index = 100x | — —a= | ;0 = min{ =, ot
R, I 2 I

where R; and R; are the number of relevant features
selected and the total number of relevant features. Simi-
larly, I; and I; represent the number of selected and the
total number of irrelevant features.

Predictive performance validation
The most common metric to assess the performance of
a feature selection method is by calculating the accuracy

Table 2 Description of the real-world datasets used in the
experiments

Name Attributes Samples
Prostate-Sboner ([58]) 6144 281
Dlbcl ([59]) 7129 77
CNS ([60)) 7129 60
Leukemia ([61]) 7129 72
Prostate-Singh ([30]) 12600 102
AML ([40)) 12625 54
Colon-Breast ([62]) 22283 52
Bladder ([63]) 43148 166
Breast ([39]) 47293 128
Pancreas ([64]) 54675 78
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when predicting the class of the samples. The accuracy is
defined as the rate of correctly classified samples over the
total number of samples. A typical k-fold cross-validation
scheme randomly divides the dataset D in k equally-sized
disjoint subsets D1, Do, . . ., Dg. In turn, each fold is used as
test set while the remaining k — 1 are used as training set.
A stratified cross-validation aims to partition the dataset
into folds where the original distribution of the classes is
preserved. However, the stratified cross-validation does
not take into account the presence of clusters (similar
samples) within each class. As observed in [14], this might
result in a distorted measure of the performances. Dealing
with transcriptomics datasets that have a small number
of observations (e.g. CNS only has 60 samples), the dis-
tortion in performances can be amplified. In order to
avoid this problem, we adopted the DB-SCV (Distributed-
balanced stratified cross-validation) scheme proposed in
[29]. DB-SCV is designed to assign close-by samples to
different folds, so each fold will end up having enough
representatives of every possible cluster. We modified the
original DB-SCV scheme so that the residual samples are
randomly assigned to the folds. A dataset with m samples,
when using a k-fold cross-validation scheme has in total
(m mod n) residual samples. By randomly assigning the
residual samples to the folds, rather than sequentially as in
the proposed DB-SCV, we obtain a validation scheme that
can better estimate the predictive performance of unseen
observations.

We used a 10-fold DB-SCV scheme for all the feature
selection methods by applying them to the training sets
and mirroring the results (filtering the selected attributed)
to the test sets. The 10-fold DB-SCV scheme was also
employed in RGIFE (line 17-18) with N = 10. The model
performance within RGIFE was estimated using the accu-
racy metric (by averaging the accuracy values across the
folds of the 10-fold DB-SCV).

Validation of the predictive performance of identified
signatures

The performances of the biomarker signatures identified
by different methods were assessed using four classifiers:
random forest (RF), gaussian naive bayes (GNB), SVM
(with a linear kernel) and K-nearest neighbours (KNN).
Each classifier uses different approaches and criteria to
predict the label of the samples, therefore we test the pre-
dictive performance of each method in different classifica-
tion scenarios. We used the scikit-learn implementations
for all the classifiers with default parameters, except for
the depth of the random forest trees, which was set to 5
in order to avoid overfitting (considering the small num-
ber of attributes in each signature). The stochastic nature
of RF was addressed by generating ten different models
for each training set and defining the predicted class via a
majority vote.
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Biological significance analysis of the signatures

We validated the biological significance of the signatures
generated by different methods using the Prostate-Singh
[30] dataset as a case study. The biological relevance was
assessed studying the role of the signatures’ genes: in a
cancer-related context, in a set of independent prostate-
related datasets and finally in a protein-protein interaction
network (PPI).

Gene-disease associations In order to assess the rele-
vance of the signatures within a cancer-related context,
we checked whether their genes were already known to
be associated with a specific disease. From the literature,
we retrieved the list of genes known to be associated
with prostate cancer. We used two sources for the infor-
mation retrieval: Malacards (a meta-database of human
maladies consolidated from 64 independent sources) [31]
and the union of four manually curated databases (OMIM
[32], Orphanet [33], Uniprot [34] and CTD ([35]). We
checked the number of disease-associated genes included
in the signatures and we calculated precision, recall and
F-measure. The precision is the fraction of genes that are
associated with the disease, while the recall is the frac-
tion of disease-associated genes (from the original set
of attributes) included in the signature. Finally, the F-
measure is calculated as the harmonic mean of precision
and recall.

Gene relevance in independent datasets We searched
the public prostate cancer databases to verify if the genes,
selected by the different methods, are relevant also in
data not used for the inference of the signatures. We
focused on eight prostate cancer related datasets avail-
able from the cBioPortal for Cancer Genomics [36]: SUC?2,
MICH, TCGA, TGCA 2015, Broad/Cornell 2013, MSKCC
2010, Broad/Cornell 2012 and MSKCC 2014. We checked
if the selected genes were genomically altered in the
samples of the independent data. For each method and
for each independent dataset, we calculated the aver-
age fraction of samples with genomic alterations for the
selected biomarkers. In order to consider the different size
of each signature, the values have been normalised across
methods (i.e. divided by the number of selected genes).

Signature induced network A part of the biological
confirmation of our signatures involved its analysis in a
network context. It was interesting to check if the genes
selected by RGIFE interact with each other. To address
this question, a signature induced network was generated
from a PPI network by aggregating all the shortest paths
between all the genes in the signature. If multiple paths
existed between two genes, the path that overall (across all
the pairs of genes) was the most used was included. The
paths were extracted from the PPI network employed in
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[37] that was assembled from 20 public protein interac-
tion repositories (BioGrid, IntAct, 12D, TopFind, MolCon,
Reactome-FlIs, UniProt, Reactome, MINT, InnateDB, iRe-
fIndex, MatrixDB, DIP , APID, HPRD, SPIKE, 12D-IMEXx,
BIND, HIPPIE, CCSB), removing non-human interac-
tions, self-interactions and interactions without direct
experimental evidence for a physical association.

Results

Comparison of the RGIFE predictive performance with the
original heuristic

The first natural step for the validation of the new RGIFE
was to compare it to its original version, in here named
RGIFE-BH after the core machine learning algorithm
used within (BioHEL). We compared the predictive per-
formance of the two methods by applying them to the
training sets (originated from a 10-fold cross-validation)
in order to identify small signatures that are then used to
filter the test sets before the prediction of the class labels.
In Fig. 1 we show the distribution of accuracies obtained
using the ten datasets presented in Table 2. The predictive
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performance was assessed with four different classifiers.
The accuracy of RGIFE-BH is calculated as the aver-
age of the accuracies obtained over 3 runs of RGIFE-BH
(same number of executions employed to identify the final
models with the new RGIFE policies). Across different
datasets and classifiers, RGIFE-BH performed basically
similar or worse than the new proposed policies based
on a random forest. To establish whether the difference
in performance was statistically significant, we employed
the Friedman rank based test followed by a Nemenyi
post-hoc correction. This is a well-known approach in
the machine learning community when it comes to the
comparison of multiple algorithms over multiple datasets
[38]. The ranks, for all the tested classifiers, are provided
in Table 3. The attributes selected by RGIFE-BH per-
formed quite well when using a random forest, while for
the remaining tested classifiers the performance were gen-
erally low. In particular, RGIFE-BH obtained statistically
significant worse results (confidence level of 0.05), com-
pared with RGIFE-Union, when analysed with the KNN
classifier.
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Fig. 1 Distribution of the accuracies, calculated using a 10-fold cross-validation, for different RGIFE policies. Each subplot represents the
performance, obtained with ten different datasets, assessed with four classifiers
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Table 3 Average performance ranks obtained by each RGIFE
policy across the ten datasets and using four classifiers

Classifier RGIFE-Min  RGIFE-Max  RGIFE-Union  RGIFE-BH
Random Forest 3.154) 260 (3) 1.85(1) 240 (2)
SVM-Linear 3.104) 1.60 (1) 240(2) 290 (3)
Gaussian naive bayes 2.70 (4) 2.65(3) 1.75(1) 290 (4)
KNN 2.70(3) 220(2) 1.80(1) 330 (4)*

The highest ranks are shown in bold
*indicates statistically worse performance

It might be tempting to associate the better perfor-
mance of the new heuristic with the usage of a better
base classifier. However, this is not the case as, when
tested with a standard 10-fold cross-validation (using the
presented ten transcriptomics datasets with the original
set of attributes), random forest and BioHEL obtained
statistically equivalent accuracies (Wilcoxon rank-sum
statistic). In fact, on average, the accuracy associated with
the random forest was only higher by 0.162 when com-
pared to the performance of BioHEL. The accuracies
obtained by the methods when classifying the samples
using the original set of attributes is available in Section 1
of the Additional file 1.

In addition, we also compared the number of attributes
selected by different RGIFE policies when using differ-
ent datasets. Figure 2 provides the average number of
attributes selected, across the folds of the cross-validation,
by the original and the new proposed version of RGIFE.
The number of attributes represented for RGIFE-BH is
the result of an average across its three different execu-
tions. In each of the analysed dataset, the new RGIFE
was able to obtain a smaller subset of predictive attributes
while providing higher accuracies. The better perfor-
mance, in terms of selected attributes, of the new heuristic
is likely the result of the less aggressive reduction policy
introduced by the relative block size. By removing chunks
of attributes whose sizes are proportional to the volume
of the dataset being analysed, the heuristic is more prone
to improve the predictive performance across iterations.
Moreover, by guaranteeing more successful iterations, a
smaller set of relevant attributes can be identified. The dif-
ference is particularly evident when RGIFE was applied to
the largest datasets (in Fig. 2 the datasets are sorted by
increasing size).

Finally, as expected, the replacement of BioHEL with
a faster classifier drastically reduces the overall compu-
tational time required by RGIFE. In Section 2 of the
Additional file 1 is available a complete computational
analysis of every method tested for this paper.

Identification of relevant attributes in synthetic datasets
A large set of synthetic data was used to assess the ability
of each method to identify relevant features in synthetic
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datasets. The Success Index is used to determine the suc-
cess of discarding irrelevant features while focusing only
on the important ones. Table 4 reports a summary of
this analysis, the values correspond to the average Success
Index obtained when using a 10-fold cross-validation. The
higher the Success Index, the better the method, 100
is its maximum value. In Section 4 of Additional file 1
are reported the accuracies of each method using four
different classifiers.

RGIFE-Union is the method with the highest aver-
age Success Index, followed by RGIFE-Max and ReliefF.
The Union policy clearly outperforms the other meth-
ods when analysing the Parity3+3 and the XOR-100
datasets. Overall, SVM-RFE seemed unable to discrimi-
nate between relevant and irrelevant features. Low suc-
cess was also observed for CFS and Chi-Square. For
the analysis of the SD datasets [26] we report mea-
sures that are more specific for the problem. The SD
data are characterised by the presence of relevant, redun-
dant and irrelevant features. For each dataset, Table 5
includes the average number of: selected features, fea-
tures within the optimal subset, irrelevant and redundant
features.

The L1-based feature selection was the only method
always able to select the minimum number of optimal
features, however it also picked a large number of irrel-
evant features. On the other hand, CFS was capable of
avoiding redundant and irrelevant features while selecting
a high number of optimal attributes. ReliefF, SVM-RFE
and Chi-Square performed quite well for SD1 and SD2,
but not all the optimal features were identified in SD3.
The RGIFE policies performed generally poorly on the SD
datasets. Among the three policies, RGIFE-Union selected
the highest number of optimal features (together with a
large amount of irrelevant information). Despite that, the
number of redundant features was often lower than meth-
ods which selected more optimal attributes. Interesting,
when analysing the accuracies obtained by each method
(reported in Table S2 of Additional file 1), we noticed
that the attributes selected by RGIFE-Union, although not
completely covering the optimal subsets, provide the best
performance for SD2 and SD3 (with random forest and
GNB classifier). Finally, Table 6 shows the results from
the analysis of the data generated with madsim [28]. The
values have been averaged from the results of the data
containing 1, 2 and 5% of up/down regulated genes. Differ-
ently from the SD datasets, there is not an optimal subset
of attributes, therefore we report only the average num-
ber of relevant and irrelevant (not up/down-regulated
genes) features. The accuracies of each method (available
in Table S3 of Additional file 1) were constantly equal to
1 for most of the methods regardless the classifier used
to calculate them. Exceptions are represented by RGFE-
Max, RGIFE-Min and Chi-Square. All the RGIFE policies
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Fig. 2 Comparison of the number of selected attributes by different RGIFE policies. For each dataset is reported the average number of attributes
obtained from the 10-fold cross-validation together with the standard deviation

performed better than CFS and L1 in terms of relevant
selected attributes. Few up/down regulated attributes,
compared with the dozens of the other two methods,
were enough to obtain a perfect classification. In addi-
tion, RGIFE never used irrelevant genes in the proposed
solutions. The other methods, whose number of selected
attributes was set equal to that used by RGIFE-Union,
performed equally well.

Overall, the analysis completed using synthetic datasets
highlighted the ability of RGIFE, in particular of RGIFE-

Union, to identify important attributes from data with
different characteristics (presence of noise, nonlinearity,
correlation, etc.). Good performance was also reached
from data similar to microarray datasets (madsim). On
the other hand, the SD datasets led to unsatisfactory
RGIFE results. This can be attributed to the low num-
ber of samples (only 25) available for each class that
can generate an unstable internal performance evalua-
tion (based on a 10-fold cross-validation) of the RGIFE
heuristic.

Table 4 Average Success Index calculated using a 10-fold cross-validation

Dataset RGIFE-Min RGIFE-Max RGIFE-Union CFS ReliefF SVM-RFE Chi-Square L1
CorrAL 59.93 7711 87.07 84.57 72.04 64.53 82.06 84.11
XOR-100 89.99 79.88 89.88 24.72 49.86 14.84 9.84 79.30
Parity3+3 44.44 44.44 76.67 -5.93 76.67 -15.93 -8.52 5.56
Monk3 84.17 84.17 84.17 62.50 84.17 N/A 59.17 7333
Madelon 59.98 77.98 87.97 17.99 89.97 23.97 39.97 99.01
Average 67.70 7272 85.15 36.77 74.54 21.85 36.50 68.26

The last row reports the average values across the five datasets. The highest indexes are shown in bold. N/A is used for SYM-RFE when analysing the Monk3 dataset as the

method cannot deal with categorical attributes
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Table 5 Results of the SD datasets analysis
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Dataset Metrics RGIFE-Min RGIFE-Max RGIFE-Union CFS ReliefF SVM-RFE Chi-Square L1
Selected 1133 2536 289.5 24.3 289.5 289.5 289.5 144.2
<D OPT(2) 0.2 0.8 0.9 1.5 20 2.0 1.7 20
Redundant 0.0 2.7 2.7 03 9.0 87 54 53
Irrelevant 114.1 2484 284.2 23.1 270.5 271 2785 132.6
Selected 1034 279.7 3194 23.1 3194 3194 3194 1371
D2 OPT(4) 0.6 1.1 1.2 2.7 39 4.0 28 40
Redundant 0.6 24 26 0.1 9 89 36 35
Irrelevant 102.6 2714 3104 20.7 2814 2814 301.8 1179
Selected 114.6 2843 3373 244 3373 3373 3373 1434
D3 OPT(6) 1.0 26 3.8 34 4.8 4.2 35 6.0
Redundant 1.0 4.1 6.1 0.1 9.0 4.0 74 35
Irrelevant 1132 267.8 3129 21.1 2920 306.6 309.2 119.2

The values are averaged from a 10-fold cross-validation. OPT(x) indicates the average number of selected features within the optimal subset

Comparison of the RGIFE predictive performance with
other biomarkers discovery methods

Having established the better performance provided by
the presented heuristic compared with its original version,
and encouraged by the results obtained using synthetic
datasets, we evaluated RGIFE analysing -omics data. For
each dataset and base classifier, we calculated the accuracy
of the biomarker signatures generated by each method
and we ranked them in ascending order (the higher the
ranking, the higher the accuracy). In Table 7 we report
all the accuracies and the ranks (in brackets), the last col-
umn shows the average rank across the datasets for each
method. With three out of four classifiers, our approach
was the first ranked (once RGIFE-Max, twice RGIFE-
Union). ReliefF was the first ranked when evaluated with
random forest (RF), while it performed quite poorly when
using SVM. Similarly, RGIFE-Max was first and sec-
ond ranked respectively with SVM and KNN, while it
was the second and the third-worse for RF and GNB.

Table 6 Results of the madsim datasets analysis

Overall, the best RGIFE policy appears to be RGIFE-
Union being ranked as first when tested with KNN
and GNB. Conversely, RGIFE-Min performed quite badly
across classifiers.

In order to statistically compare the performances of the
methods, we used again the Friedman test with the corre-
sponding Nemenyi post-hoc test. In all the four scenarios
there was no statistical difference in the performances of
the tested methods. The only exception was ReliefF (first
ranked) that statistically outperformed RGIFE-Min when
using random forest (confidence level of 0.05). Accord-
ing to these results, we can conclude that the presented
approach has predictive performances comparable to the
evaluated well-established methods.

Analysis of the signatures size

We compared the size (number of the selected attributes)
of the signatures generated by our policies, CFS and L1-
based feature selection. With methods such as ReliefF

Attributes Metric RGIFE-Min RGIFE-Max RGIFE-Union CFS ReliefF SVM-RFE Chi-Square L1
Rel. 1.0 1.2 2.7 549 27 2.7 2.7 184
5000
Irr. 0.0 0.0 0.0 03 0.0 0.0 0.0 0.0
Rel. 1.0 1.5 3.1 684 3.1 3.1 3.1 22.1
10 000
Irr. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rel. 1.0 1.3 32 964 32 32 32 29.2
20000
Irr. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rel. 1.0 1.5 35 1338 35 35 35 282
40 000
Irr. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The values are averaged from the analysis of data containing 1%, 2% and 5% of up/down regulated genes(). For each set of data are reported the average number of relevant
(up/down regulated) and irrelevant attributes obtained from a 10-fold cross-fold validation
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Table 7 Accuracies and ranks (in brackets) obtained by each method across the ten datasets using four classifiers

Class. Method Prostate-Sbo. Dlbcl Leukemia CNS Colon-Breast AML Prostate-Sin. Pancreas ~ Bladder  Breast Avg. Rank
RGIFE-Union 0.723 (6) 0643 (3) 0927(7) 0.617(5) 0.947 (3) 0667 (3) 0.923(3) 0.898 (3.5) 0.794(4) 0.884(25) 4.00(4)
RGIFE-Max  0.727 (4) 0.573(7) 0.940 (5.5) 0.600 (6) 0.947(3) 0.680(1) 0913 (6.5 0.859(8) 0.782(6) 0.844(8) 5.50 (6)
RGIFE-Min ~ 0.712 (8) 0.680 (1) 0.886(8) 0.589(7) 0.927 (7) 0.577 (8) 0.884(8) 0.900 (1.5) 0.770(8) 0.851(7) 6.35(8)

RE CFS 0.741 (1) 0.627 (4) 0957 (25) 0622 (4) 0.947(3) 0.597(7) 0.922(5) 0.886 (6) 0.800(3) 0869(6)  4.15(5)
SVM-RFE 0.733(2) 0623 (5) 0944 (4) 0668 (3) 0.887(8) 0.675(2) 0923(3) 0.898 (3.5) 0.819(1) 0.877 (4) 3.55(2)
ReliefF 0.726 (5) 0577 (6) 0.961 (1) 0.681(2) 0.930 (6) 0633 (5 0.932(1) 0.900(1.5) 0.800(2) 0.892(1) 3.50(1)
Chi-Square  0.716 (7) 0.660 (2) 0940 (5.5) 0.520(8) 0.947 (3) 0.622 (6) 0913(6.5) 0.886(6) 0.776 (7) 0.870(5) 560 (7)
L1 0.730 (3) 0.520(8) 0957 (2.5) 0.684 (1) 0.947 (3) 0.650 (4) 0.923(3) 0.886 (6) 0.788 (5) 0.884 (2.5 380(3)
RGIFE-Union 0.709 (4) 0.523 (45) 0917 (6) 0.565(4) 0927 (4) 0.633 (4) 0.895(5) 0.861 (6) 0.757 (5) 0.892(3) 4.55 (4)
RGIFE-Max  0.716 (1) 0.573(2) 0957(3.5 0572(3) 0.947 (1.5) 0617 (5 0915(2) 0.873 (5) 0.775(2) 0.876(5) 3.00(1)
RGIFE-Min 0694 (6) 0.567 (3) 0.908(7) 0.421(8) 0907 (5.5 0.585(7) 0.852(8) 0.875 (4) 0.744 (6) 0.894(1.5) 5.60 (8)

WM CFS 0.712(3) 0.523 (4.5) 0.961 (2) 0.546(5) 0.943(3) 0638(3) 0.952(1) 0.911(1) 0.770(3.5) 0.832(8) 340(2)
SVM-RFE 0.644 (8) 0.500 (6) 0.942(5) 0699 (2) 0.850(7) 0.500 (8) 0.894 (6) 0.848 (8) 0.770 (3.5) 0.894 (1.5) 5.50(7)
ReliefF 0.690 (7) 0407 (8) 0.886(8) 0.535(6) 0.747(8) 0.590 (6) 0.904 (4) 0.900 (2) 0.795 (1) 0.886 (4) 540 (6)
Chi-Square  0.705 (5) 0.603 (1) 0957 (3.5) 0462 (7) 0.947 (1.5) 0.652(1) 0.893(7) 0.857 (7) 0.739(8) 0.869 (6) 4.70 (5)
L1 0.716 (2) 0490 (7) 0.988(1) 0.746 (1) 0.907 (5.5) 0.650(2) 0913 (3) 0.896 (3) 0.740 (7)  0.851(7) 3.85(3)
RGIFE-Union 0.701 (2) 0.623 (1) 0.932(5) 0650(3) 0.963(2.5) 0.627(4) 0.922(4) 0.887 (5) 0.733(6) 0.884 (4) 3.65(1)
RGIFE-Max  0.698 (3) 0.590(3) 0.932(5) 0620(5) 0.963(2.5) 0.610(6.5) 0.922 (4) 0.846 (8) 0.727 (7)  0.876 (6) 5.00(7)
RGIFE-Min  0.691 (5) 0.503 (5) 0.890(8) 0.589(7) 0.907 (6.5 0617 (5) 0.895(7) 0.900 (2) 0.751 (4) 0.900 (3) 5.25(8)

GNB CFS 0.690 (6) 0.520 (4) 0.973 (1) 0.665(2) 0.927(5) 0.650 (2) 0.932(1.5) 0.871(7) 0.740 (5) 0.870(7) 4.05 (3)
SVM-RFE 0.655 (7) 0450(8) 0958(3) 0.626(4) 0.873(8) 0.593(8) 0912 (6) 0.898 (3.5) 0.807 (1) 0.907 (1) 4.95(6)
ReliefF 0616 (8) 0473(7) 0919(7) 0570(8) 0.907 (6.5 0633 (3) 0.932(1.5) 0.898(35) 0.764(2) 0901(2)  4.85(5)
Chi-Square  0.694 (4) 0.593(2) 0932(5 0620(6) 0.963(2.5) 0.610(6.5) 0.922 (4) 0.925(1) 0.727(8) 0878(5)  440(4)
L1 0.719(1) 0.500(6) 0.971(2) 0.746 (1) 0.963 (2.5) 0.655 (1) 0.885(8) 0.886 (6) 0.753(3) 0.855(8) 3.85(2)
RGIFE-Union 0.698 (1) 0.593(2) 0.901 (7.5) 0665 (4) 0.947 (2.5) 0602 (3) 0.894(25) 0.911(1.5) 0.788(3) 0.876(6) 3.30(1)
RGIFE-Max  0.684 (3) 0.597 (1) 0927 (3) 0670(3) 0.947 (2.5) 0.582(5) 0.893(4.5) 0.861(8) 0.806 (1) 0.862 (8) 3.90(2)
RGIFE-Min  0.684 (4) 0.587(3) 0.901 (7.5) 0635(5) 0.947 (2.5) 0.528(8) 0.903(1) 0.886(55) 0.758(8) 0.876(6) 5.05(7)

KNN CFS 0.669 (6) 0407 (8) 0.917(5.5) 0.587(8) 0.910 (6) 0.580 (6) 0.884 (6) 0.911 (1.5) 0.776 (5) 0.876 (6) 5.80(8)
SVM-RFE 0.662 (7) 0.523(7) 0946(2) 0.771(1) 0.847 (8) 0.562 (7) 0.875(7) 0.898 (3.5) 0.801(2) 0.892(1) 4.55(4.5)
ReliefF 0.698 (2) 0.553(5) 0917 (5.5 0.615(7) 0.907 (7) 0.630(2) 0.894 (2.5 0898(3.5 0.783(4) 0.884(2) 4.05(3)
Chi-Square  0.680 (5) 0.537(6) 0919(4) 0.618(6) 0.947 (2.5) 0.595(4) 0893 (4.5 0873(7) 0.770 (6) 0.877(3) 4.80 (6)
L1 0.645 (8) 0.570(4) 0.973(1) 0698 (2) 0.927 (5) 0.713 (1) 0.825(8) 0.886(5.5) 0.769(7) 0876(4)  4.55(4.5)

The highest accuracies and ranks are shown in bold. The last column reports the average ranks across the datasets for each method, in brackets are shown the absolute ranks.
The accuracies are rounded to the third decimal but the ranks are based on higher precision. RF random forest, KNN K-nearest neighbour and GNB Gaussian Naive Bayes

or SVM-RFE, the comparison is meaningless because
the number of the selected features is a parameter
that needs to be set up-front. The results, dataset by
dataset, are shown in Fig. 3. Each bar represents the
average number of chosen features across the ten train-
ing sets of the cross-validation process described in the
“Predictive performance validation” section. There is a
clear and remarkable difference in the number of selected
attributes by our approach and the other two methods;
this is extreme in datasets such as Colon-Breast and

Pancreas. The L1-based feature selection performed quite
badly when applied to the smallest dataset (Prostate-
Sboner). A large standard deviation can be noticed in
the number of selected features by RGIFE-Union for the
Leukemia dataset. This is due to a large signature (around
500 attributes) identified by our approach. The cause of
this large number relies on an early stopping condition
reached by RGIFE (the block size was reduced too early
due to the impossibility to improve the performance of
the reference iteration). As expected, the best performing
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Fig. 3 Comparison of the number of selected attributes by the RGIFE policies, CFS and the L1-based feature selection. For each dataset is reported
the average number of attributes obtained from the 10-fold cross-validation together with the standard deviation

policy is RGIFE-Min. When applying the Friedman test
to the average signature size of the methods, RGIFE-Min
and RGIFE-Max were statistically better than CFS and
the L1-based approach with a confidence level of 0.01.
Moreover, RGIFE-Min performed statistically better than
RGIFE-Union. Although the Union policy did not statis-
tically outperform the other two methods, the results in
Fig. 3 show how it consistently selected fewer features.

Analysis of the RGIFE iterative reduction process

RGIFE is an iterative reduction heuristic where each iter-
ation ends with two possible outputs: the performance is
either better/equal, compared to the reference iteration,
or worse. Given this scenario, it is possible to graphically
visualise the behaviour of the whole reduction process.
In Fig. 4 it is illustrated the application of RGIFE to
two datasets: Breast [39] and AML [40]. The plot shows
the reduction process generated from 3 different runs
of RGIFE when applied to the whole dataset to obtain
the signature. A different colour represents a different
output for the iteration: green and blue show an improve-
ment (or equality) of the performance, blue is used
when the removed attributes had not the lowest attribute

importance (were not the bottom ranked). Red indicates a
decrease in predictive performance, while a yellow square
marks the identification of a previous soft-fail (a past iter-
ation that suffered a small drop in performance). RGIFE
looks for soft-fails whenever all the attributes have been
tested (e.g. iteration 9 on Run 1 for AML) or there are 5
consecutive decreases in performance (e.g. iteration 36 on
Run 3 for AML). Figure 4 shows the presence of several
soft-fail iterations, this is likely the results of the new
strategies introduced to let the heuristic working with
smaller data. In fact, differently than the original version,
RGIFE now additionally performs a search for soft-fails
before the block size is reduced. Furthermore, the iter-
ations searched for the presence of a soft-fails are not
anymore limited to the past five trials but are extended up
to the reference one (or the last trial in which a soft-fail
was found). In many cases, after a soft-fail, RGIFE is able
to produce smaller models with higher predictive capacity
(e.g. iteration 37 on Run 1 and iteration 19 on Run 2 for
Breast). Figure 4 also helps in highlighting the importance
of restoring blocks of attributes back after an unsuccess-
ful trial, which is an integral and novel part of RGIFE,
but not used in similar methods such as SVM-RFE.
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Fig. 4 Result of each iteration during the iterative feature elimination process when applied to two datasets (Breast and AML) for 3 different runs of
RGIFE. Green and blue equal or better performance than the reference iteration. Green is used when the removed attributes were the bottom ranked,
otherwise blue is employed. Red represents worse performance, yellow shows the identification of a soft-fail. The last non-grey square indicates the

last iteration of the RGIFE run

Across iterations, in both datasets, it is noticeable the
presence of many blue squares indicating an increase of
performance when the removed attributes were not the
last ranked (lowest attribute importance). Most of the
methods based on an iterative reduction paradigm only
remove the bottom ranked features, however, as shown
in Fig. 4, discarding higher ranked features might lead to
a better predictive model (e.g. iteration 14 on Run 1 for
Breast). The examples provided in this section emphasise
the role played by two of the main novel features intro-
duced by the RGIFE heuristic: a) the relevance of placing
back features whose removal negatively affects the over-
all performance and b) the importance of the soft-fail and
its ability to drive the reduction process towards an easier
and simpler solution.

Biological significance of the signatures

When feature selection is applied to -omics data, with the
aim of discovering new biomarkers, the signature not only
has to be small and highly predictive, but it also needs
to contain relevant features. In our analysis, dealing with
cancer transcriptomics datasets, we assessed whether the
selected genes are relevant in a disease/biological context.
We conducted this analysis using the Prostate-Singh [30]
dataset as a case study. In the first part of this section,
we will compare RGIFE with the other methods, while
later on, we will focus on the signature generated by
RGIFE-Union (the best performing policy). The signa-
tures identified by each method are available in Section 4
of the Additional file 1.

Gene-disease association analysis

In order to assess the relevance of the signatures in a dis-
ease context, we checked how many genes are already
known to be important in prostate cancer. Using two dif-
ferent sources of gene-disease associations, we calculated:
precision, recall and F-score. The higher those metrics are,
the better a feature selection algorithm performs as it is
able to identify the disease-associated genes from the large

set of original attributes. Figure 5 shows the performances
for all the signatures generated in the case study.

When using the curated sources for the associations,
RGIFE-Union had the higher precision followed by Chi-
Square and RGIFE-Min. The other methods performed
similarly except for SVM-RFE. High precision means that
several genes selected by RGIFE-Union are already known
to be relevant in prostate cancer. The recall was in general
low for every method and was the highest for the L1-
based feature selection (which also generates the largest
signatures). Likewise, L1 -selected attributes provided the
highest F-measure, while similar values emerged for CFS
and RGIFE-Union. The remaining approaches all scored
low values. Using Malacards, compared to the curated
associations, we noticed higher precision for SVM-RFE,
while similar (RGIFE-Min and ReliefF) or worse perfor-
mances for the other methods. An important decrease was
noticed for the L1-based feature selection and Chi-Square.
Recall and F-measure did not vary a lot. In general, our
policies tended to have higher or similar precision than
the compared methods. RGIFE-Union provided overall
the best results outperforming SVM-RFE, ReliefF and
Chi-Square, its signature had higher precision than CFS
and L1 that, on the other hand, provided higher recall
(helped by a large number of selected attributes) and
F-measure.

Genomic alteration of the signature in independent datasets
We checked whether the genes selected by each method
are relevant in prostate cancer-related data not used
during the learning process. We analysed the genomic
alterations of each signature in eight independent data.
The average alterations are reported, dataset by dataset,
in Fig. 6. The Ll-based feature selection method was
excluded from this analysis as it generated a signa-
ture larger than the limit of 100 genes allowed for the
queries in cBioPortal. The methods are ranked by increas-
ing percentage of alteration (the same colours are used
in different datasets). The bottom-right plot shows the
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average rank of each method across all the datasets (higher
rank means higher alteration). The two methods select-
ing genes that are highly altered in independent data are
SVM-RFE and RGIFE-Union, with the last one clearly
outperforming the others in SUC2, TGCA 2015 and
Broad/Cornell 2013. Among the other algorithms RGIFE-
Max and CFS perform quite badly, overall they are the
bottom ranked, while the remaining methods obtained
similar performances. Those results show that RGIFE-
Union selects genes that are not only highly predictive in
the analysed dataset but also are highly altered in datasets,
containing samples that are affected by the same disease,
not used during the learning process.

In the next sections, we will focus on the analysis
of the signature generated by the RGIFE-Union pol-
icy (the best performing). The signature consists of
21 genes: ANXA2P3, TGFB3, CRYAB, NELL2, MFN?2,
TNN, KIAA1109, PEX3, ATP6VIEIL, HPN, HSPD1, LMO3,
PTGDS, SLC9A7, SERPINFI1, KCNN4, EPB41L3, CELSRI,
GSTM2, EPCAM, ERG.

Gene-disease association from the specialised literature

We verified if the specialised literature already associates
the genes in our signature with prostate cancer. Interest-
ingly, we found that many of them are already related to
prostate cancer. Just to cite few examples:

e NELL?2 is an indicator of expression changes in
prostate cancer samples [41], it also contributes to
alterations in epithelial-stromal homeostasis in
benign prostatic hyperplasia and codes for a novel
prostatic growth factor [42].

e ANXAZ2P3 (annexin II) was differentially expressed in
prostate carcinoma samples from USA and India [43].

e TGFB3 is expressed in metastatic prostate cancer cell
lines and induces the invasive behaviour in these cells
[44].

® CRYAB expression values can be used to
discriminate between cancerous and non-cancerous
prostatic tissues [45].

e HSPDI was part of a four gene expression signature
to detect Gleason grade 3 and grade 4 cancer cells in
prostate tissue [46)].

e EPB41L3 has a potential role as a target for treatment
of advanced prostate cancer [47].

In addition, we performed an enrichment analysis of
the RGIFE-Union signature. The enrichment analysis is a
statistical-based method to assess if a set of genes shares
common biological characteristics. For this analysis we
employed the PANTHER classification system [48] and
its pathways knowledge base, that is a set of 176 primar-
ily signalling pathways. Four pathways resulted statisti-
cally (confidence value of 0.05) enriched in the signature:
Heterotrimeric G-protein signalling pathway-rod outer
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segment phototransduction (P00028), B cell activation
(P00010), T cell activation (P00053), Heterotrimeric G-
protein signalling pathway-Gi alpha and Gs alpha medi-
ated pathway (P00026). Their role in prostate cancer was
found to be relevant from the specialised literature. In par-
ticular, the family of heterotrimeric proteins is involved in
prostate cancer invasion [49] and the (G protein)-coupled
receptors (GPCRs) may contribute to tumour growth [50].
B-cells are increased in prostate cancer tissues according
to a study by Woo et al. [51] and lymphotoxin derived by
those cells can promote castration-resistant prostate can-
cer [52]. Finally, chimeric antigen receptor-engineered T
cells have the potential to be used for the treatment of
metastatic prostate cancer [53].

Signature induced network

As a further biological validation of our approach, we
analysed a signature induced network (see the “Methods”
section for details). The network generated using the
RGIFE-Union signature resulted in 93 nodes and 190
edges (shown in Section 5 of the Additional file 1). We
checked if this network is enriched for some biological
knowledge using two different tools: ClueGO [54] and
EnrichNet [55].

ClueGO is a Cytoscape plug-in that visualises the non-
redundant biological terms for groups of genes in a func-
tionally grouped network. KEGG pathways were used as
the biological knowledge base. The results of the enrich-
ment analysis for the nodes of the signature induced
network is shown in Fig. 7; we show only pathways that are
statistically enriched (p-value < 0.05). The edges between
nodes represent the relationship between terms based
on their shared genes. The size of the node reflects the
enrichment significance of the node, while the colour
gradient shows the gene proportion of each cluster asso-
ciated with the term. One of the highest enriched terms
is pathways in cancer, this further confirms the role of
the selected genes in a cancer context. Among many
cancer-related terms, we highlight the presence of the
prostate cancer pathway as the signature was inferred
from prostate cancer data. Finally, MAPK is a further
pathway already associated, in the literature, with prostate
cancer [56].

EnrichNet We also validated the signature induced net-
work with an enrichment tool that uses a different
approach than ClueGO. EnrichNet is a gene set anal-
ysis tool that combines network and pathway analysis
methods. It maps gene sets onto an interaction network
and, using a random walk, scores distances between the
genes and pathways (taken from a reference database).
The XD-score is a network-based association score rel-
ative to the average distance to all pathways. The list of
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pathways with a statistically significant XD-score (using
the STRING network as background PPI) is reported in
Table 8. Several types of cancer are associated with the
induced network, among them it appears colorectal cancer
that, according to [31] Malacards, is linked with prostate
cancer. Within the list of terms with a significant overlap

Table 8 Enriched KEGG pathways (with statistically significant
XD-score) identified by EnrichNet

Pathway/process

hsa05210:Colorectal cancer

hsa05216:Thyroid cancer
hsa05213:Endometrial cancer
hsa05212:Pancreatic cancer

hsa05219:Bladder cancer

hsa05220:Chronic myeloid leukemia
hsa04520:Adherens junction
hsa05130:Pathogenic Escherichia coli infection

hsa05020:Prion diseases

with the pathways (not reported here) also emerges the
prostate cancer pathway.

Discussion
In this paper, we have thoroughly studied RGIFE: a ranked
guided iterative feature elimination heuristic that aims to
select a small set of features that are highly predictive.
Three main features differentiate RGIFE from many algo-
rithms based on the iterative reduction paradigm: 1) the
presence of a back-tracking step that allows to “place back”
the features if their removal causes a decrease in the clas-
sification performance, 2) the optimal number of selected
features is automatically identified rather than being spec-
ified up-front and 3) the presence of soft-fails (iterations
accepted if the classification performance drop within a
tolerance level). To cope with the stochastic nature of
RGIFE, we defined three different policies (RGIFE-Union,
RGIFE-Min and RGIFE-Max) to select the final signature.
The presented heuristic is an improvement of the
method proposed in [13]. Therefore, a natural step was
the comparison of RGIFE with its original version. The
changes implemented in this new version include: a
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different base classifier, a new dynamic selection of the
number of attributes to remove at each iteration, a more
robust validation scheme to be used within the heuris-
tic and the usage of optimisation strategies to reduce
the likelihood to obtain local optimum solutions. The
new version outperformed the original methods, using
ten cancer-related datasets, in terms of: prediction accu-
racy, number of selected attributes and computational
time. The first two improvements are likely the results
of both the new relative block size approach and the
extended search and usage of soft-fails. With these new
strategies, the heuristic performs a less greedy search
and is more prone to deal and analyse smaller sets of
data; all together these approaches led to better and sim-
pler solutions. The decrease of the computational time
is due to the adoption of a faster base classifier, from
BioHEL, an evolutionary learning classifier, to a random
forest.

Afterwards, the ability of RGIFE to identify relevant
attributes was tested using many different synthetic
datasets. RGIFE-Union clearly outperformed the other
five feature selection methods in the analysis of syn-
thetic datasets with different characteristics: noise, non-
linearity, correlation, etc. The heuristic was proven good
in selecting relevant features while discarding irrelevant
information. The other two policies performed slightly
worse but in line with the other methods. When analysing
datasets that aim to reflect the problematic of microarray
data, opposite results were obtained. Compared with
CFS and L1-based feature selection, the RGIFE policies
constantly selected fewer relevant attributes (up/down-
regulated genes), while producing a perfect classification,
when applied to the madsim data [28]. On the other hand,
poorer performance were obtained by RGIFE on the SD
datasets [26]. The bad results of RGIFE are likely to be
associated with the low number of samples (25 for each of
the three classes) available in the SDs data. When dealing
with only a few samples, both the predictive performance
and the attribute importance, used by RGIFE to eval-
uate feature subsets, become unstable. Noisy attributes
are misinterpreted as relevant and eventually are cho-
sen in the final solution. In addition, the problem of
the small number of instances was also amplified by the
double cross-fold validation: external to assess the per-
formance of each method and internal within RGIFE to
estimate the goodness of the feature sets. However, quite
interesting, the accuracy provided by the RGIFE selected
attributes, when determined with a random forest and
a Gaussian Naive Bayes classifier, was the best for SD2
and SD3.

Encouraged by the good results obtained with syn-
thetic data, we evaluated and compared our heuristic
using ten cancer-related transcriptomics datasets. With
the Friedman test, we assessed that there is no statistical
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difference between the predictive performance of the
methods (except for RGIFE-Min that was statistically
worse than ReliefF when evaluated with the random
forest). While RGIFE-Union and RGIFE-Max had sim-
ilar results, RGIFE-Min clearly performed quite badly.
The reason behind this poor behaviour probably relies
on the extremely small number of selected attributes:
up to 15 and 18 times lower if compared with RGIFE-
Max and RGIFE-Union respectively. When we contrasted
the number of attributes chosen by the RGIFE policies,
CES and the Ll-based feature selection, a clear differ-
ence emerged. All our methods always selected fewer
features than the other two approaches. For RGIFE-Max
and RGIFE-Min this difference was statistically signifi-
cant. Overall, from a computational point of view, we
propose a heuristic for the identification of biomark-
ers that: 1) performs as good as the compared fea-
ture selection methods, but 2) consistently selects fewer
attributes.

The second part of the validation was focused on the
analysis of the selected genes in a biological context. To
perform a detailed validation, we used a prostate cancer
dataset as a case study. The specialised literature sup-
ports the evidence that the genes chosen by RGIFE-Union
(best performing policy) are relevant in prostate cancer.
In addition, when tested with PANTHER, the signature
was shown to be enriched in four biological pathways,
all of them associated, from specialised publications, to
prostate cancer. The relevance in a disease context was
further confirmed when we used the gene-disease associ-
ation knowledge retrieved from different sources. The sig-
natures identified by RGIFE contain several genes already
known to be associated with prostate cancer, confirming
the ability of the proposed approach to choose relevant
features. It is well known that multiple optimal solutions
can be identified when generating predictive models from
high dimensional -omics data [18], however among them,
RGIFE tends to prefer solutions having more relevant
genes in a disease context (when compared with the tested
methods). The analysis of the genomic alterations in inde-
pendent tumour samples showed that RGIFE-Union and
SVM-RFE select genes that are highly altered in datasets
where the samples are affected by the same disease. A
high average alteration in samples not used for the learn-
ing process demonstrates that RGIFE selects genes that
are not exclusively tight to the dataset analysed during the
reduction phase, but that are potentially informative for
the disease. Finally, the signature induced network (from
a PPI network) was shown to be compact (small diam-
eter) and enriched for many biological pathways related
to cancer and in particular to prostate cancer. This type
of network-based analysis suggests that genes involved in
a specific disease tend to be highly connected and sepa-
rated, between each other, by a low degree (the network



Lazzarini and Bacardit BMC Bioinformatics (2017) 18:322

was induced calculating all the shortest paths between
the signature genes). Overall, the case study assessed that
RGIFE extracts genes that: 1) share common biological
characteristics and are enriched for pathways important
from a clinical (prostate cancer) point of view, 2) are rele-
vant in a disease context according to both the specialised
literature and two different databases of gene-disease
associations and 3) are highly altered in related indepen-
dent datasets not used for the signature identification
process.

All in all, the presented heuristic is a useful and pow-
erful tool for the identification of small predictive sets of
biomarkers. According to the analysis performed, using
multiple criteria, RGIFE-Union seems to be the best
RGIFE policy leading to important predictive perfor-
mance and relevant biomarkers. However, RGIFE-Min
could be applied when willing to trade a small drop of
performances in favour to a significant smaller set of
biomarkers that could be more easily verified with in
vitro/in vivo experiments. RGIFE-Min predictive perfor-
mance were found statistically worse only when using
the random forest. In addition, its Success Index was in
some instances higher than the compared methods (fifth
on average, in line with the performance of the L1-based
feature selection method). Finally, the RGIFE-Min ability
of identifying few but relevant attributes was confirmed
by the highest precision obtained when using Malacards
gene-disease associations, and by the forth average rank
in the independent data analysis (in line with ReliefF
performance).

One of the main advantages of RGIFE is its extreme
flexibility in terms of attributes ranking and estimation
of the predictive power of the biomarker signatures. In
this paper, we used a random forest classifier coupled
with the gini impurity as metric for the feature impor-
tance, however, many other classification algorithms can
be employed, if able to provide a variable ranking based
on the generated models. In fact, it is easy to switch from
a random forest to a single decision tree or to a gradient
boosting classifier (as all of these are implemented within
scikit-learn and provide an attribute importance score).
According to this observation, in future, we would like
to test the performances of different classifiers and fea-
ture rankings approaches. In addition, trying to tackle the
problematic encountered when analysing the SD datasets,
we would like to test other internal strategies to evaluate
the goodness of the attribute tests (e.g. different k val-
ues for the k-fold cross-validation), so that RGIFE can
well perform even with datasets containing only a few
samples per class. It would also be interesting to apply
RGIFE to regression problems (e.g. time-series data). Fur-
thermore, we would like to assess if RGIFE can benefit
from the usage of a fixed attribute ranking as suggested
by [57].
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Conclusions

In this paper we present a heuristic for the identifica-
tion of small sets of highly predictive biomarkers called
RGIFE. RGIFE is guided, in its search for an optimal solu-
tion, by the information extracted from machine learning
models when solving a classification task. The presented
work is a substantial extension of the original method
proposed by Swan et. al [13]. We assessed that the fea-
tures introduced in the new version of RGIFE provide
higher performance in terms of: a) prediction accuracy,
b) size of the selected signatures and c) computational
time. When RGIFE was compared with methods com-
monly employed to solve the task of biomarker identi-
fication, using synthetic datasets, it showed better abil-
ity in identifying relevant attributes and discard irrele-
vant information for most of the tested datasets. The
comparison performed by employing ten cancer-related
transcriptomics datasets revealed that RGIFE provided
(statistically) similar prediction performance while con-
sistently using fewer attributes. More important, from
a biological and clinical point of view, the biomarkers
selected by RGIFE were mostly already known to be rele-
vant in a disease context (using prostate cancer as a case
study) and showed a consistent pertinence on eight dif-
ferent independent datasets. Overall, we propose a robust
and flexible heuristic that performs well if coupled with
different classifiers and is capable of extracting, among
a large set of attributes, highly predictive and disease
relevant biomarkers.
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