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Abstract

Background: Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern
recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms
occur through concerted relationships of multiple genes working in networks that are often represented by graphs.
Recent work has shown that incorporating such biological information improves feature selection and prediction
performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article,
we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior
biological information in variable selection.

Results: Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods
achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to
misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are
suggested in the literature to be related with glioblastoma.

Conclusions: The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior
biological information in variable selection, leading to improved feature selection and more interpretable principal
component loadings and potentially providing insights on molecular underpinnings of complex diseases.

Keywords: Principal component analysis, Sparsity, Structural information, Genomic data

Background
A central problem in high-dimensional genomic research
is to identify a subset of genes and pathways that can help
explain the total variation in high-dimensional genomic
data with as little loss of information as possible. Principal
component analysis (PCA) [1] is a popular multivari-
ate analysis method which seeks to concentrate the total
information in data with a few linear combinations of the
available data, making it an appropriate tool for dimen-
sionality reduction, data analysis, and visualization in
genomic research. Despite its popularity, the traditional
PCA is often difficult to interpret as the principal com-
ponent loadings are linear combinations of all available
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variables, the number of which can be very large for
genomic data. It is therefore desirable to obtain inter-
pretable principal components that use a subset of the
available data to deal with the problem of interpretability
of principal component loadings.
Several alternatives to PCA have been proposed in the

literature, most of which constrain the size of non-zero
principal component loadings. An ad hoc approach sets
the absolute value of loadings that are smaller than a
threshold to zero. Though simple to understand, this
approach has been shown to be misleading in the sense
that magnitude of loadings is not the only factor to deter-
mine the importance of variables in a linear combination
[2]. Truncating PCs by loadings may result in quite differ-
ent PCs explaining much smaller variation compared with
the original PCs. Other approaches regularize the loadings
to ensure that some are exactly zero, which implies that
the corresponding variables are unimportant in explaining
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the total variation in the data. For instance, Jolliffe et al. [3]
proposed the SCotLass method that constrains the load-
ings with a lasso penalty, but their optimization problem
is nonconvex, which is difficult to solve and does not
guarantee convergence to a global solution. Zou et al. [4]
proposed a convex sparse PCAmethod (SPCA) that refor-
mulates the PCA problem as a regression problem and
imposes elastic net penalty on the PC loadings. Witten
and Tibshirani [5] also proposed the penalized matrix
decomposition (PMD) that approximates the data with its
spectral decomposition and imposes a lasso penalty on
the right singular vectors, i.e., the principal component
loadings.
Although the aforementioned methods can effectively

produce sparse principal component coefficients, their
main limitation is that they are purely data driven and do
not exploit available biological information such as gene
networks. It has been recognized that complex biolog-
ical mechanisms occur through concerted relationships
of multiple genes working together in pathways. Recent
work [6, 7] has demonstrated in the regression setting
that utilizing prior biological information among vari-
ables can improve variable selection and prediction and
help gain a better understanding of analysis results. It is
therefore desirable to conduct PCA with incorporation of
known structural information. Allen et al. [8] proposed
a generalized least-square matrix decomposition frame-
work for PCA that incorporates known structure of noise
and generate sparse solutions. Although this method can
flexibly account for noise structure in data, they do not
utilize prior biological information, and do not consider
the relationships among the signal variables in PCA.
Jenatton et al. [9] proposed a structured sparse PCA
method that considers correlations among groups of vari-
ables and imposes a penalty similar to group lasso on
the principal component loadings, but their method does
not take into account the complex interactions among
variables within a group. In this article, we proposed
two new sparse PCA methods called Fused and Grouped
sparse PCA that enable incorporation of prior biological
information in PCA. The methods will allow for identifi-
cation of genes and pathways. We generalize fused lasso
[10] and utilize Lγ norm [7] to achieve automatic vari-
able selection and simultaneously account for complex
relationships within pathways.
Our work makes several contributions. To the best of

our knowledge, this is the first attempt to impose both
sparsity and smoothing penalties on principal component
loadings to encourage the selection of variables that are
connected in a network. Although Jenatton et al. [9] and
Shiga and Mamitsuka [11] incorporated group informa-
tion of variables when generating sparse PC solutions,
they did not consider how variables are connected in
each group . Our method considers not only the group

information, but also any interaction structure of vari-
ables within a group. By utilizing the existing biological
structure in the data, we are able to obtain sparse princi-
pal components that are more interpretable and may shed
light on the underlying complex mechanisms in the data.
We also develop an efficient algorithm that can handle
high-dimensional problems. Simulation studies suggest
that the methods have higher sensitivity and specificity
in detecting true signals and ignoring noise variables, and
are quite effective in improving the performance of sparse
PCA methods when the graph structure is correctly spec-
ified. In addition, the proposed methods are robust to
misspecified graph structure.
The remainder of the paper is organized as follows. In

“Methods” section, we present methods and algorithms
for the proposed sparse PCA. In “Results” section, we con-
duct simulation studies to assess the performance of our
methods in comparison with several existing sparse PCA
methods. In “Analysis of Glioblastoma data” section, we
apply the proposed methods to data from a glioblastoma
brain multiform study. We conclude with some discussion
remarks in “Discussions” section.

Methods
Suppose that we have a random n × p matrix X =
(x1, . . . , xp), x ∈ �n. We also assume that the predictors
are centered to have column means zero. The network
informaton for the p variables in X is represented by a
weighted undirected graph G = (C,E,W ), where C is the
set of nodes corresponding to the p features, E = {i ∼ j} is
the set of edges indicating that features i and j are associ-
ated in a biologically meaningful way, andW includes the
weight of each node. For node i, denote by di its degree,
i.e., the number of nodes that are directly connected to
node i and by wi = f (di) its weight which can depend
on di. Our goal is to obtain sparse PCA loadings while
utilizing available structural information G in PCA. Our
approach to the sparse PCA problem relies on the eigen-
value formulation of PCA, and for completeness sake, we
briefly review the classical and sparse PCA problems.

Standard and sparse principal component analysis
Classical PCA finds projections α ∈ �p such that the
variance of the standardized linear combination Xα is
maximized.Mathematically, the first principal component
loading α solves the optimization problem

max
α �=0

αTXTXα subject to αTα = 1. (1)

For subsequent principal components, additional con-
straints are added to ensure that they are uncorre-
lated with previous principal components, so that each
principal component axis captures different information
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in the data. Generally, for the rth PC, we have the
optimization problem

max
αr �=0

αT
r XTXαr (2)

subject to αT
r αr = 1,αT

s αr = 0
∀s < r, r = 2, . . . , q � min(p, n − 1).

Using Lagrangian multipliers, one can show that prob-
lem (2) results in the eigenvalue problem

XTXα = λα. (3)

Then the rth principal component loadings of X is the
rth eigenvector that corresponds to the rth eigenvalue
λ̃1 ≥ · · · ≥ λ̃r ≥ · · · ≥ 0 of the sample covariance matrix
XTX. Of note, the magnitude, αrk of each principal com-
ponent loading α̃r =[αr1, . . . ,αrk , . . . ,αrp] represents the
importance of the kth variable to the rth principal com-
ponent, and these are typically nonzero. When p 	 n,
interpreting the principal components is a difficult task
because the principal components are linear combina-
tions of all variables. Thus for high-dimensional data, a
certain type of regularization that ensures that some vari-
ables have negligible or no effect on the rth principal
component is warranted to yield interpretable principal
components.
To achieve sparsity of the principal component load-

ings while incorporating structural information G, we
utilize ideas in Safo and Ahn [12] which is motivated
by the Dantzig Selector for sparse estimation in regres-
sion problems. Specifically, we bound a modified version
of the eigenvalue difference in (3) with a l∞ norm while
minimizing a structured-sparsity inducing penalty of the
principal component loadings:

min
α �=0

P(α, τ) subject to ‖XTXα̃r − λ̃rα‖∞ ≤ τ

and AT
r−1α = 0.

Here, for a random vector z ∈ �p, ‖z‖∞ is the l∞ norm
defined as max1≤i≤p|zi|, τ > 0 is a tuning parameter
that controls how many of the coefficients in the princi-
pal component loadings will be exactly zero. In addition,
A =[ α̂1, . . . , α̂s] ∀s < r is a concatenation of the previous
sparse PCA solutions α̂s, and α̃r is the nonsparse rth PCA
loading, which is the eigenvector corresponding to the rth
largest eigenvalue λ̂r of XTX.
There are a few advantages of this new formulation

over the standard formulation for PCA. First, the objective
function P(α, τ) can easily incorporate the prior informa-
tion about the PC loadings, for example, the structural
information of variables. Second, this optimization prob-
lem can be easily solved by any off-the-shelf optimization
software given P(α, τ) is a convex function, e.g. CVX in
Matlab. In the next sections, we introduce sparse PCA
methods that utilize the network information G in X.

Grouped sparse PCA
The first approach we propose is the grouped sparse PCA,
similar in spirit with Pan et al. [7]. Utilizing the graph
structure G, we propose the following structured sparse
PCA criterion for the rth principal component loading:

min
α �=0

{
(1 − η)

∑
i∼j

( |αi|γ
wi

+ |αj|γ
wj

)1/γ + η
∑

di=0 |αi|
}
(4)

subject to ‖XTXα̃r − λ̃rα‖∞ ≤ τ and AT
r−1α = 0,

where ‖ · ‖∞ is the l∞ norm , τ > 0 is a tuning parameter,
γ > 1 and 0 < η < 1 are fixed, Ar−1 = (α̂1, α̂2, . . . , α̂r−1)
is the matrix constituted of r − 1 structured sparse PC
loadings, and α̃r is the rth nonsparse PC loading vector,
which is the eigenvector corresponding to the rth largest
eigenvalue of XTX.
The first term in the objective function (4) is the

weighted grouped penalty of Pan et al. [7], which induces
grouped variable selection. The penalty encourages both
αi and αj to be equal to zero simultaneously, suggesting
that two neighboring genes in a network are more likely to
participate in the same biological process simultaneously.
The second term in the objective function induces spar-
sity in selection of singletons that are not connected to
any other variables in the network. The tuning parameter
τ enforces some coefficients of the principal components
to be exactly zero with larger values encouraging more
sparsity. The selection of τ is usually data-driven, and
is discussed in section 2.4. The optimization problem is
convex in α and can be solved with any off the shelf
convex optimization package such as the CVX package
[13] in Matlab.

Fused sparse PCA
The second structured sparse PCA is the Fused sparse
PCA, which generalizes fused lasso [10] to account for
complex interactions within a pathway. Utilizing the graph
structure G, we propose the following structured sparse
PCA for the rth principal component loading:

min
α �=0

{
(1 − η)

∑
i∼j

∣∣∣ αi
wi

− αj
wj

∣∣∣ + η
∑

di=0 |αj|
}

(5)

subject to ‖XTXα̃r − λ̃rα‖∞ ≤ τ and AT
r−1α = 0

where τ > 0 is tuning parameters, 0 ≤ η ≤ 1 is fixed,
Ar−1 = (α̂1, α̂2, . . . , α̂r−1) is the matrix constituted of
r − 1 structured sparse PC loadings, and α̃r is the rth
nonsparse PC loading vector. This penalty is a combina-
tion of weighted l1 penalty on variables that are connected
in the network and l1 penalty on singletons that are not
connected to any genes in the network. The first term in
the objective function (5) is the fused structured penalty
that encourages the difference between variable pairs that
are connected in the network to be small and hence the
variables to be selected together.
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This penalty is similar to some existing penalties, but
different in a number of ways. First, it is similar to the
fused lasso—both attempt to smooth the coefficients that
are connected in G. However, the fused lasso does not
utilize prior biological information. Instead, it uses a data-
driven clustering approach to order the variables that
are correlated and imposes l1 penalty on the difference
between coefficients of adjacent variables. It also does
not weight neighboring features, which may allow one to
enforce various prior relationships among features. Sec-
ond, the Fused sparse penalty is also similar but different
to the network constrained penalty of Li and Li [6]. Their
penalty η1

∑
j |αj| + η2

∑
i∼j

(
αi
wi

− αj
wj

)2
uses the l2 norm

and it has been shown that this does not produce sparse
solutions, where sparsity refers to variables that are con-
nected in a network. In other words, it does not encourage
grouped selection of variables in the network [7]. Also,
the additional tuning parameter η2 increases computa-
tional costs for very large p since it requires solving
a graph-constrained regression problem with dimension
(n + p) × p.
The two proposed methods differ in how the struc-

tural information is incorporated in the PCA problem.
Grouped sPCA is dependent on γ in the Lγ norm and
have different sparsity solution in the PC loadings for
different γ . Unlike the Fused sPCA, the weights in the
Grouped sPCA allow for two neighboring nodes to have
opposite effects, which may be relevant in some biological
process. However, in the Fused sPCA, it is easy to under-
stand that the l1 norm difference of connected pairs allows
variables that are connected or behave similarly to be close
together, which is not so intuitive in the Grouped sPCA.

Algorithms
We present two algorithms for the proposed structured
sparse PCA methods. Algorithm 1 obtains the rth princi-
pal component loading vector for a fixed tuning parameter
τ . Algorithm 2 provides a data driven approach for select-
ing the optimal tuning parameter value τ from a range of
values. The normalization in step (3) of Algorithm 1 eases
interpretation, and usually facilitates a visual comparison
of the coefficients. Once the principal component loading
vector is obtained, the coefficients (in absolute value) can
be ranked to assess the contribution of the variables to a
given PC. Both our methods require the data to be cen-
tered (column-centered for a n × p matrix) so that PCA
can be conducted on covariance matrix. If the variables
are measured on different scales or on a common scale
with widely differing ranges, it is recommended to cen-
ter and scale the variables to have unit variance before
implementing the proposed methods.
Algorithm 1 is developed to obtain r PC loading vec-

tors. For the best r, we can introduce tuning parameter

Algorithm 1Optimization for r structured sparse PC
1: Initialize αr and λr with nonsparse estimates α̃r and

λ̃r : solve the eigen-decomposition of XTX. α̃r is the
rth eigen-vector corresponding to the rth largest
eigen-value λ̃r of XTX.

2: Given a fixed positive tuning parameter τ and pre-
specified parameters η and γ , solve problem (4) or (5)
using optimization package for the rth Grouped sPC
or Fused sPC vector, α̂r .

3: Normalize α̂r : α̂r = α̂r
‖α̂r‖2 .

Algorithm 2 Selecting optimal tuning parameter
1: for each τ in a set of fine grid from (0, τmax), and for

a desired number of principal components r, do

(i) Apply Algorithm 1 on X to derive the rth
principal component loadings Âr(τ ). Then
project X onto Âr(τ ) to obtain the best
principal components as Yr(τ ) = XTÂr(τ ).

(ii) Calculate the BIC value defined as

BIC(τ ) = log
[
1
np

‖X − Yr(τ )ÂT
r (τ )‖F

]
+γτ log(np)

np
(6)

where ‖ · ‖F is the Frobenius norm and γτ is
the number of non-zero components of Âr(τ ).

2: end for
3: Select the optimal tuning parameter as τopt =

minτ {BIC(τ )}.

selection in step (2) using, for example cross validation
to maximize the total variance explained by the rth prin-
cipal component, with the smallest r explaining some
proportion of variance explained selected as the optimal
rth principal component. This would add extra layer of
complexity to the tuning parameter selection, however.
The tuning parameters τ = (τ1, . . . τr) control the

model complexity and their optimal values need to be
selected. We use Bayesian information criterion (BIC) [8]
and implement Algorithm 2 to select τ that yields a bet-
ter rank r approximation to the test data. Compared with
using cross-validation to select best tuning parameters,
BIC can be computationally more efficient, especially for
large datasets. The selection of the other tuning parame-
ters in our experiments are described as follows. We fix
η = 0.5 for an equal likelihood of selecting networks and
singletons. Since Pan et al. [7] chose gamma=2 and 8 and
showed that these two gamma values achieved good per-
formance, we fix γ = 2 for both the simulation study
and the real data analysis and we also compare in a sub-
set of simulations γ = 2 and γ = 8 (see Additional file 1:
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Tables S1 and S2) to assess whether the results are robust
to the gamma value. We set wi and wj as the degree
of each node following the suggestion in Pan et al. [7].
Our paper seeks to develop methods for estimating sparse
principal components, as such it is not the focus of the
paper to investigate principled approaches for selecting
the number of principal components that will be used in
subsequent analyses. We use the top two principal com-
ponents in both our simulation study and the real data
analysis. In practice, some ad-hoc approaches, such as
choosing the top K PCs with more than 80% variation
explained, can be used.

Results
We conduct numerical studies including simiulations and
real data analysis to assess the performance of the pro-
posed methods in comparison with several existing sparse
PCA methods. We consider two simulation settings that
differ by the proportions of variation explained by the first
two PCs. In the first setting, the first two PCs explain 6%
of the total variation which indicates that true signals in
the data are weak. In the second setting, the first two PC’s
explain 30% of the total variation in the data, represent-
ing a case where signals are strong. Within each setting,
we consider the dimensions p = 500 and p = 10, 000,
and also consider two scenarios that differ by the graph
structure G for the proposed methods.

Simulation settings
Let X be a n × p matrix and let G0 be the true covariance
matrix used to generate X. Let G0 be the correspond-
ing graph structure. The true covariance matrix G0 is
partitioned as

G0 =
(
G00 0
0 ν × Ip−36

)
,

where G00 is block diagonal with ten blocks each of size
18 for p = 500 and size 250 for p = 10, 000, and between
block correlation 0. We set the variance of variables in the
first two blocks to be 1, and 0.3 for the remaining eight
blocks. In addition, we set the correlation of a main and
connecting variable to be 0.9 for the first two blocks and
0.2 for the other blocks. Meanwhile, we let the correlation
ρik ∼ Uniform(0.7, 0.8), i �= k and i, k ≥ 2 for the first two
blocks, and ρik ∼ Uniform(0, 0.2), i �= k and i, k ≥ 2 for
the other blocks. This type of covariance matrix G0 sug-
gests that data structure is determined by ten underlying
subnetworks, where the first two PCs of the first two sub-
networks are mostly important in detecting signals in the
data. In other words, in both settings, the true PCs has
36 important variables and p − 36 noise variables when
p = 500, and p = 500 important variables and p − 500
noise variables for p = 10, 000. We note that by chang-
ing the value of ν, we control the proportions of variation

explained by the first two PCs. The ν values we used in
both simulation settings are presented in Additional file 1:
Table S3. For each setting, we specify n = 100, and simu-
late X from multivariate normal distribution with mean 0
and variance G0.
For each setting and dimension, we consider two sce-

narios that differ by the graph structure G specified in
the proposed sPCA methods. In the first scenario, the
graph structure is correctly specified, that is G = G0.
This corresponds to the situation where all true structural
information are available in G so that G is informative. The
resulting network includes 500 variables and 170 edges
between eachmain variable and connecting variable when
p equals 500 (or 10,000 variables and 2490 edges when p
equals 10,000), i.e.,E = {i ∼ j|i, j = 1, · · · , 180} in G when
p equals 500 (or E = {i ∼ j|i, j = 1, · · · , 2, 500} in G when
p equals 10,000). Figure 1 is a graph of the network G used
in Fused and Grouped sPCA when network information
is correctly specified.
In the second scenario, the graph structure is randomly

generated and does not capture the true information in
the data. The resulting network includes a total of 170
random edges when p equals 500 (or 2490 edges when
p equals 10,000). We first generate a p × p matrix with
each element fromU(0, 1) distribution. The elements with
values more than an arbitrary cutoff 0.95 are saved as
candidates for random edges by considering their row
numbers and column numbers are connected nodes. We
then choose a random subset with size 170 (or 2490) as
the noninformative structure. It is possible that few ran-
dom edges have overlaps with informative edges, but most
of them are still noises. This setting assesses the per-
formance of the proposed methods in cases where the
structural information is uninformative and sheds light
on robustness of the proposed methods. Additional file 1:
Figure S1 shows the graph structure for randomly speci-
fied edges.
Performance Metrics We compare the proposed meth-

ods Grouped PCA and Fused PCA to the traditional PCA
[1], SPCA [4] and SPC [14]. We implement SPCA and
SPC using the R-packages elasticnet and PMA respec-
tively. We evaluate the performance of the methods using
the following criteria.

• Reconstruction error: ||XtestAAT − XtestÂÂT||2F ,
where A = (α1 α2) are the true PC loadings and
Â = (α̂1 α̂2) are the estimated PC loadings. This
criterion tests the methods ability to approximate the
testing data reconstructed using only the first two PC
loadings.

• Estimation error: ||AAT − ÂÂT||2F . This criterion
tests the methods ability to estimate the linear
subspace spanned by the true PC loadings [15], with a
smaller estimate preferred.
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Fig. 1 Network structure of simulated data: Correctly specified graph. Variables in circle represent signals, and square represent noise. (G = G0)

• Selectivity: We also test the methods ability to select
the right variables while ignoring noise variables
using sensitivity and specificity which are defined as
Sensitivity = # of True Positive

# of True Positive+# of False Negative ,
Specificity = # of True Negative

# of True Negative+# of False Positive .
Sensitivity and specificity capture the accuracy of
estimated PC loadings with high values indicating
better performance.

• Proportion of variance explained : The fourth
comparison criterion is the proportion of variation
explained in the testing and training data sets by the
first two PC loadings, which is defined as α̂TXXTα̂

trace(XXT)
,

where X is either the centered training or testing data
set, and α̂ is the estimated first or second PC.

Simulation results
Table 1 shows the performance of the methods for the
first setting where the first two PCs explain only 6%
of the total variation in the data. We observe that the

proposed methods are competitive for p = 500 and even
more so when p = 10, 000. In particular, Grouped sPCA
has smaller reconstruction and estimation errors when
the graph structure is correctly specified and even when
the graph structure is uninformative. On the other hand,
Fused sPCA shows a suboptimal performance in compar-
ison to Grouped sPCA, yet better or competitive perfor-
mance when compared to the traditional PCA and SPCA
for correctly specified graph structure and mis-specified
graph structure. In terms of sensitivity and specificity, we
observe that both Grouped sPCA and more especially
Fused sPCA are better in detecting signals even when the
graph structure is mis-specified, while Grouped sPCA is
more competitive at not selecting noise variables. We also
notice that both Grouped sPCA and Fused sPCA have
good performance in proportions of cumulative variation
explained compared with existing sparse PCA methods,
especially compared with SPCA. In Table 2 where the first
two PC’s explain 30% of the total variation in the data, we
observe a similar performance of the proposed methods.
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Table 1 Simulation results of setting 1

Method RE EE
Sensitivity Specificity cPVE

1stPC 2ndPC 1stPC 2ndPC 1stPC 2ndPC

P = 500

PCA 31 (9e-1) 1.1 (3e-2) 1.0 1.0 0.0 0.0 4.3e-2 (2e-3) 8.2e-2 (2e-3)

SPCA 34 (3) 1.2 (1e-1) 0.54 0.50 0.95 0.90 2.0e-2 (2e-3) 4.0e-2 (4e-3)

SPC 16 (8) 0.57 (3e-1) 0.57 0.60 0.98 1.0 2.8e-2 (3e-3) 5.5e-2 (6e-3)

Biological information correctly specified

Fused sPCA 25 (6) 0.90 (2e-1) 1.0 1.0 0.73 0.70 2.9e-2 (4e-3) 5.1e-2 (7e-3)

Grouped sPCA 8.0 (6) 0.29 (2e-1) 0.81 0.80 0.97 1.0 3.2e-2 (2e-3) 6.0e-2 (3e-3)

Biological information randomly specified

Fused sPCA 32 (4) 1.1 (2e-1) 0.95 1.0 0.51 0.51 3.0e-2 (4e-3) 5.2e-2 (7e-3)

Grouped sPCA 9.1 (6) 0.33 (2e-1) 0.81 0.80 0.97 1.0 3.2e-2 (2e-3) 5.9e-2 (3e-3)

P = 10,000

PCA 112 (3) 1.3 (2e-2) 1.0 1.0 0.0 0.0 2.6e-2 (1e-3) 5.0e-2 (1e-3)

SPCA 160 (4) 1.9 (3e-2) 0.15 0.15 0.99 0.99 2.3e-3 (5e-4) 4.5e-3 (7e-4)

SPC 172 (4) 2.0 (8e-3) 0.01 0.01 1.0 1.0 1.7e-4 (1e-4) 3.4e-4 (3e-4)

Biological information correctly specified

Fused sPCA 81 (50) 0.94 ( 0.5 ) 0.62 0.55 0.99 0.99 1.2e-2 (6e-3) 2.2e-2 (1e-2)

Grouped sPCA 54 (40) 0.62 ( 0.4 ) 0.62 0.58 0.99 1.0 1.4e-2 (3e-3) 2.6e-2 (6e-3)

Biological information randomly specified

Fused sPCA 140 (30) 1.6 (0.4) 0.60 0.60 0.68 0.68 8.9e-3 (5e-3) 1.6e-2 (1e-2)

Grouped sPCA 58 (40) 0.67 (0.5) 0.59 0.55 0.99 1.0 1.4e-2 (3e-3) 2.6e-2 (7e-2)

Cumulative proportions of variance explained by true PCs are 0.03 for PC 1 and 0.06 for PC 1 and 2. P, number of variables. RE, reconstruction error, defined as
||XtestAAT − XtestÂÂT||2F , where A = (α1 α2). EE, estimation error, defined as ||AAT − ÂÂT||2F . cPVE, proportions of cumulative variation explained. ·(·), mean(std)

A comparison between p = 500 and p = 10, 000 scenar-
ios for both settings indicates that the gain in reconstruc-
tion error, estimation error, sensitivity, and proportions of
variation explained can be substantial for Grouped sPCA
and Fused sPCA compared with the existing sparse PCA
methods, as the number of variables increases. This sug-
gests that Grouped sPCA or Fused sPCA can achieve
sparse PC loading estimations with higher accuracy, bet-
ter variable selection, and larger proportion of variation
explained, especially when the number of variables is
relatively large.
We evaluate the results on different γ values. Both

Tables 1 and 2 use γ = 2 and the results of the
same settings with γ = 8 are presented in Additional
file 1: Tables S1 and S2. A comparison of Table 1 versus
Additional file 1: Table S1 (or Table 2 versus Additional
file 1: Table S2) shows very similar results, indicating that
the proposed methods are robust to the different selec-
tion of γ values. We also explore how much the results
would be impacted by adding noise structural information
in both settings with P = 500. The results are demon-
strated in Additional file 1: Tables S4 and S5. We find
that the results by both Fused sPCA and Grouped sPCA
worsen a little as expected after adding 170 noise edges.
We also find that Grouped sPCA is more robust to noise

information than Fused sPCA. After noise informtion is
added, Grouped sPCA still has good performance.

Analysis of Glioblastoma data
We apply the proposed methods to analyze data from
a Glioblastoma cancer study. Glioblastoma brain multi-
form (GBM) is the most common malignant brain tumor
and is defined as grade IV astrocytoma by the Whold
Health Organization because of its aggressive and malig-
nant nature [16]. The Cancer Genome Atlas Project
(TCGA) [17] integratively analyzed genome information
of patients with glioblastoma and expanded the knowl-
edge about the pathways and genes that may relate with
glioblastoma. In our data analysis, we obtain part of the
genomic data from TCGA project for glioblastoma, which
is explained in detail by McLendon et al. [17], Verhaak
et al. [18], Cooper et al. [19]. This data set contains
microarray data of 558 subjects with glioblastoma. The
GBM subtype of each subject is also given.
The goal of the analysis is to identify a subset of relevant

genes that contribute to the variation in the different GBM
subtypes, and also determine how the first two estimated
PCs separate these subtypes. For both datasets, we first
select 2,000 variables with the largest variation following
the data preprocessing procedure in Witten et al. [14].
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Table 2 Simulation results of setting 2

Method RE EE
Sensitivity Specificity cPVE

1stPC 2ndPC 1stPC 2ndPC 1stPC 2ndPC

P = 500

PCA 31 (0.9) 1.1 (3e-2) 1.0 1.0 0.0 0.0 4.3e-2 (2e-3) 8.2e-2 (2e-3)

SPCA 35 (2) 1.3 (9e-2) 0.49 0.50 0.95 1.0 1.9e-2 (3e-3) 3.9e-2 (4e-3)

SPC 15 (7) 0.54 (3e-1) 0.57 0.60 0.98 1.0 2.8e-2 (3e-3) 5.6e-2 (5e-3)

Biological information correctly specified

Fused sPCA 27 (4) 0.93 (2e-1) 1.0 1.0 0.70 0.70 3.0e-2 (3e-3) 5.3e-2 (5e-3)

Grouped sPCA 7.9 (5) 0.29 (2e-1) 0.80 0.80 0.97 1.0 3.2e-2(2e-3 ) 6.0e-2 (3e-3)

Biological information randomly specified

Fused sPCA 32 (5) 1.1 (2e-1) 0.96 1.0 0.52 0.50 2.9e-2 (5e-3) 5.1e-2 (8e-3)

Grouped sPCA 9.2 (6) 0.33 (0.2) 0.79 0.8 0.97 1.0 3.2e-2 (2e-3) 5.9e-2 (4e-3)

P = 10,000

PCA 112 (3) 1.3 (2e-2) 1.0 1.0 0.0 0.0 2.7e-2 (1e-3) 5.0e-2 (1e-3)

SPCA 162 (4) 1.9 (3e-2) 0.16 0.16 1.0 1.0 2.0e-3 (5e-4) 4.0e-3 (8e-4)

SPC 173 (4) 2.0 (5e-3) 5.0e-3 5.0e-3 1.0 1.0 1.6e-4 (1e-4) 3.2e-4 (2e-4)

Biological information correctly specified

Fused sPCA 77 ( 40 ) 0.89 ( 0.5 ) 0.65 0.57 0.99 1.0 1.3e-2 (5e-3) 2.3e-2 (9e-3)

Grouped sPCA 46 ( 30 ) 0.53 ( 0.4 ) 0.65 0.62 0.99 1.0 1.5e-2 (2e-3) 2.8e-2 (5e-3)

Biological information randomly specified

Fused sPCA 140 ( 30 ) 1.6 ( 0.4 ) 0.59 0.60 0.68 0.70 9.0e-3 (5e-3) 1.7e-2 (1e-2)

Grouped sPCA 53 ( 40 ) 0.61 ( 0.4 ) 0.63 0.60 0.99 1.0 1.5e-2 (3e-3) 2.7e-2 (6e-3)

Cumulative proportions of variance explained by true PCs are 0.15 for PC 1 and 0.30 for PC 1 and 2. P, number of variables. RE, reconstruction error, defined as
||XtestAAT − XtestÂÂT||2F , where A = (α1 α2). EE, estimation error, defined as ||AAT − ÂÂT||2F . cPVE, proportions of cumulative variation explained. ·(·), mean(std)

In the next step, we select patients with subtype Clas-
sical, Mesenchymal, Neural, and Proneural following the
previous work by Verhaak et al. [18] resulting in 481
patients with subtype data. We obtain the gene network
information for Fused and Grouped sparse PCA meth-
ods from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [20]. The resulting network has 2000
genes and 1297 edges in the network.We center each vari-
able to have mean 0 and standardize each variable to have
variance one.
To justify the structural information we use for the pro-

posed methods, we conduct exploratory analysis using
correlation coefficients of gene pairs. We group the
gene pairs consisting of the selected 2000 genes into
three categories: unconnected gene pairs (two genes that
are not in any pathway), direct-connected gene pairs
(two genes that have a direct edge connecting them),
indirect-connected gene pairs (two genes that belong
to the same pathway but do not have a direct edge
connecting them) according to the KEGG Pathway infor-
mation and we use boxplots to demonstrate the cor-
relation coefficients of these three types of gene pairs.
Additional file 1: Figure S2 shows the plot of cor-
relation coefficients of gene pairs by their categories.
There is a small but clear decreasing trend in corre-
lation coefficients as one moves from direct-connected

gene pairs to unconnected gene pairs. This shows that
the gene pairs that are directly connected tend to have
stronger correlations than those that are indirectly con-
nected or unconnected, thus justifying the validity of
pathway information we use in the analysis.
In the analysis, we equally split each data set into train-

ing and testing sets, where the training set is used to
estimate the optimal tuning parameters via BIC. The plots
of BIC values versus tuning parameters for Grouped sPCA
and Fused sPCA are shown in Additional file 1: Figure S3.
We then apply the optimal parameters on the whole train-
ing set to estimate the first two PC loadings α̂i, i = 1, 2,
and use the testing set to evaluate the estimated loadings
using the following two criteria:

Number of non-zero loadings of
α̂i = �2000

j=1 I{α̂ij �= 0}, i = 1, 2;

Proportion of variation explained by

α̂i = α̂
T
i Xα̂i

trace(XXT )
, i = 1, 2,

whereX is the centered training or testing datamatrix.We
also obtain the first two PCs α̂ by α̂i = Xα̂i, i = 1, 2 and
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determine how well they separate patients with different
GBM subtypes using support vector machine (SVM).
Table 3 shows the number of non-zero loadings, the

cumulative proportions of variation explained by the first
two PC loadings, and the classification results using SVM.
We find that SPC and SPCA are more sparse than the
Fused sparse PCA and the Grouped sparse PCA. This is
consistent with the simulation settings where SPC and
SPCA tend to be more sparse and have higher false nega-
tives that result in lower sensitivity. Regarding cumulative
proportions of variation explained, we find that the pro-
posed methods explain higher variation in the data, but
this may be due to the large number of variables selected.
The last column of Table 3 gives the classification results
from applying SVM on the testing set using the estimated
first two PC loadings. The Fused and Grouped sparse
PCA have the highest number of correctly specified sub-
jects. Of the existing methods, PCA and SPCA achieve
good performance of separating patients with different
subtypes, while SPC has the lowest number of subjects
correctly classified.
We also conduct pathway enrichment analysis using

bioinformatics software ToppGene Suite [21]. We take the
first PC as an example for illustration. We identify the
genes that have non-zero loadings in the first PC from
the proposed sparse PCA methods and existing meth-
ods, and obtain significantly enriched pathways that are
associated with glioblastoma for each method. We seek to
identify methods that have more glioblastoma-associated
pathways, and whether these overlap. Table 4 shows the
Glioblastoma-related pathways found by the proposed
methods and existing sparse PCA methods. Among the
existing sparse PCA methods, both SPC and SPCA find
Spinal Cord Injury pathway. Compared with the exist-
ing methods, Fused and Grouped sPCA find a few new
Glioblastoma-related pathways: Proteoglycans in cancer,
Transcriptional misregulation in cancer, Pathways in can-
cer, Bladder cancer, and Angiogenesis. These pathways
have been demonstrated in existing literatures to be asso-
ciated with Glioblastoma [22–27]. We do not conduct
pathway enrichment analysis with the results of tradi-
tional PCA because traditional PCA does not perform any
variable selection and automatically select all variables.

We also plot the first two PC loadings by Fused and
Grouped sPCA in Additional file 1: Figure S4 and the load-
ings of genes enriched in Glioblastoma-related pathways
are highlighted in color. These results indicate that the
proposedmethods may bemore sensitive in detecting dis-
ease related signals and thus can identify more biologically
important genes.

Discussions
In this paper, we propose two novel structured sparse
PCA methods. Through extensive simulation studies and
an application to Glioblastoma gene expression data, we
demonstrate that incorporating known biological infor-
mation improves the performance of sparse PCA meth-
ods. Specifically, our simulation study indicates that the
proposed methods can decrease reconstruction and esti-
mation errors, and increase sensitivity and proportions
of variation explained, especially when number of vari-
ables is large. Compared with Fused sPCA and existing
PCA methods, Grouped sPCA achieves the lowest recon-
struction error and estimation error for correctly specified
and mis-specified graph structure. On the other hand,
Fused sPCA has higher sensitivity values. Because we
utilize prior biological information, the proposed meth-
ods usually have less sparse PC loadings compared with
the existing sPCA methods and thus lower specificity.
However, there is a trade-off between sparsity and the
benefit from extra information. Consistent with the sim-
ulations results, the real data analysis demonstrates that
the proposed methods generate less sparse PC loadings.
However, the classification results show the advantages of
incorporating biological information into sparse PCA.
The proposed methods require the structure of vari-

ables to be known in advance and specified during analy-
sis. In real data analysis, this task is not trivial and it may
take some efforts in searching for a proper variable struc-
ture to use. Regarding this, we make the following com-
ments. First of all, many sources of structural information
may be available to use including KEGG pathway [20],
Panther pathway [28], Human protein reference database
[29]. It may be helpful to conduct some exploratory anal-
ysis such as Additional file 1: Figure S2 to confirm the
need for using biological information. Additional file 1:

Table 3 Analysis of the GBM data using Kegg Pathway information. cPVE represents proportions of cumulative variation explained

Method
Non-zero Loadings cPVE Subjects correctly classified

1stPC 2ndPC 1stPC 2ndPC SVM

PCA 2000 2000 0.1955 0.3175 97

SPCA 240 238 0.0333 0.0591 97

SPC 45 59 0.0215 0.0383 67

Fused sPCA 1644 1410 0.1792 0.2787 123

Grouped sPCA 1330 970 0.1731 0.2652 119
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Table 4 Enriched Glioblastoma-related pathways for the genes in first PC by different sPCA methods

Pathway ID Pathway name P-value
Gene

From input In annotation

Fused sPCA

739007 Spinal cord injury 7.43E-18 45 112

782000 Proteoglycans in cancer 5.77E-11 55 225

523016 Transcriptional misregulation in cancer 3.31E-7 40 179

83105 Pathways in cancer 3.36E-7 61 327

83115 Bladder cancer 6.10E-6 14 38

Grouped sPCA

739007 Spinal Cord Injury 1.97E-14 36 112

523016 Transcriptional misregulation in cancer 4.06E-7 34 179

83105 Pathways in cancer 2.58E-5 46 327

P00005 Angiogenesis 4.90E-5 26 150

SPC

739007 Spinal Cord Injury 1.43E-5 5 112

SPCA

739007 Spinal Cord Injury 6.46E-5 8 112

Figure S2 demonstrates that gene pairs connected in the
same pathway generally have higher correlation than gene
pairs unconnected in the same pathway, and further than
gene pairs in different pathways. Second, our simulation
study indicates that even if the structural information is
irrelevant as in the biological information randomly spec-
ified section, the proposed methods still perform well,
especially Grouped sPCA method.
Our proposed methods have some limitations. First,

when structural information includes a large number of
edges, the proposed methods, particularly, Fused sPCA,
may generate PC loadings that include more false positive
selections. To solve this problem, one potential approach
is to obtain a smaller but more relevant biological struc-
ture. Second, the proposed methods, especially Grouped
sPCA may be computationally slow in the presence of a
large number of edges. Based on our experience with the
simulations and the real data set, Fused sPCA is com-
putationally more efficient than Grouped sPCA since we
are able to vectorize the penalty for Fused sPCA in the
algorithm. Lastly, it has been observed that many stud-
ies used gene expression data that are inefficiently and
insufficiently pre-processed or normalized, which leads
to failure of eliminating technical noise or batch effects
[30]. Our proposed methods do not provide steps for
pre-processing or normalizing data. The users should
adequately pre-process gene expression data to remove
potential technical noises and batch effects before apply-
ing our methods.
Our structured sparse PCA methods are aimed for esti-

mating sparse PCs and can be considered a dimension

reduction technique. Subsequent analyses could use the
estimated PCs in a number of different ways. For example,
one could use PCs for visualizing gene expression data,
clustering, or building prediction model. Following sug-
gestions from a reviewer, we conducted one additional
set of simulations to assess the prediction performance
of using the top k PCs that achieve a certain proportion
of total variation explained, and the impact of differ-
ent threshold values for the proportion of total variation
explained. We used a simulation setting similar to Setting
2 in the Simulation section with 100 subject, 500 variables,
and 100 simulated datasets. The cumulative proportions
of variation explained by the first two PCs are 30%. We
generated a binary outcome variable using the first PC
through a logistic regression model: logit(Pr(Yi = 1)) =
0.5+PC1i. The simulation results presented in Additional
file 1: Table S6 show that Fused sPCA has the highest
prediction accuracy among all the sparse PCA methods
when 30, 50, and 60% are used as the threshold, con-
sistent with our findings in real data analysis. Also, the
prediction accuracy is not very sensitive to the choice
of threshold values. Of note, in these simulations, the
proportion of total variation explained by all PCs esti-
mated using sparse PCA methods fails to reach 70% for
our method and 60% for other methods, which is likely
due to regularization/sparsity. It has been reported previ-
ously [14, 31] that sparse PCA generates PC solutions that
explain smaller proportions of total variation than stan-
dard PCA. Future research is needed to investigate more
principled approaches for choosing the top k PCs in sub-
sequent analysis and to understand why the proportion
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of total variation explained by all PCs estimated using
sparse PCA methods fails to reach certain threshold and
potential remedy for this limitation.
Although we apply the proposed methods to analysis of

gene expression data, our methods are flexible and general
enough to be applied to other data types, such as epi-
genomics data discussed in the review paper by Qin et al.
[32]. Besides the potential application to other data, some
extensions are of potential interest. One may use alter-
native convex optimization solvers other than the CVX
solver in Matlab used in our work, potentially to speed
up the computations. In addition, Fused and Grouped
sPCA only incorporate the edge information in a graph.
As variables are often grouped into pathways, sPCA using
hierarchical penalties [33] can be developed to incorpo-
rate group membership information in addition to edge
information.

Conclusions
The proposed sparse PCA methods Fused and Grouped
sparse PCA can effectively incorporate prior biological
information in variable selection, leading to improved
feature selection and more interpretable principal com-
ponent loadings and potentially providing insights on
molecular underpinnings of complex diseases.

Additional file

Additional file 1: Figure S1. Network structure of simulated data :
Randomly specified graph (G). Figure S2. Correlation of gene pairs by
relationship types. Figure S3. BIC value by tuning parameter with GBM
microarray data. X-axis is tuning parameter, y-axis is BIC value. Figure S4.
Loading plots of the first two PCs by Fused and Grouped sPCA. Colored
points are genes enriched in Glioblastoma related pathways found by the
proposed methods but not found by existing methods. Table S1.
Simulation results of Setting 1 when γ equals 8. Table S2. Simulation
results of Setting 2 when γ equals 8. Table S3. ν value used in the
simulation settings. Table S4. Simulation results of Setting 1 when extra
noise edges are added to structural information. Table S5. Simulation
results of Setting 2 when extra noise edges are added to structural
information. Table S6. Prediction accuracy using the PCs of PCA-based
methods. ·(·) represents mean(sd). (PDF 1270 kb)
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