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Abstract

Background: Lipids are ubiquitous and serve numerous biological functions; thus lipids have been shown to have
great potential as candidates for elucidating biomarkers and pathway perturbations associated with disease. Methods
expanding coverage of the lipidome increase the likelihood of biomarker discovery and could lead to more
comprehensive understanding of disease etiology.

Results: We introduce LipidMatch, an R-based tool for lipid identification for liquid chromatography tandem mass
spectrometry workflows. LipidMatch currently has over 250,000 lipid species spanning 56 lipid types contained in in
silico fragmentation libraries. Unique fragmentation libraries, compared to other open source software, include oxidized
lipids, bile acids, sphingosines, and previously uncharacterized adducts, including ammoniated cardiolipins. LipidMatch
uses rule-based identification. For each lipid type, the user can select which fragments must be observed for
identification. Rule-based identification allows for correct annotation of lipids based on the fragments observed,
unlike typical identification based solely on spectral similarity scores, where over-reporting structural details that are not
conferred by fragmentation data is common. Another unique feature of LipidMatch is ranking lipid identifications for a
given feature by the sum of fragment intensities. For each lipid candidate, the intensities of experimental fragments
with exact mass matches to expected in silico fragments are summed. The lipid identifications with the greatest
summed intensity using this ranking algorithm were comparable to other lipid identification software annotations,
MS-DIAL and Greazy. For example, for features with identifications from all 3 software, 92% of LipidMatch identifications
by fatty acyl constituents were corroborated by at least one other software in positive mode and 98% in negative
ion mode.

(Continued on next page)

* Correspondence: ryost@chem.ufl.edu

Equal contributors

1Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville,
Florida 32611, USA

>Department of Pathology, Immunology, and Laboratory Medicine, College
of Medicine, University of Florida, 1395 Center Dr, Gainesville, FL 32610, USA
Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
( B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1744-3&domain=pdf
mailto:ryost@chem.ufl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Koelmel et al. BMC Bioinformatics (2017) 18:331

(Continued from previous page)

Page 2 of 11

Conclusions: LipidMatch allows users to annotate lipids across a wide range of high resolution tandem mass
spectrometry experiments, including imaging experiments, direct infusion experiments, and experiments employing
liquid chromatography. LipidMatch leverages the most extensive in silico fragmentation libraries of freely available
software. When integrated into a larger lipidomics workflow, LipidMatch may increase the probability of finding
lipid-based biomarkers and determining etiology of disease by covering a greater portion of the lipidome and
using annotation which does not over-report biologically relevant structural details of identified lipid molecules.

Keywords: Lipidomics, Data-independent analysis, Data-dependent analysis, Mass spectrometry, High resolution mass
spectrometry, Tandem mass spectrometry, Liquid chromatography, Imaging mass spectrometry, In silico libraries,

Oxidized lipids

Background

Lipids are ubiquitous and structurally diverse molecules
with numerous biochemical functions. Therefore, the
measurement of lipids has diverse applications, espe-
cially in the clinical sciences. Most notably, lipids have
been shown over the past decade to be valuable as po-
tential biomarkers for several diseases, due to the nu-
merous biological functions of lipids within an organism.
This diversity in lipid function is accomplished through
diversity in lipid structure [1]. There are over 180,000
possible lipid species, without taking into account all of
the possible double bond positions, backbone substitu-
tions, and stereochemistry [2], and several million
potential lipids when all these structural differences are
accounted for. Thus, one major analytical challenge in
lipidomic measurement is the process of identifying
lipids across this diverse range of structures and varying
abundances, potentially differing up to several million-
fold [3].

One of the more promising strategies for comprehensive
lipidomics is to utilize ultra-high performance liquid-
chromatography with high resolution tandem mass spec-
trometry (UHPLC-HRMS/MS). UHPLC-HRMS/MS pro-
vides molecular specificity using exact mass, MS/MS, and
retention time to assign detailed structure to each lipid
identification [4]. Obtaining MS/MS spectra provides
unique structural information to help identify lipid species
that may contain different fatty acid constituents, but the
same number of carbons and degrees of unsaturation.
These isomeric species often co-elute [5], and therefore
are generally indistinguishable by retention time and exact
mass alone. MS/MS can provide backbone, fatty acid moi-
ety, and lipid class information, as neutral losses or frag-
ment jons are often produced by cleavage at the linkages
between the backbone and fatty acyl constituents of a par-
ticular lipid.

In comparison to proteomics, lipidomics is an emerging
technique which currently lacks community-wide agree-
ment concerning the best software choice for the compre-
hensive and accurate identification of lipids based on
chromatographic and tandem mass spectrometric data. A

major challenge is the limited number of synthesized stan-
dards available, making it difficult to cover the much
larger variety of lipid structures for MS/MS spectral
matching. In the absence of authentic standards, this chal-
lenge has been partially ameliorated by developing in silico
libraries for acyl-containing lipids. For example, in 2013,
Kind et al. released LipidBlast [6], developing a computer
generated library of 119,200 lipids across 26 lipid classes,
which included predicted mass/intensity pairs.

A second major challenge is the accurate annotation
of lipid identifications based on the fragmentation ob-
served [7]. The annotation depends on the structural
resolution, which is the structural detail inferred by ex-
perimental data, specifically the MS/MS spectra. Struc-
tural resolution for lipids is dependent on specific
structural characteristics known, such as double bond
location, geometric isomerism (cis versus trans), and the
position, lengths and degrees of unsaturation of fatty
acyl constituents. For example, if only the exact mass of
the precursor and choline head group of a phosphatidyl-
choline species is observed, the species can only be an-
notated by total carbons and degrees of unsaturation
(e.g. annotated as PC(32:1)) (assuming no overlap from
fragmentation of other choline containing species, such
as the '2C isotopic peaks of SM). If the precursor mass
and fatty acyl fragments are observed, then the lipid can
be identified by acyl-constituents (eg. PC(16:0_18:1)),
with an underscore denoting that the position of the
fatty acyl chain on the backbone is unknown. For most
lipid types, this is the limit of structural resolution that
can be accurately annotated using UHPLC-HRMS/MS
without specialized or additional approaches. Currently,
most lipidomics software over-report structural reso-
lution, which can lead to incorrect biological interpret-
ation of the data [8].

A third challenge for lipid identification is the fact that
features (peaks defined by a mass to charge ratio (m/z)
and retention time) often contain multiple co-eluting
molecules with similar m/z values. One common case is
lipids sharing the same class, total carbons and degrees
of unsaturation, but different acyl constituents, for
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example PC(18:0_18:1) and PC(16:0_20:1). This overlap
reduces spectral similarity scores, which are used for
identification by most software.

To overcome these challenges, we have developed
LipidMatch. LipidMatch currently contains the most
comprehensive lipid fragmentation libraries of freely
available software, when ranked by the number of lipid
types. LipidMatch includes in silico libraries with over
250,000 lipid species across 56 lipid types, including oxi-
dized lipids. LipidMatch incorporates user-modifiable,
rule-based lipid identification, which allows for accurate
lipid annotation in regards to structural resolution. In
addition, if multiple identifications exist for one feature,
LipidMatch outputs include all possible identifications
ranked by summed fragment intensities.

Implementation

LipidMatch was written in R [9]. The user interface for
LipidMatch consists of a series of dialogue boxes devel-
oped using gWidgets API and the tcltk R package. Users
can access LipidMatch as a file in the Additional file 1,
with the latest version available at <http://secim.ufl.edu/
secim-tools/>. A manual and video tutorials are provided
to walk users through the entire lipidomics workflow, in-
cluding vendor file conversion to open source format, fea-
ture processing, LipidMatch identification, in silico lipid
library development, and the ability to append identifica-
tions from other software (e.g. MS-DIAL or Greazy).

Generation and validation of LipidMatch in silico libraries
In silico libraries were developed in Excel as described in
video tutorial 6 in the Additional file 1. Briefly, an R
script was used to generate a list of possible fatty acid
combinations for acyl containing lipids with 2 or 3 fatty
acids. A list of 39 possible endogenous fatty acids and
214 potential oxidized fatty acids were incorporated
(contained in the LipidMatch zip file). Combinations ex-
cluded redundant possibilities such as 18:0_20:0 and
20:0_18:0. For oxidized lipids, a list of 126 potential long
chain oxidized fatty acids was generated by the addition
of one or more (depending on the degrees of unsatur-
ation) O (as a ketone or epoxy), OH (as a hydroxyl rad-
ical), and OOH (as a perhydroxyl radical) to unsaturated
fatty acids within the list of 39 endogenous fatty acids. A
list of 88 potential short chain oxidized fatty acids were
generated by cleavage of unsaturated fatty acids con-
tained in LIPID MAPS and addition of a terminal CHO
(aldehyde) or COOH (carboxylic acid). Oxidized fatty
acyl chains were combined with the original list of fatty
acyl chains to generate possible fatty acyl combinations
for oxidized lipids.

For each lipid class, structurally indicative fragments
were compiled using other MS/MS databases (LIPID
MAPS [10], LipidBlast [11], and MS-DIAL [12]),
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literature, and/or experimentally derived fragmentation.
Using multiple sources to obtain fragmentation allowed
for cross-validation of fragments and generation of lipid
class-specific fragmentation rules (see video tutorial 6 of
the Additional file 1 for details). Fragment masses calcu-
lated were validated with MS/MS of internal standards
obtained using HCD fragmentation [13] on a high-
resolution orbitrap mass spectrometer, or literature
searches. The following internal standards were used for
verification (acronyms are defined in Additional file 2:
Table S1): CE(17:0), CE(19:0), CE(2:0), Cer(d18:1/17:0),
Cer(d18:1/25:0), MAG(17:0), DAG(14:0/14:0), DAG(19:2/
19:2), DAG(20:0/20:0), GlcCer(d18:1/12:0), LPA(17:0),
LPC(17:0), LPC(19:0), LPE(14:0), MG(17:0), OxPC(16:0/
9:0(CHO)), PA(14:0/14:0), PC(14:1/14:1), PC(17:0/17:0),
PC(19:0/19:0), PE(15:0/15:0), PE(17:0/17:0), PG(14:0/14:0),
PG(15:0/15:0), PG(17:0/17:0), PI(8:0/8:0), PS(14:0/14:0),
PS(17:0/17:0), SM(d18:1/17:0), SM(d18:1/6:0), TAG(13:0/
13:0/13:0), TAG(15:0/15:0/15:0), TAG(17:0/17:0/17:0),
TAG(17:1/17:1/17:1) and TAG(19:0/19:0/19:0). All in-
ternal standards were obtained from Avanti Polar Lipids
(Alabaster, Alabama), except TAG species, which were
purchased from Sigma-Aldrich (St. Louis, MO), and chol-
esterol esters, which were obtained from Nu-Chek Prep
(Elysian, MN).

Lipidomics workflow with LipidMatch

LipidMatch is designed to be integrated with other open-
source software to streamline the lipidomics workflow as
described in Fig. 1. LipidMatch was developed and tested
using data acquired from a Q-Exactive orbitrap mass
spectrometer (Thermo Scientific, San Jose, CA). Lipid-
Match has also been tested using data acquired on an
Agilent 6540 Q-TOF (Agilent Technologies, Santa Clara,
CA). LipidMatch can be used with a variety of other ven-
dors and data formats. Ion selection techniques used to
acquire fragmentation, including all-ion-fragmentation

LC-MS/MS acquisition
Full Scan, DDA, DIA

Peak Picking
MZmine, XCMS, etc.

l

Identification
LipidMatch

{

Append Annotations
MS-DIAL, Greazy, etc

Imaging/Direct Infusion
Full Scan, DDA

Normalization/Statistics
Metaboanalyst, etc.

Fig. 1 Options for open source software integration with LipidMatch
in a lipidomics data processing workflow. Acquisition modes for
fragmentation which can be used to annotate lipids with LipidMatch
include data-dependent analysis (DDA) and data-independent analysis
(DIA) for both direct infusion and liquid chromatography (LC) tandem
mass spectrometry (MS/MS) approaches
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(AIF), inclusion list-based targeted approaches, and data-
dependent topN (ddMS*-topN) approaches can be used
with LipidMatch to annotate lipids acquired using liquid
chromatography, direct injection, or imaging approaches.
LipidMatch is not recommended for most applications
using low resolution mass spectrometers. For brevity, we
will focus on UHPLC MS/MS methods using the data-
dependent topN approach, although video tutorials for
imaging approaches and AIF approaches are included in
the Additional file 1.

In the workflow recommended for LipidMatch, users
acquire full scan data for all the samples in negative
and/or positive polarity. In addition, users acquire
ddMS?-topN spectra from pooled samples or from other
representative samples. Using iterative exclusion (IE)
[13] on the pooled or representative samples can in-
crease the number of ions with respective fragmentation
spectra. This is highly recommended if spectra are dense
(many overlapping lipid signals).

Following data-acquisition, the full scan data (either
centroid or profile) can be processed to determine fea-
tures, defined as an ion or ions sharing the same m/z
and retention time. Features can be determined from
various peak picking software such as MZmine [14],
XCMS [15], or MS-DIAL [12]. The feature table can
have nearly any format, allowing flexibility in choosing
feature processing workflows. Video tutorial 2 explains
how users can process data using MSConvert [16] and
MZmine 2.20 using a batch file for MZmine. The batch
file was optimized for lipids using the chromatographic
methods in Additional file 2: Table S2 and is included
with the tutorial videos in the LipidMatch file.
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Once feature tables are created for each biological sub-
strate and each polarity, features can be directly annotated
using LipidMatch and the previously generated MS/MS
data. Peak picking of MS/MS data and conversion to .ms2
file format should be done using MSConvert [16]. Feature
table(s) and MS/MS data are placed into a directory as
shown in Fig. 2. Often researchers may have multiple fea-
ture tables, one for each polarity type and feature tables
for each substrate analyzed. Users can include a subfolder
for each sample type, and feature tables should end in
“n.csv” or “neg.csv” (not case sensitive) for negative mode,
and “p.csv” or “pos.csv” for positive mode. Each folder
should contain respective MS/MS data for that substrate
in .ms2 format also ending in “neg.csv’ or “pos.csv’,
depending on polarity. The file should have “dd” in the
name if it is data-dependent (DDA) data or targeted data,
and “AIF” if it is all-ion-fragmentation data. For example,
the user could create a folder for a lipidomics experiment
on cancer, with two sub-folders, one for plasma from can-
cer patients and non-cancer patients and one for healthy
tissue and tumor tissue. Each sub-folder could contain, for
example, 2 DDA .ms2 files in positive mode and 2 DDA
files in negative mode, one pooled for participants with
cancer and one pooled for non-cancer participants, as well
as the corresponding feature tables in negative and posi-
tive polarity. Once the user runs LipidMatch and enters
user parameters, LipidMatch will automatically append
identifications to each feature table using MS/MS files
contained in that feature table’s subfolder.

Once lipid identifications are obtained using Lipid-
Match, identifications from any other software such as
Greazy [17], LipidSearch (Thermo Scientific, San Jose,

[ Feature Tables “ MS/MS spectra ]

I User creates input directory Adjust [ LipidMatch generates outputs ]
| LipidMatch
Directo parameters Brain Heart Plasma

1_ : l v l (See Figure 3) s il s

tput  Out Out

Brain Heart Plasma g Outpu 3 3
[ Each subfolder should contain ] Feature Tables with Neg Pos PosByClass
Lipid IDs appended

| Lists of all IDs |

| Each subfolder contains ]

Lu mzpine 2
[ ...Neg.csv] [ ...Neg.ms2 ID

and/or
...Pos.ms2

[

Additional ~ Confirmed
Files Lipids
Fragment information Fragment

for all lipids information for

) (

confirmed lipids

| ...Pos.csv I

[ LipidMatch Parameters

One file for every class

(only one table
per polarity)

(Multiple files per
Polarity allowed)

output folder as depicted above

Fig. 2 Workflow for using LipidMatch, with input and output folder structure and files. Green boxes represent .csv files, dark blue boxes represent
open source MS? files (ms2), and filled light blue boxes represent folders. Three stacked boxes represent that multiple files are allowed or
generated. The subfolders (brain, heart, and plasma) are examples, these folders can be for any biological substrate. In addition if only one
biological substrate is analyzed, only the main directory folder is needed. In the outputs generated by LipidMatch each subfolder contains an

One file for every lipid class with at least one ID
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CA), and MS-DIAL can be appended in additional col-
umns to the feature table (Fig. 1). The annotations are
appended from one file to another if the retention time
and m/z of a feature in one table matches the retention
time and m/z of a feature from a second table within a
user defined mass tolerance and retention time toler-
ance. For example, if a retention time tolerance of
0.1 min and mass tolerance of 10 ppm is used, a feature
annotated PE(36:2) + H with a retention time of 6.72
and m/z of 744.5536 will be appended to a feature gen-
erated by a different software with a retention time of
6.68 and m/z of 744.5540. Lipidome coverage and confi-
dence in identifications can be increased by appending
identifications from multiple software onto one feature
table. In addition, metabolite, xenobiotic, or other identi-
fications from software such as Compound Discoverer
(Thermo Scientific, San Jose, CA) or MS-DIAL can be
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appended for a more global approach. Furthermore, lipi-
dome coverage can be increased by the user community
by adding new in silico fragmentation libraries. Libraries
for LipidMatch can be developed using LipidBlast Tem-
plates [11] or as explained in video tutorial 6 found in
the Additional file 1. Each library should be developed
with the correct annotation based on the structural reso-
lution that can be inferred by fragments chosen for the
identification criteria.

LipidMatch inputs and operations

LipidMatch user inputs and respective operations are ex-
emplified in Fig. 3 using experimental data for PC(38:6)
[M + HCO,]". A similar schematic to Fig. 3, which in-
cludes user inputs and modifiable parameters, is pro-
vided in the Additional file 1 (Additional file 2: Fig. S1).
The user first chooses directories containing feature

Step 1

Exact mass match: in-silico lipids to features
XIC PC(38:6) [M+HCO,]

:é—’ 20 features—, Matches:

> 10 N PC(16:0_22:6)

D PC(16:1_22:5), etc.
$ 0

£ 45 55 6.5 75

Retention time (minutes)

1 Step 4

Assign 1 if fragment meets intensity
threshold and minimum scans threshold
M-Cho R1COO" R2COO
PC(16:0_22:6) 1 1 1
PC(16:1_22:5) 1 0 0
PC(18:1_20:5) 1 0 1
PC(18:2_20:4) 1 1 1

L 2 Step 5

¥ Step 2
Find MS2 scans within features m/z and RT
&2
1 |
20 1.l
§ 45 55 6.5 75
c

Retention time (minutes)

d Step 3
Match fragments by exact mass and store:

fragment RT at maximum intensity:

M-Cho RICOO" R2COO
PC(16:0_22:6) 592 592 592
PC(16:1_22:5) 5.92 0.00 0.00

fragment average m/z:

Retain lipids with necessary fragments:

PC(16:0_22:6) and PC(18:2_20:4)

3 Step 6

Code candidates by identification method:

1 = By fatty acids and class using DDA
2 = |dentified using DIA

3 = Identified only by lipid class

4 = |dentified only by precursor mass

1_PC(16:0_22:6) and 1_PC(18:2_20:4)

v Step 7

PC(16:0_22:6) 719.4659 2552331 327.2331
PC(16:1_22:5)  719.4659 0 0|~
maximum fragment intensity:
PC(16:0_22:6) 12x10°  2.0x10°  45x10°
PC(16:1 22:5)  1.2x10° 0 0
and number of MS? scans:
PC(16:0_22:6) 1 2 2
PC(16:1_22:5) 1 0 0

For features with multiple lipid candidates,
rank lipids by summed fragment intensity

PC(16:0_22:6) PC(18:2_20:4)

M-Cho  12x10°+ 1.2x10° +
R1COO- 2.0x10°+ 1.2x10% +
R2COO- 4.5x10° 39x10°
6.5x10° 6.3x10°
Rank: 1st 2nd

Fig. 3 Simplified flow diagram of LipidMatch operations. The steps for identification of the feature at m/z 850.5604 and retention time (RT) 5.92
as formate adducts of PC(16:0_22:6) and PC(18:2_20:4) are shown as an example in grey boxes for each step. Note that the number of lipid
identifications and fragments queried in the example are reduced significantly for illustration purposes. For Step 5, R1COO™ and R2COO™ were
required for identification above an intensity threshold of 1000 in at least one scan across the peak
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table(s), for example those generated by MZmine (Fig. 2).
Then, LipidMatch performs exact mass matching at the
MS1 level between in silico precursor ions and each fea-
tures m/z using a user defined m/z tolerance (Da) (Step 1;
Fig. 3). Precursor ions include all adducts contained in the
in silico libraries for the respective polarity, but do not in-
clude dimers, multimers or in-source fragments. Each fea-
ture and lipid match will be termed a “feature-lipid pair”.
MS/MS scans from .ms2 files within a user defined reten-
tion time and m/z tolerance of each feature is determined
(Step 2; Fig. 3). The m/z tolerance is the same as the isola-
tion window used for selecting ions.

For each MS/MS scan of each feature, experimental
fragments are matched against in silico lipid fragments
m/z using a tolerance window (ppm). The total number
of scans across a feature containing that fragment is cal-
culated. In addition, the fragments average m1/z, max-
imum intensity, and retention time at maximum
intensity across all scans are calculated for a feature
(Step 3; Fig. 3). This information on fragments for each
feature-lipid pair is saved as a table in .csv format for
each lipid class. Each fragment is assigned 1 if it is above
the user defined minimum intensity and scans threshold
and 0 if the fragment does not meet these criteria or was
not found within the m/z tolerance (Step 4; Fig. 3). The
default number of scans required is 1 based on orbitrap
mass spectrometers, but can be increased for other ap-
plications. The user modifiable intensity threshold for
fragment ions to be considered real is dependent on the
mass analyzer, the type of detector and the noise level.

In Step 4, fragments assigned a 1 are considered ob-
served based on the threshold criteria discussed above.
Lipids are identified if they contain the necessary ob-
served fragments. For example, for PCs measured as
formate adducts, both negative ions of the fatty acyl con-
stituents must be observed (Step 5 of Fig. 3), while for
protonated PCs the PC head group ion 184.0733 must
be observed, along with at least one fatty acyl indicative
fragment if the lipid is to be characterized at the level of
fatty acyl constituents. Default fragments which must be
observed for each lipid class were determined using high
collisional induced dissociation (HCD) on a Q-Exactive
orbitrap mass spectrometer of internal standards, or en-
dogenous lipids verified in literature. Users can modify
which fragment ions for each lipid class must be ob-
served for identification using a simple Excel sheet as
outlined in the 6th video tutorial. In certain cases it may
be important to optimize fragment criteria for applica-
tions not employing HCD fragmentation with an
orbitrap analyzer. Experimental protocols including mo-
bile phase (adducts observed), low and high mass cutoff,
resolution, and type of fragmentation (e.g. HCD, CID, or
UV) will determine what fragment ions are necessary for
each lipid type to be identified. Therefore, for applications
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other than those using HCD fragmentation and orbitrap
detection, we strongly recommend checking the existing
fragmentation rules against MS/MS obtained in-house.
Fragments chosen for confirmation should be of relative
high intensity and distinguish the lipid structure from
other lipids with similar fragmentation. It is important to
note that while fragmentation measured on other high
resolution instruments, such as qTOF platforms, can
result in significant changes in the relative fragment inten-
sities, in most cases the fragment masses observed are the
same. Therefore, since LipidMatch does not include
intensity in in silico fragmentation libraries and does not
include relative intensities in identification, criteria for
identification will often be similar between instruments.
After lipids are identified, they are assigned a number
based on whether they are identified by class and fatty
acyl constituents (1), by data-independent analysis (2),
only by class (3), or only by precursor m/z without frag-
ment matching (4) (Step 6, Fig. 3). If multiple lipids are
identified for a single feature, the lipids are ranked by
the summed intensity of all their fragments with in silico
fragment exact mass matches, including those not used
for confirmation (Step 7, Fig. 3). The final ranked lipid
identifications are appended onto the feature table, along
with the lipid class and adduct of the top ranked lipid
and summed fragment intensities for each identification.

Results and discussion

Comparison of lipid software features

Table 1 compares features in LipidMatch, MS-DIAL,
Greazy, and LipidSearch which can all be used to analyze
UHPLC-HRMS/MS data (note that this is not a complete
list of available lipidomics software). LipidMatch, MS-
DIAL, and Greazy are open source, while a license must
be purchased for LipidSearch.

Currently, MS-DIAL and LipidSearch provide the most
user-friendly interfaces and ease of use. In contrast to
other UHPLC-HRMS/MS identification software, Lipid-
Match is completely written in R. Compared to the other
lipid identification software written in middle level
languages, such as C++, LipidMatch can take longer to
run, especially for high resolution data. This is due to the
slow speed of imbedded for-loops in R and the extensive
LipidMatch libraries and hence large search space. While
run time can be longer, LipidMatch can readily be
integrated with diverse R tools and statistical packages
available for mass spectrometry and omics-based studies.

Databases for lipid identification differ both in cover-
age and information type. For example, LipidMatch and
Greazy databases contain only the exact m/z of pre-
cursor ions and fragment ions, while MS-DIAL and
LipidSearch include simulated intensities. In addition,
software such as MS-DIAL and LipidMatch contain
static in silico libraries, while libraries in Greazy are
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Table 1 Comparison of lipid identification software
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LipidMatch MS-DIAL GREAZY LipidSearch 4.1
Identification (ID) Strategy* Rules Similarity Similarity Rules & Similarity
Fragment Intensity for ID* Yes (ranking) Yes No Yes
in-silico Library (Types) 56 34 24 59
User Developed Libraries Yes Difficult Difficult Difficult
Programming Language R C# C++ Java
Restrictions None None None Purchase License
Multiple Vendor Formats Yes (ms2) Yes (abf) Yes (mzML) Yes (vendor DLL)
Data Independent Analysis** Yes Yes No No
MS? analysis No No No Yes
Multiple Hits in Final Report Yes (ranked) No No Yes (ranked)
Structural Resolution*** Correct Over Reports Over Reports Correct
Identifiers (eg. LipidMaps) No Yes No No
Computational time (HR data) Slow Medium Fast Fast
Employs False Discovery No No Yes No

Note that in determining total types of lipids contained in each software’s in silico library all ether linked lipids contained were considered two types (plasmenyl
and plasmanyl) and all oxidized lipids contained across numerous classes were considered one lipid type

*Please read text for further information

**Not discussed in-depth in this manuscript. LipidMatch can be applied to AIF data independent analysis (currently only supports Thermo files), while MS-DIAL

can be applied to AIF and SWATH approaches

***Correct reporting of structural resolution means that lipids are annotated only at the level of structure known based on fragmentation

generated as the program is executed, based on the types
of lipids and fatty acyl chains the user specifies. While
LipidMatch libraries are static excel files, as with all four
software previously mentioned, the user can select which
lipid types to query using LipidMatch, hence limiting
searches only to biologically relevant or expected lipid
types and reducing run time. LipidMatch libraries con-
tain only exact m/z values of precursors and fragment
ions, making it relatively trivial for users to generate in
silico libraries and/or convert other databases to the
LipidMatch library format. LipidMatch contains all lipid
types in MS-DIAL 2.24, as well as LipidBlast release 3
development libraries. With 56 lipid types, LipidMatch
in silico libraries cover the greatest number of lipid types
of any open source software to date, with MS-DIAL con-
taining 34 lipid types, and Greazy containing 24 lipid
types (Table 1).

All four programs use different identification strat-
egies. MS-DIAL and LipidSearch include intensity to
rank lipid identification by a similarity score. Greazy in-
cludes a similarity score as well as a false discovery
probability based on the total number of fragments ob-
served, thus solely relying on m/z. Both LipidMatch and
LipidSearch include rule-based identification, which al-
lows correct annotation of lipid structure based on frag-
ments observed (correct structural resolution). While all
other open-source software sort identifications by simi-
larity score, LipidMatch sorts lipid identifications by
summed fragment intensity. For each lipid species

identified, all expected fragment ions are summed (using
the scan with the highest intensity for each fragment).
Fragment ions to sum are determined from the in silico
fragment m/z values for that species and include frag-
ments not necessary for lipid identification (for example
the loss of the PC head group for PCs when the m/z
184.0733 PC fragment is observed). For each feature, the
lipid ions are ranked from maximum to minimum
summed intensity.

LipidMatch ranking is based on the assumption that a
feature often represents multiple lipid ions and that ranking
is meant to determine the relative signal contribution of
each lipid to the feature. In other software, by using similar-
ity score, ranking is based on which lipid identification is
most confident. While both ranking algorithms produce
similar results in many cases (see section below: A case
study: Identification of lipids in red cross plasma),
LipidMatch algorithm is designed based on a more accurate
assumption of multiple co-eluting lipids sharing m/z values
within the same accurate mass. In simple dot product
matching, the algorithm is based on the assumption that
the fragmentation spectra is solely based on the ion of
interest. Any deviation from the predicted fragmentation
spectra, such as additional high intensity fragment peaks
from co-eluting isobaric species, will reduce the dot
product score. Many lipids will not be identified due to co-
eluting isobaric species adding more fragments to the spec-
tra and hence reducing the dot product score. MS-DIAL
has approached this issue by reducing the impact of peaks
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not contained in the in silico fragmentation library on the
modified dot-product score. Fragments from different spe-
cies which overlap in exact mass, for example fatty acyl
fragments from 18:0 in TG(18:0/18:0/18:0) and TG(16:0/
18:0/20:0), will still decrease the modified dot-product score
in MS-DIAL, and hence lead to false negatives.

Ranking lipid identifications for a given feature is
complicated by overlapping mass spectral fragments in
LipidMatch as well. A number of problematic cases can
arise. For example, for a given lipid type with high inten-
sity fragments below the m/z cutoff, the ions summed
fragment intensity will be reduced compared to lipid
species with the bulk intensity of fragments within the
m/z range. Similarly, if high intensity fragments are
missing from the in silico library for a lipid type, these
lipids will be artificially lowered in their ranking in terms
of contribution to feature signal. In addition, shared
fragment ions for some lipids will artificially inflate
summed fragment intensity (Fig. 4b) and fragment in-
tensity will depend on the MS/MS scans proximity to a
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given ions apex (Fig. 4c). Similarity score matching, such
as that used by MS-DIAL, suffers similar problems.

To determine the accuracy of lipid rankings and iden-
tifications using LipidMatch, identification of lipids in
Red Cross plasma using LipidMatch was compared to
MS-DIAL and Greazy. Lipid software excluded for
comparison included LipidSearch (Thermo Scientific),
Lipidyzer (SCIEX), and SimLipid (PREMIER Biosoft),
which are not open source software, and Alex [18],
LipidXplorer [19], MS-LAMP [20], LIMSA [21], LOB-
STAHS [22], Lipid Data Analyzer [23], LipidQA [24],
and Lipid-Pro [25], which were not designed for
UHPLC-HRMS/MS untargeted experiments. As stated
previously, LipidMatch, MS-DIAL, and Greazy differ in
lipid identification strategy; hence, the amount of fea-
tures with the same identifications between LipidMatch
and the other software platforms was used to assess the
accuracy of the LipidMatch ranking algorithm. Further
work, with spiked co-eluting standards sharing the
same exact mass at varying concentrations would be

a Case with correct ranking: . )
MS2 Scan _Precursor |nter_1$_|ty I
is a sum of all lipids |
> = Y/
j C
2 £ | 1.1
= < | >|> = i>i>
Retention time m/z Actual _
rank =
b case with incorrect ranking (shared fragments artificially increase ranking):
MS2 Scan
Two of three lipids
> > .
= = share fragmentation | |
e C
g s | |
= < | >|> = 1> |<
Retention time m/z Actual
rank #
C Case with incorrect ranking (MS? scan is taken at apex of smaller peak):
MS2 Scan
2 2 |
‘@ 7]
C C
2 i}
= = | | >i (False)
Retention time m/z
Key:
/\/\ = Lipid peaks (same exact mass) | | | = Lipid fragments
= Observed peak (sum of lipid peaks) I = sum of fragment intensities
Fig. 4 Problematic cases which can arise when ranking lipids by the sum of fragment intensities. The first panel (a) represents a case were lipids
are accurately ranked (far right) based on the areas under the peak (far left). It also show that even in this case, the precursor intensity doesn't
reflect a single intensity, but a sum of the intensity of all precursor isomers (middle). In panel (b) two lipids (blue and light green) share a high
intensity fragment with the same m/z (middle), inflating their intensity values leading to false ranking (far right). In panel (c) the MS/MS scan
misses the apex of the lipid with a blue trace, and hence the summed intensity for the blue trace is reduced
J
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helpful to further assess the

accuracy.

ranking algorithm

A case study: Identification of lipids in red cross plasma
LipidMatch, Greazy, and MS-DIAL were applied to five
replicate injections of Red Cross blood plasma. Data was
acquired in positive and negative polarity, using iterative
exclusion [13] and data-dependent top 5 (ddMS>-top5) to
acquire MS/MS fragmentation. Liquid chromatography
and mass spectrometer parameters are shown in
Additional file 2: Tables S2 and Table S3, respectively.
Identifications from all software were appended to the
MZmine feature table using the CombineSoftwarelDs.R
script. Both the script, MZmine parameters (batch file),
and an excel sheet with the resulting annotations of fea-
tures across all 3 software (Additional file 3: Table S4) are
included in the Additional file 1. The script aligns features
with similar m/z (10 ppm window used) and retention
times (0.2 min window used) from two different peak
picking or identification software.

Compared to the other major open-source software
platforms, such as MS-DIAL and Greazy, LipidMatch
annotated many more lipid ions. LipidMatch was used
to identify 210 lipid ions across 159 features and 15 lipid
types in negative polarity. In positive ion mode, Lipid-
Match was used to annotate 5159 unique lipid ions
across 1401 features and 26 lipid types. The large num-
ber of unique lipid ions in comparison to a smaller
amount of identified features is due to overlap of co-
eluting lipids sharing the same exact mass, allowing for
multiple lipids identified for a given feature. It is import-
ant to note that annotations of class-specific fragments
(as indicated by “3_” in Additional file 3: Table S4), are
significantly more tentative than identifications using
fatty acyl fragments. This is especially true for choline
containing lipid classes such as SM and PC, which share
common fragments. For positive ion mode, 987 features
were annotated with fatty acyl information. It is also im-
portant to note that in this study, we look at the number
of lipid ions annotated, including multiple adducts for a
given lipid species. When only unique lipid molecules
were taken into account by manually removing redun-
dant adducts and features, and identifications using only
choline specific fragmentation were removed, a total of
728 features with unique lipid molecular annotations
were identified by LipidMatch for this dataset, as has
been published previously [13]. The curated 728 lipid
molecular identifications using LipidMatch is still signifi-
cantly greater than the total lipid ions identified by MS-
DIAL and Greazy combined. Additional file 3: Table S4
includes all features identified in Red Cross plasma, with
LipidMatch, MS-DIAL, and Greazy annotations.

MS-DIAL and Greazy identified 143 and 94 features
in negative mode, respectively, and 411 and 180 features
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in positive mode, respectively. Lipid types identified,
which were unique to LipidMatch, included oxidized
species (151 across TG, PC, and LPC in positive polar-
ity), plasmenyl and plasmanyl TGs (19 species in positive
mode), sphingosines (2), sulfatides (1), and PI species in
positive mode as ammonium adducts (18). It is import-
ant to note that many additional unique in silico librar-
ies exist in LipidMatch, for example cardiolipin as
ammonium adducts, but these species are not observed
in plasma samples. Bar graphs displaying the number of
lipid species in each lipid type identified by LipidMatch,
MS-DIAL, and Greazy, and overlapping identifications
between software are shown in Additional file 2: Fig. S2
(negative polarity) and Additional file 2: Fig. S3 (positive
polarity). In addition, pie charts showing the lipid types
covered by LipidMatch are shown in Additional file 2:
Fig. S4 (negative polarity) and Additional file 2: Fig. S5
(positive polarity).

Since Greazy is limited to glycerophospholipid species,
only 65 features in negative polarity and 68 features in
positive polarity had identifications across all software.
In negative polarity, 97% of these features had the same
identification at the structural resolution of fatty acyl
constituents across all 3 software platforms. In positive
polarity, 71% of features with identifications across all
software tested were the same. Note that plasmenyl and
plasmanyl species with differences in one degree of un-
saturation were considered the same identification due
to minimal difference in MS/MS spectra. The greater
discrepancy in identifications in positive mode is most
likely to do to the low abundance of acyl chain frag-
ments for glycerophospholipids in positive mode, thus
making identification by fatty acyl constituents difficult.
At the structural resolution of lipid class and total car-
bons and double bonds, 94% of features contained the
same identifications across all 3 software platforms in
positive polarity, and 100% of features were identified
the same in negative polarity.

Of all lipid types identified by both MS-DIAL and
LipidMatch, TGs had the most discrepancy. Of the 136
features identified as TGs by both LipidMatch and MS-
DIAL (both sodiated and ammoniated forms), 100% of
the top hits were the same at the structural resolution of
total carbons and degrees of unsaturation, but only 61% of
the top hits were the same at the structural resolution of
fatty acyl constituents. TG identification is complicated by
the number of co-eluting isomers, for example, Lipid-
Match identified over 20 co-eluting TG isomers for a
number of features. These co-eluting isomers can share
one or more fatty acyl constituents, and therefore share
common fragments, further complicating identification.

LipidMatch had a significant number of lipid identifi-
cations by fatty acyl constituents corroborated by at least
one other software, suggesting that LipidMatch
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identification and the ranking strategy results in similar
identifications for glycerophospholipid species compared
to other identification algorithms. For the 68 features
identified by all software in positive polarity, 92% of identi-
fications by LipidMatch were corroborated by at least one
other software. MS-DIAL and Greazy had 86% and 84%
of identifications corroborated for these features by at
least one other software, respectively. In negative polarity,
98% of LipidMatch identifications (all except one) were
corroborated by at least one other software, with MS-
DIAL having 98% identifications corroborated and Greazy
having 100% of identifications corroborated.

Conclusion

LipidMatch is a freely available tool with the potential to
be incorporated into a diverse range of lipidomics work-
flows, including imaging, direct-infusion, and LC-MS/MS
experiments with both low and high mass resolution. For
LC-MS/MS workflows, LipidMatch can be used with any
feature processing software, such as MZmine, XCMS, or
MS-DIAL. LipidMatch contains the greatest diversity in
lipid types of any current open-source software platform
and a unique rule-based strategy for identification and
summed fragment intensity based strategy for ranking top
hits. Compared to other software, LipidMatch is highly
customizable. For example, users can select which frag-
ments are necessary for confirmation and develop their
own fragmentation libraries in Excel. Additional tools
allow the user to pool results from multiple identification
software platforms into one feature table. Compared to
MS-DIAL and Greazy, LipidMatch was found to provide
the most lipid identifications for Red Cross plasma. For
features with identifications using all 3 software platforms,
identifications were comparable at the level of fatty acid
constituents. 92% and 98% of LipidMatch identifications
were corroborated by at least one of the other software
platforms in positive and negative mode, respectively.

Availability and requirements
Project name: LipidMatch
Project home page: http://secim.ufl.edu/secim-tools/
Operating system(s): Windows (tested on Windows 7
through 10)
Programming language: R
Other requirements:
1) R version: 3.3.3
2) MSConvert (or other file conversion software
capable of generating .ms?2 files):
3) MZmine, XCMS, MS-DIAL or other peak picking
software
License:
4) License: Creative Commons Attribution 4.0 Inter-
national (CC BY 4.0) https://creativecommons.org/
licenses/by/4.0/.
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Additional files

Additional file 1: LipidMatch Software. The 2017_6_14_LipidMatch_
Distribution zip file contains lipid libraries in .csv format, a batch file for
lipidomics with MZmine processing, the LipidMatch R script, and
additional helpful R scripts for lipidomics data processing. The zip file
also contains files to guide the user in using LipidMatch, which include:
video tutorials, a manual, a trouble shooting document, and example
input and output data. For the most up to date version of LipidMatch
please visit: http://secim.ufledu/secim-tools/. (ZIP 376634 kb)

Additional file 2: Supplemental Figures and Tables. Contains Figure S1
through Figure S5, and Table S1 through Table S3. (PPTX 593 kb)

Additional file 3: Table S4. Lipid Annotations for Red Cross Plasma
Using Three Open Source Software. This excel workbook contains a
worksheet for lipid annotations in negative polarity and a worksheet for lipid
annotations in positive polarity. Lipids were annotated using LipidMatch,
MS-DIAL, and Greazy. For comparison, the resulting identifications were
aligned to features determined using MZmine. Data was acquired using
iterative exclusion data-dependent top5 (IE-ddMS2-top5) analysis of 6
injections of Red Cross blood plasma. (XLSX 977 kb)
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