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Background: In this study, we extended the replica exchange Monte Carlo (REMC) sampling method to
protein—small molecule docking conformational prediction using Rosettaligand. In contrast to the traditional Monte
Carlo (MC) and REMC sampling methods, these methods use multi-objective optimization Pareto front information to

facilitate the selection of replicas for exchange.

Results: The Pareto front information generated to select lower energy conformations as representative

conformation structure replicas can facilitate the convergence of the available conformational space, including
available near-native structures. Furthermore, our approach directly provides min-min scenario Pareto optimal
solutions, as well as a hybrid of the min-min and max-min scenario Pareto optimal solutions with lower energy

conformations for use as structure templates in the REMC sampling method. These methods were validated based on
a thorough analysis of a benchmark data set containing 16 benchmark test cases. An in-depth comparison between
MC, REMC, multi-objective optimization-REMC (MO-REMC), and hybrid MO-REMC (HMO-REMC) sampling methods
was performed to illustrate the differences between the four conformational search strategies.

Conclusions: Our findings demonstrate that the MO-REMC and HMO-REMC conformational sampling methods are
powerful approaches for obtaining protein—small molecule docking conformational predictions based on the binding
energy of complexes in Rosettaligand.

Keywords: Monte Carlo, Enhanced sampling method, Multi-objective optimization, Protein—small molecule docking,

Complex structure prediction

Background

Simulating the interactions between a macromolecule
and small molecule (ligand) is important for understand-
ing the molecular basis of the mechanisms found in
healthy and diseased cells [1]. The complex conforma-
tional search problem has been investigated in recent
decades in order to predict the conformations of protein—
small ligand docking [2]. Given the importance of con-
formational search, several software systems have been
developed over the past 20 years, including Dock [3],
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FlexX [4, 5], GOLD [6, 7], Autodock [8-10], Glide [11]
and others [12—14]. These software systems and sampling
methods can efficiently predict realistic complex protein—
ligand docking structures according to predefined sets of
criteria [15]. In general, a protein—ligand docking confor-
mational search method uses either Monte Carlo (MC)
[16] search strategies or genetic algorithms [17]. How-
ever, in order to improve the sampling procedure, various
advanced sampling approaches have been developed in
recent years [18—20].

The MC method comprises a class of numerical
methods based on random sampling and estimating the
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desired outputs using this sample. Integration by MC sim-
ulation evaluates E[f(x)] by drawing samples {X;,t =

1,...,n} from the state space Q2 and then approximating
1 n
E X — X¢). 1
o]~ - ;f( ) (1)

Thus, the function mean of f(X) is estimated based on
a sample mean. When the samples {X;} are independent,
the law of large numbers ensures that the approximation
can be as accurate as required by increasing the sample
size n.

The replica exchange MC (REMC) method [21] imple-
mented using independent Markov chains Xil(n >0) is
defined on the same state space €2 and it can be used to test
several replicas in parallel in order to explore the same sta-
tionary normalized distributions p;(x)(x € 2,1 <i < N)
(due to the central limit theorem) at different “temper-
atures” [22, 23]. Replicas at sufficiently high tempera-
tures are sampled broadly so the barriers will be crossed,
whereas low temperature replicas can used to deeply
explore the local energy minima. In the REMC method,
frequent exchanges are attempted between states X, and

X, of two “neighboring” Markov chains with indices i and
j» which belong to different thermodynamic states, and the
configurations can be identified that cross the local energy
barriers more easily.

Many versions of the REMC sampling method have
been used in studies related to simulation [24-26].
These search methods provide significant improvements
in terms of computational efficiency compared with the
traditional MC search methods. Hamiltonian [27-29]
and well-tempered ensemble [30, 31] methods are used
widely as MC search methods. Hamiltonian MC is a
Markov chains MC method that uses the physical sys-
tem dynamics rather than a probability distribution to
estimate future states in the Markov chain. This allows
the Markov chain to explore the target distribution much
more efficiently, thereby resulting in faster convergence in
Q. The well-tempered ensemble can be designed to have
approximately the same average energy as the canonical
ensemble but much larger fluctuations. An even greater
advantage is obtained when a well-tempered ensemble
is combined with parallel tempering [32]. Using a well-
tempered ensemble, it is possible to observe transitions
between states, which would be impossible to study
using the standard MC method [33]. In this study, we
present novel multi-objective optimization (MO)-REMC
sampling methods.

A multi-objective optimization problem (MOP) com-
prises several conflicting objectives that need to be opti-
mized. In general, a MOP is defined mathematically as
presented in [34].
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Definition 1 (General MOP): A MOP minimizes F(x) =
(A&), ..., fr(X)) subject to gi(x) < 0,i = 1,...,mx €
Q. A MOP solution minimizes the component func-
tions of a vector function F(X), where X is an n-
dimensional decision variable vector (% = x1, . . .,%,) from
some space 2, the vector X minimizes every component
of F(X), or at least one, and the component functions
of the vector function F(xX) should be computable for
every X.

The objectives of DEFINITION 1 contradict each other
because no point in 2 maximizes all of the objectives
simultaneously. Thus, in order to balance them, the best
tradeoffs among the objectives can be defined in terms of
Pareto optimality. Using the MOP presented in DEFINI-
TION 1, the key Pareto concepts of Pareto dominance,
Pareto optimality, Pareto optimal set, and the Pareto front
(non-dominated solutions set) are defined mathematically
as presented in [34, 35]. The multi-objective optimization
approach finds the Pareto optimal set of the population,
which comprises a set of solutions that are non-dominated
with respect to each other. In the objective space, the
set of non-dominated solutions lie on a surface known
as the Pareto front. Non-dominated solution sets are
those in which no other solutions are superior in terms
of all attributes (objectives). Pareto optimality is effec-
tive for facilitating the convergence of the population in
a low-dimensional search space [36]. By comparing every
solution in the Pareto optimal set, it is always possible
to improve one attribute to achieve a better gain with-
out another becoming worse. However, each objective
can be minimized or maximized when considering opti-
mization problems with two objectives. The Pareto front
approach offers a method based on attributes for find-
ing the subset of promising solutions. This method also
considers the solution attributes directly without convert-
ing them into a standard form initially. Figure 1 illustrates
the case of a Pareto front with two objectives (colored
points), where there is a tradeoff between minimizing
and maximizing the Pareto optimal points of both the
x and y coordinate values in min-max, max-max, min-
min, and max-min scenarios. The scatter plots indicate
the Pareto optimal set with discrete points for four dif-
ferent scenarios and two objectives. In each case, the
Pareto optimal set always comprises solutions from a
particular edge of the feasible search space for discrete
points [37].

In recent studies, protein—small ligand docking predic-
tion has focused on improving the convergence speed
using sampling methods. A form of solution is used as
an important component of evolutionary multi-objective
optimization algorithms. It has been shown that using
an elitist solution improved the convergence speed for
various sampling algorithms. Therefore, in this study, we
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developed MO-REMC methods by using multiple non-
dominated solutions as replicas for exchange during opti-
mization at different temperatures, thereby improving
the REMC sampling algorithm convergence speed asso-
ciated with replica selection. We also developed methods
for choosing replicas to enhance search and to improve
exploration of the state space by using the Pareto front
energy information. We demonstrated that the MO-
REMC methods could enhance the performance of sam-
pling methods based on a suite of benchmark test sets
using the RosettaLigand protocol [38, 39]. We also per-
formed an extensive comparative study of the proposed
methods with traditional MC (detailed implementation is
presented in the “Sampling methods” section in reference
Algorithm 1) and REMC (see Algorithms 3 and 2) sam-
pling algorithms based on 16 benchmark test cases. As
part of this investigation, the RosettaLigand energy func-
tion total score (TScore), binding energy interface delta
(IFDelta), and ligand of RMSD(Lrmsd) obtained with the
proposed MO-REMC algorithms were compared with
those produced by MC and REMC sampling methods,
which showed that the proposed methods generally per-
formed better than MC and REMC. The MO-REMC (see
Algorithms 3, 4 and 5) and hybrid MO-REMC(HMO-
REMC, see Algorithms 3, 4 and 6) methods were found to

enhance the convergence to solutions compared with the
MC and REMC sampling methods.

Methods

Test data set

The RosettaLigand protocol yielded better results with the
classic MC sampling method when using a data set of 100
native protein-ligand complexes. In 71/100 cases, the low-
est energy model had an Lrmsd less than 2A [39]. We
suggest that the RosettaLigand protocol cannot obtain sat-
isfactory results in the remaining cases mainly because
the MC sampling technique employed in docking is not
sufficiently efficient for sampling or optimization in chal-
lenging cases. In the present study, we considered cases
where satisfactory result could not be obtained with the
MC approach. In all of these cases, the native complex
was not recognized as a particularly low energy pose even
after minimization. The 16 complexes used in this study
are summarized in the “Summary of the docking results
obtained using different sampling methods and scales”
section.

Preparation of the protein and ligand
A validated receptor is crucial for the successful predic-
tion of targets. In this study, we performed repacking of
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the side-chain of the receptor near the initial ligand posi-
tion in a similar manner to the RosettaLigand protocol
[38]. Placing a ligand near clashing residues allowed the
side-chains to be repacked stochastically. We generated
10 structures per receptor and the receptor structure was
directly derived based on the RosettaLigand TScore to
select the protein conformation with top minor TScore
value. This selection process used the RosettaLigand pro-
tocol to generate 10 structures per receptor and we only
selected that with the lowest energy. This procedure
can resolve any pre-existing clashes between the protein
side-chains and ligand, thereby gaining a large energy
increase [39].

Alternatively, we treated ligand conformations as
“rotamers,” which were sampled at the same time as the
protein side-chains were repacked. Ligands were repre-
sented as a set of discrete conformations. To generate
these conformations, all the torsional degrees of freedom
in the ligand were identified and each of the torsion angles
with probable conformations was compiled based on the
atom type and hybridization state of the linked atoms.
Next, each torsion angle was placed in one of the states
considered, but conformations with internal clashes in
ligand atoms were not considered, especially the confor-
mations where the closed ring systems were not altered.
Finally, we evaluated the internal ligand energy and energy
minimization was applied [40]. At present, ligand con-
formers are generated externally in the RosettaLigand
protocols. Thus, we used the Omega program (v2.3.2,
OpenEye) [41] with its default settings and restrained the
ligand torsions with a harmonic potential during mini-
mization.

Scoring function for docking
In the coarse-grained sampling stage, the coarse-grained
complementary score S, is defined as

Seg = R — min(A/N,0.85), )

where R denotes ligand atoms within 2.25A of the recep-
tor backbone or CPs (repulsive clashes), A denotes lig-
and atoms between 2.25A and 4.75A of any protein
atom (attractive contacts), and N denotes the total ligand
atoms. The best-scoring poses were filtered by stochas-
tic elimination of near duplicates with a threshold of
0.65+/NA, where N is the number of non-hydrogen ligand
atoms [39].

In the high-resolution refinement stage, the full-atom
score is a linear combination of the different scoring
items. These scoring items include the attractive Lennard-
Jones score, repulsive Lennard-Jones score, implicit
Lazaridis-Jarplus solvation score, reference energy for
each amino acid, proline ring closure energy score,
backbone-backbone H-bonds distant and close scores in
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the primary sequence, hydrogen bond energy score, prob-
ability of an amino acid at phi and psi angles, residue—
residue pair probability score, and omega dihedral in the
backbone. The high-resolution refinement scoring func-
tion Sy, is defined as

n
St =Y wisi, 3)
t=1

where s; denotes different scoring items and w; denotes
alternative weights. The full details are described in
Table 1, reference [42]. In this research, we are simply
using coarse-grained sampling stage and high-resolution
refinement stage scoring functions for docking, includ-
ing TScore and IFDelta functions, as implemented in
RosettaLigand [39].

Sampling methods

Our docking methods are based on the Rosetta
Ligand(v3.4) protocol, where we use the repacking
side-chain method in ROSETTA suites to generate the
receptor and represent ligands as a set of discrete con-
formations generated by the Omega program. Finally,
we examined the capability of the RosettaLigand dock-
ing protocol based on MC, REMC, MO-REMC, and
HMO-REMC sampling methods.

MC sampling method

The MC method approximates an expectation based on
the sample mean of a function of simulated random vari-
ables. The term MC generally applies to all simulations

Table 1 Scoring function weights used in the four sampling

methods
Weight Weight

Score items (Hard) (Soft)
Proling ring closure energy 1.00 1.00
Lennard-Jones attractive 0.80 0.80
Lennard-Jones repulsive 040 0.60
Lazaridis-Jarplus solvation energy 0.60 0.50
Pair energy 0.80 0.50
Reference energy for each amino acid 1.00 1.00
In primary sequence

Backbone-backbone hbonds distant 2.00 1.20

Backbone-backbone hbonds close 2.00 1.20
Hydrogen bond energy

Sidechain-backbone 2.00 1.20

Sidechain-sidechain 2.00 1.20
Probability of amino acid at phi and psi 0.50 032
Omega dihedral in the backbone 0.50 0.50

(Hard) indicates weights used during side-chain repacking
(Soft) indicates weights used during rigid-body minimization
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that utilize random sampling to obtain numerical solu-
tions for a system of interest. In the general RosettaLigand
protocol, MC refers to Metropolis-Hastings sampling,
which samples from the Boltzmann distribution, and it
was developed by Metropolis et al. in the Los Alamos
team [43]. In the present study, MC simulations were per-
formed as follows. Starting from an initial conformation of
the protein-ligand interaction, a perturbation of rotamer-
TrialMover() or packRotamersMover() was attempted that
changed the conformation of the complex. This trail
Mover() from state last accepted (old) to state perturbed
(new) is accepted based on an acceptance probability such
that [39]

emin(40.0,max(—40.0, boltz_factor))
7

(4)

where the boltz_factor = (last_accepted_score —
score) kT, last_accepted_score denotes the energy value
of the last accepted structure of the complex, score
denotes the energy value of the perturbed structure of
the complex, T denotes the current temperature, and kg
denotes the Boltzmann constant, which is considered to
be one. In order to decide whether to accept or reject
the trail Mover(), we generate a random number, denoted
by mc_RG_uniform, from a uniform distribution in the
interval[0, 1].

Clearly, the probability that mc_RG _uniform|0, 1] is less
than problold — new] is equal to prob[old — new]. We
now accept the trail Mover() if mc_RG_uniform[0, 1] <
problold — new] or prob[old — new]> 1 and reject it
otherwise. The transition probability for the MC sampling
method from conformation p to a perturbed conforma-
tion p’ depends on the difference in last_accepted_score —
score between the last accepted (old) conformation and
the perturbed (new) conformation, which is determined
such that

prob [old — new] :=

0, if problold — new]<mc_RG_uniform|0,]],
Plp— p'l:=11, if problold — new]>mc_RG_uniform[0,1],
1, if problold — new]> 1.

(5)

where problold — new] is the acceptance probability
between conformations p’ and p. This rule guarantees
that the probability to accept a trail Mover() from the
last accepted conformation to perturbed conformation
is indeed equal to problold — new] [44]. If the cur-
rent conformation structure is rejected, MC can retain
an additional duplicate of the previous sampling struc-
ture as the sample accepted by the system. Figure 2 (left
and upper panel) shows that the last sampling structure
(red point) is accepted by the MC method as the exclu-
sive solution. After many iterations, an accurate average
energy value can be obtained for a complex structure.
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Algorithm 1 shows the pseudo-code for the RosettaLigand
MC Boltzmann sampling method implementation.

Algorithm 1: MCBOLTZMANN( p, T)

Input: p — current structure of the complex, T —
temperature of the current system, E() —
donated energy function

Output: mc_accepted — true or false, donated

acceptance or rejection of the current
structure

mc_accepted < 0;

score <— E(p);

boltz_factor < (last_accepted_score — score) /T;
min(40.0,max(—40.0,boltz_factor)).

prob < ¢
if prob < 1 then
mc_RG_uniform < U(0, 1);
if mc_RG_uniform > prob then
mc_accepted < 0;
else mc_accepted < 1;

NS Gk W N =

@®

9 else

10 ‘ mc_accepted < 1;

11 end

12 if mc_accepted then

13 ‘ last_accepted_score < score;
14 end

15 return mc_accepted

In RosettaLigand, the efficiency of the MC Boltzmann
sampling method can be improved by avoiding the com-
putation of the exponential function (line 4, Algorithm 1).
A more detailed interpretation is given in reference [44].

REMC sampling method

In current protocols, replica exchange is the most widely
used method for enhancing sampling in bio-molecular
simulations, where it can be viewed as a parallel version
of simulation tempering, and it is also known as paral-
lel tempering or multiple Markov chains. In the proposed
method, REMC search maintains M identical copies of
replicas as M sampled canonical ensembles at differ-
ent temperatures. Each temperature value is unique and
each of the M replicas has an associated temperature
value (71, T3, ..., Tar). Each of the M replicas indepen-
dently performs a simple MCBoltzmann(p, T) search at
the respective temperature setting. In addition, in our
REMC algorithm, each replica p; is perturbed and the
associated energy value E(p)) is archived in ensembles P’
and E'. The elite replicas in the archives are selected using
a procedure called select_ REMC_Replicas(E', P'). In this
procedure, we select the last “numR” conformations that
have been pushed into the queue in the archives as replicas
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for exchange, as shown in Fig. 2 (right and upper pan-
els), where the last “numR” sampling structures are used
as replicas(red points) for exchange in the REMC method.
Algorithm 2 presents the pseudo-code for the selection of
replicas from the archives in the implementation of the
REMC sampling method.

Algorithm 2: SELECT_REMC_REPLICAS( E/, P')

Input: E’ — energy score in the archives, P’ —
conformation ensemble in the archives
Output: pe’ — protein conformation ensemble of the

selected elite

11«0

while i < numR do
pe «— Pi £

4 i<—i+1;

5 end

6 return pe’

woN

-

We can represent the current state of the “numR” repli-
cas selected from the archives as a protein conformation
ensemble pe': = (pe}, .., pe),,.z)» as follows, where pel’. is
the conformation of replica j, which (as stated previously)

runs at temperature T;. During replica exchange, the tem-
perature values of neighboring replicas are exchanged at
a probability proportional to their energy value and dif-
ference in temperature. The transition probability from
some current conformation pe; to a perturbed (trail
Mover()) conformation pe/ is determined using the so-
called Metropolis criterion, as shown in the MC sampling
method section.

Exchanges are performed between neighboring temper-
atures, T; and T;. The probability of an exchange depends
on the energy values, E(pe;) and E(pel’«), and the inverse
temperatures, §; and ;. An exchange of temperatures,
and thus the relabeling of replicas, affects the state of the
replica ensemble pe’. Therefore, we define an exchange
between two replicas i and j more generally as a transi-
tion from the current ensemble state pe’ to an exchanged
state pe”. We define [(pe]) = i, the current label or replica
number, for all pe]. The probability of a transition from
the current ensemble state pe’ to an altered state pe” by
exchanging replicas i and j is defined as [45]:

P[pe — pe'] =P [l(pe/-) < l(pe’.)] = booAs0
: : 0| -

e 2, otherwise.

(6)
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The value A is the product of the energy difference and
inverse temperature difference:

A= (B; — Bi) (E(pe) — E(pep) 7)

where B; = 1/T; is the inverse of the temperature of
replica i. Potential replica exchanges are only performed
between neighboring temperatures because the accep-
tance probability of the exchange decreases exponentially
as the temperature difference between replicas increases.

The pseudo-code for Algorithm 3 illustrates the details
of our REMC search procedure performed for “numR’
replicas and a predetermined temperature range between
minT and maxT. In the “while i + 1 < numR do” loop,
which runs over the pairs of replicas to be swapped, it
can be seen that the swaps being attempted include pairs
(0,1), (2,3), (4,5), etc., but never pairs (1,2), (3,4), (5,6), etc.
This scheme will not satisfy the “detailed balance condi-
tion”(transition probabilities i — j # j — i). Moreover, in
the condition structure for A, it is obvious that the swap is
rejected if A is larger than some threshold number (often
75, but also depends on the computer architecture), then
the swap is rejected because e~ can never be larger than
any random number mc_RG_uniform|0, 1], and hence one
call of the random number generator is saved, making the
algorithm computationally more efficient.

MO-REMC sampling method

The REMC method involves a group of MC moves that
generate a Markov chain of states. This Markov process
has no dependence on history in the sense that new con-
figurations are generated with a probability that depends
only on the current configuration and not on any previ-
ous configurations. In this study, we developed the MO-
REMC sampling method where the random configuration
process is not Markovian so the “detailed balance crite-
rion” is not satisfied. In contrast to the traditional REMC
algorithm, which typically samples a canonical ensemble
of states, we introduce a dependence on history into the
REMC method and use historic multi-objective optimal
Pareto front information to facilitate the selection of crit-
ical replicas of current states, which comprise a set of
replicas that are similar to lower energy states but also as
diverse possible. Using the generated Pareto front as rep-
resentative conformation structure templates can improve
the convergence of the available conformational space
including possible near-native structures.

The aim of the MO-REMC sampling method is to
enhance the speed of convergence for the available con-
formational space. The MO-REMC method employs a
history-dependent Pareto frontier list to explicitly main-
tain a limited number of non-dominated conformations
found by the REMC sampling method. Each individual
in the archives generated by the REMC sampling method
is evaluated using binary objectives: the sampling search
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Algorithm 3: REMC(numR, numC, repackNth, minT,
maxT)

Input: pg — ensemble of initial conformations, numR
— number of conformation replicas, numC —
number of cycle steps, repackNth — repack
receptor side-chain of interface padding every
N cycle steps, minT — minimum temperature,
maxT — maximum temperature

Output: p’ — ensemble of modified state perturbed

conformations

1 E < 0; P <0

2 TStep < (maxT — minT) /numR;

3 foreach temperature i in numR do

4 ‘ T; < minT + TStep;

5 end

6 foreach cycle k in numC do

7 foreach replica i in numR do

8 Pi < Ppo;

9 if i%repackNth = 1 then
10 ‘ p; < packRotamersMover(p;);
11 else
12 ‘ p; < rotamerTrialsMover(p;);
13 end
14 MCBoltzmann(p;, T;);
15 E' < E(p);
16 P« pj;
17 end

18 pe < select_REMC_Replicas(E', P');
19 i< 0;j <0
20 while i + 1 < numR do
21 j<—i+1
2 A < (B — B)(E(pe) — E(pe));
23 if A <0 then
24 ‘ swapLabels(pe), pe))
25 else
26 remc_RG_uniform < U(0, 1);
27 if remc_RG_uniform < e~ 2 then
28 ‘ swapLabels(pe,, pe}/«);
29 end
30 end
31 i< i+2
32 end
33 po < 0; po < pe';
34 end

steps (MC steps) and the TScore values of the perturbed
conformations. The objective MC steps denote the time
series for the search process and the TScore values for
the perturbed conformations in RosettaLigand denote a
history-dependent information map of the available con-
formational space. The MO-REMC sampling method is
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inspired by evolutionary, population-based algorithms.
In the traditional REMC method, replicas at sufficiently
high temperatures are sampled broadly so the barriers
will be crossed, whereas low-temperature replicas can
used to deeply explore the local energy minima principle.
Included in multi-objective optimal method critical repli-
cas of current states are similar greedy states, dominated
non-Pareto frontier list replicas, and diverse possible char-
acteristics. This method is effectively a combination of
the REMC sampling method and historic multi-objective
optimal Pareto front critical conformation structures. The
experimental results show that the elite replicas gener-
ated by the historic multi-objective optimal Pareto front
can enhance the speed of convergence of the available
conformational space.

Algorithm 4 presents the pseudo-code for calculat-
ing the binary objectives based on the Pareto front of
archives in the implementation of the MO-REMC sam-
pling method. Each objective can be minimized or maxi-
mized according to the values of Boolean variables maxX
and maxY. In this procedure, in the first step (lines 1-
6), all of the solutions x,...,x,_1 in the archives are
the alternatives sorted in order of increasing/decreasing
objective X, which can be minimized or maximized. Let
pf’:={x0,y0} and i:=1, where {xp,yo} denotes the combi-
nation containing the first non-dominated front. In the
second step (lines 8-17), for each combination in the
archives {x;,y;} € {X, Y}, let pf":=pf’ U {x;, y;}, If {x;, 5} is
not dominated by any combination according to objective
Y that has been be minimized or maximized already in
pf’, then add {x;, y;} to pf’. In the third step (lines 7-18),
repeat from the step second until no more combinations
can be added to pf’. In the last step, iteration stops when
i=N, where N denotes the number of combinations in the
archives.

In addition, in the middle of each iteration of the
MO-REMC sampling method, a set of conformations is
provided instead of the last set of conformations using
the select_ MO — REMC Replicas(E',P") procedure,
whereas the REMC sampling method uses select_
REMC_Replicas(E’, P'). The select_MO — REMC_Replicas
function is obviously designed to select the conformations
from the archived and the last “#umR” min-min scenario
Pareto optimal solutions set that are non-dominated rel-
ative to the other conformations, as shown in Fig. 2 (left
and lower panel), where in the last circle, the last “numR”
sampling structures are used as replicas(red points) for
exchange in the MO-REMC method, and the min-min
scenario Pareto optimal solutions set is denoted by yellow
points (partial points are covered by red points in Fig. 2).
These min-min scenario Pareto optimal solutions from
the archives provide a natural and rapid convergence
source, which is used to obtain alternative comparison
sets from the archives. The pseudo-code in Algorithm 5
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Algorithm 4: PARETOFRONTIER(X,Y ,maxX,maxY)
Input: X — objective X, Y — objective Y, maxX —
Boolean value of the maximized objective X,
maxY — Boolean value of the maximized
objective Y
Output: pf’ — conformation ensemble of Pareto
optimal solutions
if maxX = 1 then
‘ inverse_sorted({X, Y});
else
‘ sorted({X, Y});
end
pff < {xo,poksi < 1
foreach {x;,y;}in {X,Y}do
{pairx—previous, PAiry—previous} < pf‘v;gf/‘_l;
if maxY = 1 then
10 if pairy_previous > y; then
1 | pff < {xiuyik
12 end

W NN R W N =

o

13 else

14 if pairy_previous < yi then
15 | off < xyiks

16 end

17 end
18 end
return pf’

—
o

describes the procedure for determining whether to
accept or reject the Pareto front, as well as for deciding
whether to select replicas for exchange or not.

HMO-REMC sampling method

The pseudo-code of our implemented method for select-
ing HMO-REMC replicas is presented in Algorithm 6.
We experimented using this variant of the MO-REMC

Algorithm 5: SELECT_MO-REMC_REPLICAS( E/, P')

Input: E’ — energy score in the archives, P’ —
conformation ensemble in the archives
Output: pe’ — conformation ensemble of the last
selected “numR” min-min scenario Pareto
optimal solutions
1 PF < paretoFrontier(E; , E', false, false);
2 1< 0;
3 while i < numR do
4 pe/ < PF‘pp‘,i;
5 i<—i+1
6
7

end
return pe’
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algorithm with 16 protein—small ligand docking cases,
which differed only in terms of the procedure used
for selecting elite solutions in the MO-REMC sampling
method. Updating of the replicas occurs in the MO-
REMC method, which ensures that it only contains non-
dominated solutions where both the objective MC steps
and TScore can be minimized. Thus, the replicas for
exchange cover a diverse range of individuals so the min-
min scenario non-dominated solutions assigned to repli-
cas truly reflect the quality of the MO-REMC sampling
method. The MO-REMC sampling method exclusively
uses replicas from the archives where both the objective
MC steps and TScore are minimized.

Algorithm 6: SELECT_HMO-REMC_REPLICAS(E,P’)

Input: E’ — energy score from the archives, P’ —
conformation ensemble from the archives
Output: pe’ — conformation ensemble of selected
elite replicas
PFy < paretoFrontier(E;,, E', false, false);
PFy < paretoFrontier(E; , E', true, false);
i< 0;,j<«<0; k<0
while (i < |PFy|) && (j < |PFy|) do
le(PFﬁ’(l)) <= E(PFt_‘f(l)) then
| PF < PFy); i < i+ 1;
else
| PF < PFygj<j+1;
end

-

o NN R W N

end
while i < [PFy| do
| PF < PFyg; i < i+1;

- e
N = O

13 end

14 while j < |PFy| do

15 | PF < PFyg;j<j+1;
16 end

while k < numR do

‘ pe < PFi; k < k+1;
end
return pe’

N e e e
S v ® 3

Similarly, in the HMO-REMC sampling method, the
replica selection method is based on the solutions in the
archives where the non-dominated solutions from both
the objective MC steps and TScore are minimized, as
well as the maximized objective MC steps and mini-
mized objective TScore values. Figure 2 (right and lower
panel) shows that lower energy non-dominated solutions
are used in min-min and max-min scenarios Pareto opti-
mal solutions as replicas(red points) for exchanging in the
HMO-REMC method. The min-min scenario Pareto opti-
mal solutions set is denoted by yellow points and the max-
min scenario Pareto optimal solutions set by green points.
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Obviously, the replicas do not include all of the lower
energy non-dominated solutions in the MO-REMC sam-
pling method. Our MO-REMC variant, the HMO-REMC
sampling method, uses hybrid non-dominated solutions
to select the solutions where both the objective MC steps
and TScore are minimized, as well as the maximized
objective MC steps and minimized objective TScore non-
dominated solutions. In particular, in each replica selec-
tion step, all the lower energy non-dominated solutions
in both the min-min and max-min scenarios will be used
preferentially as replicas for exchange. If the number of
solutions is less than numR, which is the number of repli-
cas used for exchanging, the non-dominated solutions set
is hybridized, where both the min-min and max-min sce-
narios non-dominated solutions are used iteratively to fill
the replica set in order of the TScore value sequence.
Replica selection in the MC, REMC, MO-REMC, and
HMO-REMC sampling methods is illustrated in Fig. 2.

Implementation in Rosetta
All versions of our MC protein-ligand docking sampling
methods were coded in C++ and compiled using g++
(GCC v4.4.7). Algorithm 1 presents the pseudo-code to
illustrate the details of our MC search procedure for a sin-
gle replica with N times MC runs (N = numRxnumC)
and a predetermined number of temperatures (7 = 2.0).
Algorithm 3, presents the pseudo-code for the imple-
mentations of our REMC sampling methods. In order to
demonstrate the effectiveness of the REMC algorithms,
including REMC, MO-REMC, and HMO-REMC, and
without prior knowledge of the problem instances, we
fixed the parameter configuration in all of the experi-
mental cases (numR, numC, repackNth, minT, maxT) : =
(16, 16, 5, 2, 4), where numR is the number of replicas sim-
ulated, numC is the number of local circle steps in REMC
search, repackNth is the number of iterative steps per-
formed by a packRotamersMover() mover, and minT and
maxT are the minimum and maximum temperature val-
ues, respectively. All versions of our REMC algorithms
were run on 16 processors and they were parallelized.
Multiple independent trajectories were used to gen-
erate an ensemble of docking models near the native
complex using the MC, REMC, MO-REMC, and HMO-
REMC sampling methods. In all of the tests in this
study, we performed 5000 docking trajectories (runs),
16 x 16 x 5000 MC steps, for each receptor-ligand
pair in the predictive structures, which required 30-50
processor-hours on a 1.9 GHz CPU and 2 GB memory
per core Linux cluster. The results of these docking cal-
culations were typically evaluated based on the “energy
versus rmsd” plot where IFDelta scores were plotted ver-
sus Lrmsd values, and the effectiveness of each sampling
method was judged according to the “funnel-like” charac-
ter of the plot. In this procedure, we first discarded any
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structures where the ligand was not touching the protein
(scoring function item ligand_is_touching=0). Second, we
took the top 5% of structures based on the total energy.
Finally, we ranked the remaining decoys based on the
RosettaLigand IFDelta between the protein and ligand.
We obtained better results with these ranking scheme and
parameters.

Results and discussion

Comparison of different sampling methods

In the procedure using different sampling algorithms, for
each crystal structure target in the test data set, the lig-
and was extracted from the native complex and re-docked
into the binding pocket. The Lrmsd value was calculated
between the predicted positions C* of the ligand and
the ligand C“ in the experimental crystal structure, and
Lrmsd<2A was used as the criterion for success. Using
the classic MC sampling method, the protein included
backbone translation and rotation as well as repacking
of the side-chain of the receptor, and we only selected
the lowest pose in terms of energy with the traditional
RosettaLigand docking protocol. As shown in Fig. 3, for
the 1K3U, and 10WE targets, the MC sampling method
could not produce better experimental binding poses
for the ligand in these complexes compared with those
reported previously [39] even after 1.28x10° MC steps.
For 1K3U, and 10WE, the docking results did not satisfy
the requirement in terms of Lrmsd<2A, but they con-
verged based on “IFDelta versus Lrmsd,” as shown by the
“funnel-like” character of the plot at the lower left. Suc-
cessful predictions were made for the 1AQ1 and 2PRG
targets using the MC sampling method, but the predic-
tions were not sufficiently good for all of the target protein
structures using the four sampling methods (see the dock-
ing results obtained using the REMC, MO-REMC, and
HMO-REMC sampling methods in the figure).

The aim of REMC sampling methods is to increase the
scope and depth of sampling by exchanging configura-
tions between replicas characterized by slightly different
temperature parameters. The REMC sampling method
has been employed widely to enhance sampling methods
by crossing energy barriers and accelerating the con-
vergence of MC simulations. For a specific target, the
MC sampling method may not be sufficient to cover
some important regions of the conformational space that
can be recognized by a number of ligands. However,
enhanced sampling methods such as REMC, MO-REMC,
and HMO-REMC can be used to generate a large num-
ber of receptor conformations for protein-ligand docking.
Thus, in this study, in order to sample more of the recep-
tor backbone and side-chain flexibility in each case, we
tested 5000 decoys with each enhanced sampling method
and only selected the lowest energy pose from these
trajectories based on the IFDelta function as implemented
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in RosettaLigand [38, 39]. As shown in Fig. 3, the Roset-
taLigand protocol based on the REMC method obtained
the lower energy pose (10OWE), faster convergence of
the lower energy pose (2PRG), cross-local energy minima
(1K3U), and the binding poses of the alternative ligand
for the first pose within 2A Lrmsd. By contrast, for 2PRG,
the MO-REMC and HMO-REMC sampling algorithms
obtained nearly perfect results within 1A Lrmsd as well
as faster convergence for more of the predicted structures
with the lowest IFDelta scores.

Comparison of different sampling scales

The evolution of sampling in terms of the IFDelta and
Lrmsd scores with different sampling scales is shown for
one representative target (2PRG) in Fig. 4. For 2PRG, the
four sampling methods could progressively sample lower
(more favorable) IFDelta values as the number of MC
steps increased from 2.56x10° to 1.28 x 10°. However, the
enhanced sampling methods obtained faster convergence
in terms of IFDelta, as well as the HMO-REMC method
compared with the MO-REMC method for Lrmsd<=2A.
The MC sampling method successfully sampled solu-
tions with Lrmsd <=2A after 1.28 x10° steps, whereas the
REMC, MO-REMC, and HMO-REMC sampling meth-
ods could reach near-native solutions, particularly the
MO-REMC method, which obtained Lrmsd<1A solu-
tions after only 7.68x10° MC steps. In terms of the
IFDelta scores, after 1.28x10° MC steps, the MC sam-
pling algorithm successfully sampled near-native solu-
tions with Lrmsd of 1.42A and the IFDelta score value
was —18.8. By contrast, after only 2.56 x 10° MC steps, the
REMC, MO-REMC, and HMO-REMC methods obtained
Lrmsd scores within 1.20A, 1.14A, and 1.33A, respec-
tively, and the IFDelta scores were —18.4, —18.9, and -17.2,
respectively. Furthermore, after 1.28x10® MC steps, the
three enhanced sampling algorithms sampled near-native
solutions with Lrmsd scores of 1.20A, 0.79A, and 0.69A,
respectively. In addition, the IFDelta scores converged
around —18.6£0.3. Similar trends were also observed in all
the other test cases.

Summary of the docking results obtained using different
sampling methods and scales

In general, better docking results are achieved by sam-
pling lower docking score value conformations. So, the
first parameter that we evaluated was the global perfor-
mance of the docking results in terms of the IFDelta
score. For all 16 cases, the evolution in terms of IFDelta
using different sampling scales in the four sampling meth-
ods is shown in Fig. 5. As shown by the histogram of
IFDelta values for the 16 individual targets, the four sam-
pling methods could sample near-native docking solu-
tions with more negative IFDelta scores at three sampling
scales in 2.56x10°, 7.68x10°, and 1.28x10° MC steps.
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Fig. 3 Docking results for the TAQ1, 1K3U, 1OWE, and 2PRG targets using the four sampling methods after 1.28x 10¢ MC steps

However, using the same number of MC steps (2.56x10°,
7.68x10°, or 1.28x10°), the enhanced sampling methods
could sample solutions with lower IFDelta scores than

the classic MC sampling method. The MO-REMC, and
HMO-REMC enhanced sampling methods obtained
better docking results in 9/16 cases (1AQ1, 1DB]J, 1JJE,
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Fig. 4 Docking results for the 2PRG target using the four sampling methods after 2.56x 10, 7.68x 10°, or 1.28x 10° MC steps

1TOW, 1V48, 1Y6B, 2DBL, 2PRG, and 7CPA) with lower  obtained better docking results in 7/16 cases, with lower
final IFDelta scores compared with the standard MC and  IFDelta scores compared with the HMO-REMC sam-
REMC sampling methods after 1.28x10° MC steps. It  pling method. However, in 3/16 cases (10WE, 1PQ6,
was interesting that the MO-REMC sampling method and 4TIM), the REMC method obtained configurations,



Wang et al. BMC Bioinformatics (2017) 18:327 Page 13 of 21

2.56 x10° MC Steps

16.4

19.6

L L L L L L L L L L L L L L L L

7.68 x10° MC Steps

! ! L L L L s L L L ! L L ! L L

1.28 x10° MC Steps

© _
© Soom
s et
[a] N -
= - g
e
=3
— .‘b\ = - S — - .$ — — .Q — 5 @ . Iv
S O A
mmm MC the first pose IFDelta MO-REMC the first pose IFDelta
mmm REMC the first pose IFDelta [ HMO-REMC the first pose IFDelta
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which were closer to the lower binding energy form
compared with the MO-REMC methods. By contrast, the
MC sampling algorithm succeeded also in the cases of
1JD0, 1K3U, 1W2G, and 6TIM after 1.28x10° MC steps.
The results based on the 16 test cases indicate that the
MO-REMC and HMO-REMC enhanced sampling meth-
ods performed better than the MC and REMC sampling
methods. The results also showed that the IFDelta values
could vary dramatically for different targets and sam-
pling methods, whereas the IFDelta scores obtained for
the same target with the REMC, MO-REMC, and HMO-
REMC enhanced sampling methods varied only slightly.
For example, for 1PQ6, the MC method achieved an
IFDelta value of around —28.8, whereas the REMC, MO-
REMC, and HMO-REMC sampling methods obtained a
binding energy value of around —29.8 £ 0.2. In addition,
for 1DBJ, the four sampling methods achieved similar
IFDelta scores of around 13.2 4 0.2 after 1.28x10° MC
steps.

The second parameter that we analyzed was the overall
performance of the docking results in terms of the Lrmsd
value. An overview of the Lrmsd values obtained for the
individual targets is shown in Fig. 6 at three sampling
scales of 2.56x10°, 7.68x10°, or 1.28x10° MC steps. For
each target, the Lrmsd values are presented after dock-
ing the ligand into alternative receptor structures using
the MC, REMC, MO-REMC, and HMO-REMC sampling
methods. For each of the 16 targets, the bars from left
to right correspond to the results for the protein based
on the MC, REMC, MO-REMC, and HMO-REMC sam-
pling methods, respectively. For 1IO0WE, and 1W2G, the
MC sampling method achieved better (slightly) solutions
within 2A Lrmsd compared with the enhanced sampling
methods after 2.56x10° MC steps. However, for 14/16
cases, excluding 1JD0, and 1TOW, using the enhanced
sampling methods achieved better minimum Lrmsd val-
ues for docking with the protein than the MC sam-
pling method after 1.28x10° MC steps. In particular,
for 1W2G, and 2PRG, the MO-REMC enhanced sam-
pling method obtained Lrmsd values that were close to
the perfect results within 1A Lrmsd. These results have
never been obtained before using MC sampling meth-
ods, and we showed that the MC sampling method could
not obtain satisfactory samples of complicated protein
flexibility after 1.28x10° MC steps. Finally, the Lrmsd
values for individual protein structures could vary dramat-
ically using different sampling methods and they changed
greatly after 1.28x10° MC steps, thereby suggesting that
in structure-based protein-ligand docking experiments,
different sampling methods can significantly affect the
docking results in terms of both depth and breadth. For
example, for 2PRG, the best performing target obtained
using the MC sampling method only achieved an Lrmsd
value of around 8.29A after 7.68x10° MC steps, whereas
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the REMC enhanced sampling method gave an Lrmsd
value within 1.20A, but the MO-REMC and HMO-REMC
sampling methods obtained the best docking results
within 0.79A and 1.76A Lrmsd, respectively.

Convergence with different sampling methods

Next, we briefly discuss how different sampling meth-
ods can affect the rate of convergence. Firstly, in order
to demonstrate that the MO-REMC and HMO-REMC
sampling methods proposed here provide an efficient
sampling technique in temperature space, we calcu-
late the probability of finding each replica at different
temperatures. For the RosettaLigand docking protocol,
the probability value with energy score in heat capac-
ity and temperature T is described by Eq. (4), but no
exponential calculation. In Fig. 7, for target 2PRG, we
show that using the MC, REMC, MO-REMC, and HMO-
REMC sampling methods, the probability of finding each
replica at different temperatures progressively flattened
over numR = 16 replicas simulated through numC =
16 local circles(numRxnumC MC steps). On each sub-
figure, the red circle points correspond to the probability
average values of numR = 16 replicas simulated through
numC = 16 local circles. The results obtained by the
MC sampling method show that after numRxnumC MC
steps, the probability average values converged slowly
to 1.56 with a wider fluctuation variance value of 8.78.
However, using the enhanced sampling methods, REMC,
MO-REMC, and HMO-REMC, the results show that
the probability average values converged faster to 0.78,
0.73, and 0.99, with a narrow margin fluctuation vari-
ance value of 0.22, 0.18, and 0.07, respectively. Especially,
for the HMO-REMC sampling method, the probability
values of finding each replica at different temperatures
show a fairly flat probability distribution. The proba-
bility results show that a strong temperature depen-
dence of energy for complex protein-ligand docking
systems.

Secondly, in Fig. 8, for the 2PRG and 4TIM targets,
we show how the estimated TScore and IFDelta scores
obtained using the MC, REMC, MO-REMC, and HMO-
REMC sampling methods converged over a simulation of
1.28x10° MC steps. For comparison, we also show the
same Lrmsd values calculated after 1.28x10° MC steps.
For 2PRG, the results obtained by the enhanced sampling
methods are shown that after 7.68x10° MC steps, which
demonstrate that the IFDelta score converged almost
exactly to —18.2, with small fluctuations in the order of
~0.8. However, using the classic MC sampling method,
almost all of the 7.68x10°> MC steps were required to
obtain a converged result with an IFDelta value in the
order of —17.3, as shown in Fig. 8 (left and middle panels).
After 1.28x10° MC steps, however, four sampling meth-
ods could obtain better convergence in terms of IFDelta,
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TScore, and Lrmsd. This represents an improvement in
the sampling efficiency by one order of magnitude and
it is very likely that this could be improved further,
such as by incorporating information from the Hamil-
tonian. One of the most important tests of convergence
for a protein—ligand interaction when sampling a com-
plex transformation is the sensitivity of the results to
different sampling methods. Thus, to exclude any depen-
dence on different sampling methods, we also calculated
the Lrmsd values for the four sampling methods after
1.28x10° MC steps and found that the estimated Lrmsd
values agreed very well with the results based on the
[FDelta values. These results are presented in Fig. 8 (left
and lower panel). To facilitate a comparison with other
targets, we also performed sampling for 4TIM using the
four sampling methods, as shown in Fig. 8 (right pan-
els), which clearly demonstrate that running 1.28x10°
MC steps for 4TIM was sufficient to obtain a converged
estimate of the IFDelta score. In particular, using the MO-
REMC sampling method, the estimate of the IFDelta score
converged rapidly. However, the MC sampling method
might obtain better convergence in terms of IFDelta and
TScore as well as Lrmsd, but the rate of convergence
was slower. The REMC sampling method achieved bet-
ter convergence after 1.28x10% MC steps, but the results

indicated that the convergence rate was slower than
that using the MO-REMC and HMO-REMC sam-
pling methods in terms of speed and depth. In addi-
tion, the HMO-REMC sampling method performed
slightly better than the MO-REMC sampling method
in 9/16 cases after 1.28x10° MC steps, as shown in
Fig. 6 (lower panel).

Finally, we present further evidence that the MO-REMC
and HMO-REMC sampling methods are effective sam-
pling techniques in temperature space. For 2PRG, we
conduct more than one simulation run using different ini-
tial parameters((numR, numC, repackNth, minT, maxT) :
= (8,8, 3,2 4), (88, 3,2, 6), (8 16, 5, 2, 4), (8, 16,
5, 2, 6), (16, 8, 3, 2, 4), (16, 8, 3, 2, 6), (16, 16, 5, 2,
4), and (16, 16, 5, 2, 6), respectively.). In this way, the
summaries of IFDelta and Lrmsd through creating differ-
ent trajectories(decoys) of configurations for each initial
parameter are compared in Fig. 9. We show that using
different initial parameters, the new methods (including
MO-REMC and HMO-REMC) proposed in this research
can efficiently converge to possible near-native solutions.
In addition, we also compare the necessary number of
sampling decoys to reach convergence in simulation runs
using different initial parameters. The results show that
when using different initial parameters, better near-native
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Fig. 8 Convergence of TScore, IFDelta, and Lrmsd vs. MC steps for the 2PRG and 4TIM targets

conformations can be achieved after sampling 5x10° the necessary number of sampling decoys may be
decoys(numR x numC x N MC steps, the N is the num-  conspicuously different when using different sampling
ber of decoys). However, for different initial parameters, methods.
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Conclusions

In this study, we developed REMC sampling meth-
ods based on multi-objective optimization for predict-
ing conformations in protein—small ligand docking with
RosettaLigand. We used temperature replica exchange to
enhance conformational sampling between Pareto opti-
mal solutions, and the concept of non-dominated solu-
tions was applied to solve the replica selection problem
in our REMC enhanced sampling methods. In contrast
to most other MC and REMC methods, the MO-REMC
method selects non-dominated solutions, which depend
on archived solutions measured in terms of the objective
MC steps and TScore values, in order to find a set of sim-
ilar replicas with lower energy conformations but that are
also as diverse as possible. The MO-REMC and HMO-
REMC methods achieve better integration of the REMC
sampling method and critical conformation structures of
the current sampling state. Using a benchmark data set of
16 protein-ligand test cases with different chain lengths
in terms of amino acids, we assessed various comparison
measures, i.e., TScore, IFDelta, and Lrmsd. We also con-
sidered the funnel-like character of the energy landscape,
the probability of finding each replica at different temper-
atures, and the rate of convergence in the TScore, IFDelta,
and Lrmsd scores.

For the targets tested in our benchmark data set,
we found that the ligand pose was correctly positioned
within 2A Lrmsd for 11/16 of these targets using the
HMO-REMC sampling method after 1.28 x 10° MC steps.
The performance of the proposed MO-REMC sampling
method was better than that of the MC and REMC
methods in most cases, whereas MC generally per-
formed better but converged slowly. The MO-REMC
sampling method achieved significantly faster conver-
gence of the lower energy poses and identified more
correct docked complexes with near-native decoys than
the MC and REMC sampling methods. Moreover, the
results showed that HMO-REMC obtained faster con-
vergence and more distinct solutions than MO-REMC in
each run for most of the targets. The MO-REMC and
HMO-REMC methods required the same or slightly more
time than MC and REMC for the same number of sam-
pling steps. Moreover, for the 1DBJ, 1JD0, 1K3U, 1PQ6,
1Y6B, 2PRG, 4TIM, 6TIM, and 7CPA targets, the per-
formance of HMO-REMC was much better than that
of MO-REMC. The HMO-REMC sampling method cap-
tured much of the possible variation in the conformations
for most of the test cases, and it also sampled lower
binding energy conformations within an Lrmsd of 2A
for the conformations of these targets. The HMO-REMC
hybridizes two scenario combinations for the Pareto opti-
mal solutions with the ranking-based MO-REMC method
and it worked well for many targets. An interesting feature
of the MO-REMC method compared with other REMC

Page 19 of 21

algorithms is that many non-dominated solutions are cho-
sen as the current replicas for exchange. Thus, sampling
at a lower energy is a much more greedy process, which
leads to better protein-ligand conformational sampling
performance. Clearly, this feature can also be incorpo-
rated in addition to the concept of Pareto front solu-
tions in other ensemble-based sampling methods in order
to improve their performance. In addition, experimental
results showed that faster convergence to the global opti-
mal solution does not necessarily provide an efficient algo-
rithm for enhancing conformational sampling of the phase
space. Use of temperature replica exchange to enhance
conformational sampling between non-dominated solu-
tions can also provide good convergence of the avail-
able conformational space including available near-native
structures.

In the future, the proposed MO-REMC method may
be extended in several ways. Even though detailed bal-
ance is not satisfied in the MO-REMC and HMO-REMC
sampling methods, some balance condition may still be
efficient if it is proved that it provides a good sam-
pling method. We can still generate an algorithm that
may satisfy the balance criteria, for example, instead
of selecting the conformation ensemble of Pareto opti-
mal solutions, the configurations to be swapped from
the history archives can be randomly selected instead.
Moreover, in order to obtain performance improvements,
several enhanced sampling techniques, including Hamil-
tonian replica exchange and well-tempered ensemble
approaches, or even a dynamic temperature selection
strategy, can be incorporated in the MO-REMC and
HMO-REMC methods.
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