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Abstract

Background: Exon recognition and splicing precisely and efficiently by spliceosome is the key to generate mature
mMRNAs. About one third or a half of disease-related mutations affect RNA splicing. Software PVAAS has been developed
to identify variants associated with aberrant splicing by directly using RNA-seq data. However, it bases on the assumption
that annotated splicing site is normal splicing, which is not true in fact.

Results: We develop the ISVASE, a tool for specifically identifying sequence variants associated with splicing events
(SVASE) by using RNA-seq data. Comparing with PVAAS, our tool has several advantages, such as multi-pass stringent rule-
dependent filters and statistical filters, only using split-reads, independent sequence variant identification in each part of
splicing (junction), sequence variant detection for both of known and novel splicing event, additional exon-exon junction
shift event detection if known splicing events provided, splicing signal evaluation, known DNA mutation and/or RNA
editing data supported, higher precision and consistency, and short running time. Using a realistic RNA-seq dataset, we
performed a case study to illustrate the functionality and effectiveness of our method. Moreover, the output of SVASEs
can be used for downstream analysis such as splicing regulatory element study and sequence variant functional analysis.

Conclusions: ISVASE is useful for researchers interested in sequence variants (DNA mutation and/or RNA editing)
associated with splicing events. The package is freely available at https://sourceforge.net/projects/isvase/.
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Background

Alternative splicing is a normal phenomenon in eukary-
otes and greatly increase the biodiversity of proteins.
About 95% of multi-exonic genes are alternatively spliced
in human [1]. The extreme example is the Drosophila
Dscam gene, which produces thousands of protein iso-
forms by alternative splicing [2]. Classic pre-mRNA spli-
cing is recognized and regulated by core splicing signals
(5 splice site (5" ss), 3" splice site (3" ss), branch point
sequence) and auxiliary sequences (splicing regulatory ele-
ments). Aberrant RNA splicing has become a common
disease-causing mechanism, which can lead to hereditary
disorders and cancers. Recent studies indicate that one
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third or a half of disease-causing mutations can affect
RNA splicing [3, 4]. Therefore, identification of sequence
variant associated with splicing event (SVASE) becomes a
meaningful procedure to illustrate the pathogenesis of
diseases. Usually, sequence variant can result in aberrant
splicing by disturbing regulatory element sequence or
changing splice site [5]. For example, two sequence vari-
ants in splicing regulatory elements induce the aberrant
splicing of BRCA2 exon 7 [6]. Moreover, RNA editing also
can effect RNA splicing in transcriptome level [7].
Nowadays, RNA-seq has become a routine method for
gene expression calling in multiple studies and can be
also used to identify sequence variant and splicing event
simultaneously [8, 9]. However, there is only one bio-
informatic tool (PVAAS) available for directly identifying
genome-wide SVASE [10], which has some shortages,
such as dependency on known splicing sites, only for
novel splicing events, high false positive and long run-
ning time. Herein, we develop ISVASE, a suite of Perl
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scripts, to address the shortcomings of PVAAS and pro-
vide new functions for downstream analysis. The only ne-
cessary input files are genome sequence (FASTA format)
and sequence alignment (BAM or SAM format) [11] files.
The sequence alignment file must contain split-reads
mapping result produced by software like GSNAP [12]
and TopHat [13]. We also recommend users to provide
known splicing events in GTF, GFF or BED format for
junction shift event identification if concerned.

Implementation
The basic working principle of SVASE identification in-
cludes three main steps: (1) identify alternative splicing
events; (2) identify sequence variants in specific splicing
event using split-reads; and (3) evaluate the association
between sequence variants and splicing events (see Fig. 1).
Based on sequence alignment result, ISVASE first fil-
ters mapped reads using stringent rule-dependent filters,
such as low base quality (<Q30), low mapping quality
(unpaired reads for paired-end data, PCR duplication,
quality control, multiple mapping, mismatch, insertion
and deletion) and short read length (<30 bp). Only split-
reads with at least 8 bp anchor size in both parts of spli-
cing event (junction) can be used to identify putative
splicing event. Initially, splicing events with low read
depth (<3) are discarded. Low abundant splicing events
are also filtered out as background expression by apply-
ing Fisher’s exact test to the putative splicing event and
its related splicing events (sharing 5’ss or 3’ss). Here,
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ISVASE divides each splicing event into two independ-
ent parts based on 5’ss and 3’ss. ISVASE can remove
known splicing events using annotation file in GTF, GFF
or BED format by option “-k no”. Although excellent
software for sequence variant calling has existed such as
GATK [14] and samtools [15], their results are hard to
be used for SVASE calling, which needs to clarify spe-
cific sequence variants for unique splicing event. Thus,
ISVASE adopts de novo sequence variant identification
by only using junction-supporting split-reads. The
observed sequence variant candidates are filtered by fol-
lowing criteria: reads depth (<3), alternative allele (ALT)
supporting reads number (<3), ALT proportion (<0.1) and
the significance of variant (p > 0.05, Fisher’s exact test).
The practice of SVASE identification has a bit differ-
ence depending on whether the ALT frequencies are
consistent between target splicing event and all related
splicing events. We calculated the ALT frequencies for
each sequence variants using reads of all splicing events
and the target splicing event, respectively. If consistence,
the association is assessed only using reads from target
splicing event. Otherwise, total related reads are used.
ISVASE applies same method as PVAAS to evaluate the
significance of association. Besides, ISVASE assesses spli-
cing signal by MaxEntScan [16] and identifies junction
shift events to reduce the false positive of splicing event
calling. Furthermore, DNA mutation and/or RNA edit-
ing profiles (like dbSNP [17], DARNED [18], RADAR
[19] or user provided DNA mutation or RNA editing
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Fig. 1 Schematic diagram of the ISVASE software. a Identify splicing variants in RNA-seq data. All splicing variants can be divided into four types
according to relationship between target splicing variant (red colour) and other splicing variants (from left to right): (i) unique splicing variant; (i)
splicing variants with same junction start; (iii) splicing variants with same junction end; and (iv) splicing variants with same junction start or end.
b Identify sequence variants for each splicing variant and all related splicing variants. To handle all splicing variant types, we identify sequence
variants for two parts of splicing separately. In the left part, for junctions with orange, yellow and red colour, the all related splicing variants should be
three (all these junctions); however, for junctions with green and blue colour, the total junction is one (itself). Similarly, in the right part, junctions with
red, green and blue colour have three all related splicing variants while junctions with orange and yellow colour only has one related junction (itself).
c Identify associations. This step includes three significant judgements for sequence variants, junction existence and association between sequence
variants and junctions, respectively. The example shown two junctions with same junction end. For junction one (top), two sequence variants are identified
(left G(ref)- > C(alt) and right G(ref)- > A(alt)). In sequence variant significant judgement, left is filtered (p value = 1) while right passes
the test (p value = 0.0476). In junction significant judgement and association judgement, p value of top junction is 0.0128 (significant)
and 0.0070 (significant) respectively. Dashed lines represent gaps in the alignment
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Table 1 The statistics of SVASE identification using PVAAS and ISVASE
Data PVAAS ISVASE(novel) ISVASE(all)

Total dbSNP RADAR Total dbSNP RADAR Total dbSNP RADAR
PVAAS test data 8 0 0 14 7 0 172 129 0
Control1(SRR388226) 61 12 0 134 54 1 2577 2138 3
Control2(SRR388227) 63 9 0 120 50 2 2557 2130 3
Control(common) 28 2 0 87 36 1 2105 1788 2
Knockdown1(SRR388228) 93 18 0 187 83 1 2710 2250 2
Knockdown2(SRR388229) 89 24 0 168 73 1 2760 2293 1
Knockdown(common) 31 8 0 119 55 1 2298 1951 1

sites) can be used to assign the source type of sequence
variants. ISVASE outputs the detailed statistical results
with figures and tables. ISVASE also extracts the flank-
ing sequence for sequence variants, which can be used
to predict exonic splicing enhancer (ESE) motifs using
tools like ESEfinder [20] and Human Splicing Finder
[21]. The output of identified SVASEs can be accepted
by ANNOVAR [22] and SnpEff [23] for further func-
tional analysis like KEGG pathway and Gene Ontology.
The code of ISVASE was written using Perl (v5.18.4), the
figures were created by R (v3.1.2) while the sequence
alignment file was operated by samtools (v1.2).

Results and Discussion

To demonstrate the functionality of ISVASE and compare
with PVAAS, PVAAS testing data (downloaded from web-
site http://pvaas.sourceforge.net/) was used. PVAAS
(v0.1.5) identified 8 SVASEs (belonging to new splicing
events), while ISVASE obtained 172 SVASEs and 14 of
them were new splicing events (Table 1, Additional files 1
and 2). Two software only share one SVASE, which prob-
ably is genuine according to dbscSNV [24]. Among other
7 PVAAS unique SVASEs, 1 SVASE has a low ALT ratio
(<=0.01), 1 SVASE is supported by un-split reads and
remaining 5 SVASEs are identified only by a small part of

Table 2 The performance comparison between PVAAS and ISVASE

Data Method Precision Consistency
PVAAS test data PVAAS 0.00(0/8) -

ISVASE(novel) 0.50(7/14) -

ISVASE(all) 0.75(129/172) -
Control1(SRR388226) PVAAS 0.20(12/61) 0.46(28/61)

ISVASE(novel) 0.40(54/134) 0.65(87/134)

ISVASE(all) 0.83(2138/2577) 0.82(2105/2577)
Control1(SRR388227) PVAAS 0.14(9/63) 0.44(28/63)

ISVASE(novel) 0.42(50/120) 0.73(87/120)

ISVASE(all) 0.83(2130/2557) 0.82(2105/2557)

PVAAS 0.07(2/28) -
Control(common) ISVASE(novel) 041(36/87) -

ISVASE(all) 0.85(1788/2105) -
Knockdown1(SRR388228) PVAAS 0.19(18/93) 0.33(31/93)

ISVASE(novel) 0.44(83/187) 0.64(119/187)

ISVASE(all) 0.83(2250/2710) 0.85(2298/2710)
Knockdown2(SRR388229) PVAAS 0.27(24/89) 0.35(31/89)

ISVASE(novel) 0.43(73/168) 0.71(119/168)

ISVASE(all) 0.83(2293/2760) 0.83(2298/2760)
Knockdown(common) PVAAS 0.26(8/31) -

ISVASE(novel) 0.46(55/119) -

ISVASE(all) 0.85(1951/2298) -

Precision known SVASE/total SVASE, known SVASE defined as SVASE existed in dbSNP, Consistency common SVASE/total SVASE, common SVASE means the SVASE

identified in both repeat samples
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Table 3 The running time comparison between PVAAS and

ISVASE

Data PVAAS ISVASE(novel)  ISVASE (all)
PVAAS test data 1h38m25s 11m22s 13m11s
Control1(SRR388226) 12h5m22s 2h27m31s 2h52m33s
Control2(SRR388227) 12h52m19s  2h29m50s 2h53m17s
Knockdown1(SRR388228) 15h45m40s 2h37m36s 3h4m3s
Knockdown2(SRR388229) 16h40m40s 2h42m27s 3h9m38s

target junction supporting reads (0.8% ~8%). All of these
error-prone SVASEs have been filtered in our tool. All 14
SVASEs belonging to new splicing events in our result
have high confident evidences such as mapping quality,
ALT reads and other filter criteria mentioned above.
Among 158 SVASEs in known splicing events, 55 SVASEs
are non-reference homozygous, 66 SVASEs have more
than 80% ALT reads, and 110 SVASEs have more than
50% ALT reads. Comparing SVASEs with dbSNP and
RADAR database, we found that ISVASE has better per-
formance than PVAAS both for novel and all SVASEs
(Table 2). Moreover, ISVASE run faster than PVAAS. For
test data (7.26 million reads), PVAAS takes 1.63 h, while
ISVASE only needs 11 min for novel splicing events or
13 min for all splicing events (Table 3).

To further reveal the advantage of ISVASE, we also test
another real data set with 4 RNA-seq samples for human
glioblastoma cell line U87MG (SRR388226 and
SRR388227 are control samples and SRR388228 and
SRR388229 are ADAR knockdown samples) [25]. The raw
data was trimmed by Trimmomatic [26] and aligned by
GSNAP (only concordant mapping results were used for
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downstream analysis) [12]. Using ISVASE, 134 and 120
SVASEs (87 common) were obtained for control data,
while 187 and 168 SVASEs (119 common) for knockdown
data in new splicing events. If considering all splicing
events, 2105 and 2298 common SVASEs were identified
in control and knockdown data (Table 1, Additional files
3,4, 5, and 6). In each sample, at most three SVASEs be-
longing to RNA editing sites in RADAR database were de-
tected (totally four SVASEs belonging to RADAR
database), and more than 82% SVASEs existed in dbSNP.
In comparison, PVAAS got 61 and 63 SVASEs (28 com-
mon) for control data, while 93 and 89 SVASEs (31 com-
mon) for knockdown data (Table 1, Additional files 7, 8, 9,
and 10). In PVAAS result, there wasn’t any SVASE belong-
ing to RNA editing sites in RADAR database and at most
27% SVASEs existed in dbSNP. These results indicated
that PVAAS has higher false positive rate comparing with
ISVASE (Table 2). Using repeat samples, we also found
that PVAAS has lower consistency rate comparing with
ISVASE (about 47% vs. about 83%) (Table 2). Moreover,
for each sample, ISVASE showed an advantage of running
time to PVAAS (about 3 h vs. 14.34 h) (Table 3).

The SVASEs identified by ISVASE can be used for
downstream analysis easily. For example, we used 65
common SVASEs in new splicing events from the above
four samples to do further analysis. We annotated these
SVASEs by ANNOVAR and found 28 related genes
(Additional file 11). Among them, 20, 9 and 8 SVASEs
located in HLA, HCG4B and AHNAK2 genes. HLA
genes play important roles in tumor immune surveil-
lance and escape, and HCG4B gene is a pseudogene of
HLA complex group. AHNAK?2 gene is associated with

Table 4 Gene Ontology enrichment analysis for genes related with 65 common SVASEs using PANTHER (filtered redundant records)

GO function Total gene SVASE gene Expected Fold Enrichment P value (<0.05)
GO biological process complete
antigen processing and presentation of endogenous 15 3 0.02 >100 0.00541
peptide antigen via MHC class |
antigen processing and presentation of peptide 108 6 0.12 50.28 1.51E-05
antigen via MHC class |
antigen processing and presentation of endogenous 19 3 0.02 >100 0011
antigen
antigen processing and presentation of exogenous 181 6 0.2 30 0.000317
antigen
response to type | interferon 74 6 0.08 73.37 1.6E-06
response to interferon-gamma 151 6 0.17 35.96 0.000109
GO molecular function complete
antigen binding 107 6 0.12 50.75 4.69E-06
GO cellular component complete
MHC protein complex 30 6 0.03 >100 1.14E-09
membrane-bounded vesicle 1169 9 1.29 6.97 0.00285
vesicle membrane 508 7 0.56 1247 000116
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calcium channel proteins and its exon 7 size is almost
18 kb. We found 8 SVASEs associated with 5 new spli-
cing events inside the exon 7. Gene Ontology enrich-
ment analysis found these 28 genes are significantly
enriched in cancer related functions, such as antigen pro-
cessing and presentation, response to type I interferon and
interferon-gamma (Table 4). We also used ESEfinder to
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detect ESE motifs and found 57 of 65 SVASEs located in
predicted ESE motifs. This result indicates most of SVASEs
perform their function possibly by influencing ESE motifs
of splicing events. Moreover, SVASEs have some basic char-
acteristics (using SRR388226 data as an example), such as
high proportion of canonical splicing signal GT-AG (or re-
verse complement CT-AC), similar signal scores for splice
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Fig. 2 The characteristics of SVASEs between novel and all SVASE sites in sample SRR388226. The density of junction reads number, the bar plot
of junction number for different junction splicing signals, the boxplot of junction reads number distribution for different junction splicing signals,
the density of splicing signal score for variant replaced sequence and reference sequence, the histogram plot of distances between sequence
variant and exon 5’ side, the histogram plot of distances between sequence variant and exon 3' side, the boxplot of distance distribution
between sequence variant type and junction breakpoint, and the bar plot of sequence variant number for different sequence variant types are
shown for SVASEs located in new splicing events (the upper half) and all splicing events (the lower half)
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sites with reference or alternative allele, tendency to junc-
tion breakpoints, and high frequency of A- > G/T- > C and
G- > A/C- > T transitions (58.96% in new splicing events
and 75.13% in all splicing events) (Fig. 2).

Conclusions

ISVASE provides users to identify SVASEs simply and
fast using RNA-seq data. It identifies SVASEs for both
parts of splicing event (or junction) separately. To re-
duce false positives due to sequencing errors, ISVASE
applies several stringent rule-depended filters and statis-
tical filters in different steps. ISVASE can evaluate junc-
tion shift events and junction signals (5" ss and 3 ss) to
remove false positive splicing events. It also can use user
provided DNA mutation and/or RNA editing data to
designate types of sequence variants. To facilitate down-
stream analysis, ISVASE obtains flanking sequences and
VCEF output for other tools usage. ISVASE also provides
6 tables and 8 figures to describe the characteristics of
SVASEs. In summary, our approach enabled de novo
identification of SVASEs, which sets the stage for further
mechanistic studies.
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