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Abstract

Background: Tn-Seq is a high throughput technique for analysis of transposon mutant libraries to determine
conditional essentiality of a gene under an experimental condition. A special feature of the Tn-seq data is that
multiple mutants in a gene provides independent evidence to prioritize that gene as being essential. The existing
methods do not account for this feature or rely on a high-density transposon library. Moreover, these methods are
unable to accommodate complex designs.

Results: The method proposed here is specifically designed for the analysis of Tn-Seq data. It utilizes two steps to
estimate the conditional essentiality for each gene in the genome. First, it collects evidence of conditional essentiality
for each insertion by comparing read counts of that insertion between conditions. Second, it combines insertion-level
evidence for the corresponding gene. It deals with data from both low- and high-density transposon libraries and
accommodates complex designs. Moreover, it is very fast to implement. The performance of the proposed method
was tested on simulated data and experimental Tn-Seq data from Serratia marcescens transposon mutant library used
to identify genes that contribute to fitness in a murine model of infection.

Conclusion: We describe a new, efficient method for identifying conditionally essential genes in Tn-Seq experiments
with high detection sensitivity and specificity. It is implemented as TnseqDiff function in R package Tnseq and can be
installed from the Comprehensive R Archive Network, CRAN.
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Background
Large scale transposon mutagenesis coupled with high
throughput sequencing (Tn-Seq, also known as INseq,
HITS and TraDIS) [1–4] has become a powerful tool to
simultaneously assess the essentiality of all genes under
experimental conditions. There are mainly two types of
data analysis in such experiments: 1) To identify genes
required under any growth condition (absolutely essen-
tial genes) and 2) to identify conditionally essential genes
between conditions (i.e., a differential test). In this paper,
we focus on the second analysis. With Tn-Seq, a library
of tens of thousands of bacterial mutants is constructed.
The location of each insertion mutation and the number
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of bacteria with that mutation is determined by massively
parallel sequencing. By comparing the mutant counts
before and after an experimental condition, the fitness
contribution (i.e., conditional essentiality) of each gene
can be assessed.
To date, analysis of Tn-Seq data has relied on over-

simplified t-tests or their nonparametric alternatives
[5–11]. Recently, several papers considered statistical
methods developed for RNA-Seq data [12–14]. These
studies applied edgeR [12, 15] to the overdispersed count
data to either identify differentially represented (DE)
mutants (i.e., the insertion-level inference) [12, 14] or DE
genes based on the sum of insertion counts in each gene
[13]. For the gene-level inference, however, they ignored
special features of the Tn-Seq data. One distinct feature
is that each gene is disrupted at multiple locations, where
each insertion site represents a unique mutant. When the
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library is subjected to a selective condition, such as an
animal model of infection, each mutant with an inser-
tion in the gene is expected to have decreased abundance
in the output samples if that gene is important for fit-
ness. Hence, each insertion site into a particular gene
provides independent evidence to prioritize that gene as
being conditionally essential in that condition.
Recently the hiddenMarkov modeling (HMM) has been

adapted to identify conditionally essential genes using
the insertion-level data [16]. The HMM is a probabilistic
statistical model that decodes whether genomic regions
belong to a particular biological category given the fold
changes in read counts at every insertion site in the
genome. Amajor drawback of the HMM is that it relies on
a high-density transposon library to determine whether a
gene or region is truly essential (the density is required to
be greater than 50%).
Another method that considers the insertion-level data

to assess the gene essentiality is the permutation test
implemented in software TRANSIT [17]. The permu-
tation test does not require a high-density library, and
it identifies essential genes between conditions using a
resampling approach. Although the resampling is done on
the insertion-level by randomly reshuffling the observed
counts at sites in the gene among all the samples,
the statistics are based on the total read counts at all
the sites for each gene. Additionally, the permutation
test has some disadvantages compared to a parametric
approach, including 1) a low power with a small num-
ber of replicates, 2) misleading results when the samples
are correlated or of unequal precision, and 3) inability to
accommodate complex design and quality weights [18].
To address all the above limitations, we propose an effi-

cient, parametric method to identify conditionally essen-
tial genes based on insertion-level data. The proposed
method deals with data from both low- and high-density
libraries and is able to accommodate complex designs
with multiple inoculum pools and even with multiple
conditions. The proposed method was implemented as

R package Tnseq (https://CRAN.R-project.org/package=
Tnseq).

Methods
Data preprocessing
Before applying TnseqDiff, the raw sequence reads need
to be processed (e.g., align transposon-flanking sequence
reads to genome, filter reads mapped to multiple loci,
remove reads from transposons inserted in the 3’ end
of a gene that cause loss of function, filtering out spu-
rious insertions by removing insertions with low read
counts). The final dataset for analysis contains the read
counts of all the insertions in each gene for each sam-
ple in the Tn-Seq study. The data processing step can
be done using pipelines [13, 17, 19]. The resulting data
for analysis is a count matrix, where each column repre-
sents a sample from a particular inoculum pool under a
specific condition, and each row represents an insertion
site in a particular gene in the bacterial genome (see the
hypothetical data in Table 1). The default normalization
method in TnseqDiff is TMM (trimmed mean of M val-
ues) [20]. TnseqDiff also takes the read count data that was
already normalized by other methods (see a discussion of
normalization methods in [17]).
TnseqDiff allows the user to visually evaluate the bias

caused by replication process for each sample. Because of
asynchronous initiation of DNA replication and cell divi-
sion, insertions near the origin of replication (ORI) typi-
cally are represented as a higher proportion of DNA than
insertions farther from theORI. This is a primary problem
when identifying essential genes in a single library and is
less of a concern when identifying conditionally essential
genes since replication processes are likely to be similar
between samples. TnseqDiff provides a method similar
to [13] to correct the replication bias when replication
processes are different between samples.
TnseqDiff utilizes two steps to estimate the conditional

essentiality for each gene in the genome. First, it collects
evidence of conditional essentiality for each insertion by

Table 1 Each column represents a sample (S) from the input or output condition. Each row represents an insertion site in a particular
gene in the bacterial genome. Each entry is the read counts mapped to a particular insertion site in a particular gene for a particular
sample

Pool I Pool II

Input Output Input Output

Gene Location S1 S2 S1 S2 S3 S1 S2 S1 S2 S3

1 110 478 500 90 100 121 0 0 0 0 0

1 150 810 910 120 10 5 810 910 120 10 5

1 350 910 700 50 80 37 0 0 0 0 0

1 400 1522 1544 142 150 124 1522 1544 142 150 124

1 520 320 240 50 1170 132 320 240 50 1170 132

1000 3110 100 120 20 10 30 210 190 20 0 70

https://CRAN.R-project.org/package=Tnseq
https://CRAN.R-project.org/package=Tnseq
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comparing read counts of that insertion between con-
ditions. Second, it combines insertion-level evidence to
infer the essentiality for the corresponding gene.

Step 1: collect evidence of conditional essentiality for each
insertion
A normal linear modeling is used in TnseqDiff to obtain
the insertion-level information. Specifically, log2-counts
per million (logcpm) at each insertion site are modelled as
a linear function of the condition (i.e., yij = αi+βixj, where
yij is the logcpm for insertion i in sample j, and xj takes 0
if sample j is in output and 1 if it is in input). The slope
coefficient, βi, in the model represents the log fold-change
(logFC), which is the key parameter for the estimation of
conditional essentiality. For example, a large logFC (input
over output) might indicate stronger evidence for that
insertion being conditionally essential. To consider the
over-dispersion of the count data, a precision weight is
estimated for each observation from the mean-variance
relationship of the logcpm and is then entered into the lin-
ear modeling [21]. TnseqDiff relies on the Limma package
[18, 22] for the above estimation.
To collect evidence of conditional essentiality for each

insertion, we construct a confidence distribution (CD)
[23–25] for the logFC at each insertion site using esti-
mates from the above linear model. The CD has attracted
a surge of attention in recent years. A CD function con-
tains a wealth of information for inferences; much more
than a point estimator or a confidence interval. It is a “fre-
quentist" analogue of a Bayesian posterior. Furthermore, it
provides a framework to combine evidence through com-
bining CD functions (in our case, combining insertion-
level CD functions to make inference for the gene).
TheCD function for the ith insertion,H(βi), is defined as

H(βi) = Ftdi

(
βi − β̂i

si

)
,

where β̂i is the mean estimate of the logFC, si is the stan-
dard error and di is the degrees of freedom. Ftdi is the
cumulative distribution function of the tdi distribution.
When βi varies, H(βi) forms a function on the parameter
space of βi, which contains a wealth of information about
the βi, including point estimates (such as mean, median
and mode), confidence intervals of various levels and sig-
nificance testing (see details in [23, 25] and Figure 1 in [25]
graphically illustrates the above estimates).
Alternatively we can replace si and di by the correspond-

ing moderated estimates based on the empirical Bayes
method [18, 22]. The CD function constructed based
on the moderated estimates is a moderated CD func-
tion, which efficiently borrows information from similar
insertions to aid inference for any single insertion.

Step 2: combine insertion-level evidence
TnseqDiff combines the insertion-level CD functions to
obtain a single CD function for the corresponding gene.
This is accomplished by the use of a simple formula

Hg(β) = �

⎛
⎜⎝ 1√∑N

i=1 w2
i

[
w1�

−1(u1) + · · · + wN�−1(uN )
]⎞⎟⎠ , (1)

where � is the cumulative distribution function of the
standard normal distribution, ui is the CD function for
insertion i and wi (wi ≥ 0) is its weight. If wi = 0, inser-
tion i is not included in the combined CD function. The
combined CD function, Hg(β), contains essentiality infor-
mation from all N insertions. Here, subscript “g" is used
to indicate that the combined CD function is on the gene
level.
It is important to note that the combined CD function,

Hg(β), automatically puts more weight on the insertion-
level CD function containing more information even
when wi’s are all equal. The idea of combining CD func-
tions is illustrated with a simple example in the Fig. 1.
In this figure, three insertion-level CD density functions
(black curves) have different means and variances (vari-
ances increase from the left to the right curve). The blue
curve is the combined CD density function using formula
(1) with equal weights. As shown in this figure, the com-
bined function is located near the insertion-level function
with less spread (i.e., a smaller variance).
Furthermore, TnseqDiff allows unequal weights for the

combination. Insertions with low read counts (≈ 0) in
the input condition might suggest that they are essential
for growth in any given condition, therefore, the analysis

Fig. 1 The black curves represent insertion-level CD density functions
and the blue curve is the combined CD density function
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should exclude or consider a small weight for these inser-
tions. TnseqDiff identifies insertions with “low" counts
using a fast dynamic programming algorithm for optimal
univariate 2-means clustering [26]. The insertions that are
clustered into the group with a smaller mean are assigned
weights less than one, specifically, these weights are esti-
mated from an exponential function (the smallest count
gets a weight close to zero, while the largest count gets
a weight close to one). We call this weight function hc.
TnseqDiff also takes weights specified by the user. For
example, the probability of an insertion being absolutely
essential can be used as the weight for that insertion and
obtained from a separate method (such as the method in
[16] or [27]).

Identify conditionally essential genes based on the
combined CD function
TnseqDiff estimates the conditional essentiality for a par-
ticular gene using the combined CD function Hg(β). As
shown in [25], the median logFC is estimated based on
H−1
g ( 12 ). Specifically, TnseqDiff uses a numeric algorithm

to solve for βg in the equation
N∑
i=1

wi�
−1

(
Ftdi

(
βg − β̂i

si

))
= 0

In a simple case where w1 = · · · = wN ≡ 1 and the t distri-
bution can be approximated by a normal distribution, the
median logFC is simplified as

Median logFC =
∑N

i β̂i/si∑N
i 1/si

In this case, the median logFC is a weighted average
of the insertion-level logFC estimates, with the weight
inversely proportional to the standard error.
Similarly, the lower and upper bound of a level 100(1 −

a)% confidence interval can be calculated by solving
equation

N∑
i=1

wi�
−1(Ftdi ((βg − β̂i)/si)) −

( N∑
i
wi

) 1
2

�−1(a/2) = 0

and
N∑
i=1

wi�
−1

(
Ftdi

((
βg−β̂i

)
/si

))
−
( N∑

i
wi

) 1
2

�−1(1−a/2)=0,

respectively.
For testing if a gene is conditionally non-essential versus

essential, the hypotheses are H0 : βg ≤ 0 vs. H1 : βg > 0.
As defined in [25], the one-sided p-value is simply Hg(0),
where

Hg(0) = �

⎛
⎜⎝ 1√∑N

i wi

N∑
i=1

wi�
−1

(
Ftdi

(
− β̂i

si

))⎞
⎟⎠ .

The two-sided p-value is 2 × min{Hg(0), 1 − Hg(0)} (Tnse-
qDiff provides a two-sided p-value). These p-values are
then adjusted for multiple testing using the Benjamini-
Hochberg Procedure [28].
In real applications, differentially represented genes are

generally selected based on both the adjusted p-value and
the fold-change (FC). Tnseqdiff uses the median logFC
as defined above, that is, FC= 2median logFC. It is important
to note that TnseqDiff calculates the p-value and median
logFC from the combined CD function. If only interested
in identifying conditionally essential genes (i.e., identify-
ing genes with decreased counts in output), we can set the
rule as the FC (input over output) ≥ 2 and the adjusted
p-value < 0.025 in a two-sided test (or p-value < 0.05 in a
one-sided test).
In addition to the above estimates, TnseqDiff also pro-

vides descriptive statistics for each gene, including the
number of (unique) insertions in input samples and aver-
aged counts in input and output samples (after accounting
for the differences in library sizes).
Our proposed method is much simpler to imple-

ment than a model-based approach and it can be easily
extended to analyze more complex designs.

Analyze designs with multiple inoculum pools
Mutant pools are often too large (∼ 50,000 random
mutants for a 5 Mbp gemome) to be tested in one mouse,
or an experimental “bottleneck” would cause random loss
of mutants from a large inoculum. In these cases, the
mutant library is split and smaller pools are used to inocu-
late separate sets of mice. Hence, different mutants within
a particular gene are tested in different mice. It would
be inaccurate to sum over the insertion counts that are
observed in different mice due to the loss of biologi-
cal variability. However, our method is directly applicable
to such designs since samples at each insertion site in
different pools are independent (the only requirement
for combining CD functions). TnseqDiff first combines
insertion-level CD functions to obtain a CD function for
each gene in a given pool, and then it combines CD func-
tions from multiple pools for each gene to obtain a single
CD function for identifying conditionally essential genes.

Results and discussion
Simulation studies
We ran simulation studies to investigate our proposed
methods and compared them to 1) the permutation test in
the TRANSIT software [17] and 2) the negative binomial
test in the ESSENTIALS software [13]. In the permutation
test, the read counts at all the sites and all samples in each
condition are summed for each gene. The difference in the
sum between conditions was calculated. The significance
of this difference was evaluated by comparing to a resam-
pling distribution generated from randomly reshuffling
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Fig. 2 ROC curves (left) where y axis is the true positive rate and x axis is the false positive rate and False discovery curves (right) where y axis is the
percentage false discoveries and x axis is the percentage of selected genes. Four methods applied to 20 simulated datasets and results are
summarized over all datasets

the observed counts at sites in the gene among all the
samples. A p-value was then derived from the proportion
of 10,000 reshuffled samples that have a difference more
extreme than that observed in the actual experimental
data. ESSENTIALS used the method in edgeR to identify
DE genes based on the total gene counts, therefore, we
directly applied edgeR to the datasets after obtaining the
total gene counts by summing over the insertion counts
for each gene.

To make simulation studies more realistic, the data and
insertion distributions in simulated datsets were similar to
a real dataset. The real dataset was generated from a Serra-
tia marcescens transposon mutant library with the objective
of identifying bacterial genes that contribute to fitness in
a murine model of bloodstream infection [29] (details are
shown in the next section). It consists of five inoculum
pools with 2 input and 4 output samples per pool. We
merged data from five pools and assumed that insertions
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Fig. 3 ROC curves (left) where y axis is the true positive rate and x axis is the false positive rate and False discovery curves (right) where y axis is the
percentage false discoveries and x axis is the percentage of selected genes. TnseqDiff assumed equal weights and TnseqDiff (weighted) used the hc
weight function. Four methods applied to 20 simulated datasets and results are summarized over all datasets
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at the same genomic location in different pools were dif-
ferent insertions. After data normalization, we averaged
the two input samples and excluded insertions with an
averaged count < 5 (remaining insertions were consid-
ered as true insertions). The final dataset consists of 4,075
genes with 42,639 insertions. The number of insertions
per gene ranged from 1 to 202 (median is 8, the first and
third quartile is 4 and 14, respectively). This insertion
distribution was assumed in the first two simulation stud-
ies. Input data were generated from Poisson distributions
because input samples (in vitro) are technical replicates,
while output data were generated from negative binomial
(NB) distributions because the output samples (in vivo)
are biological replicates.

The first simulation study: all insertions are genuine insertions
In this study, we focused on identifying conditionally
essential genes based on true insertion data and assumed

that absolutely essential genes and spurious insertions
(in vitro) have been removed. Given the insertion distri-
bution in the real dataset, we first generated the input
data for each insertion from a Poisson distribution with
the mean parameter equal to the averaged count. Then
we randomly selected 10% of the genes to be under-
represented (i.e., conditionally essential) and 5% to be
over-represented in the output samples. For insertions in
under-represented genes, logFCs were generated from a
left truncated standard normal distribution, while inser-
tions in over-represented genes were generated from a
right truncated standard normal distribution. For non-DE
genes, logFCs were fixed to be zero. Finally, we gener-
ated the output data from a NB distribution with the
mean equal to the product of the input mean and the
FC. Rather than fixing the dispersion parameter to be the
same for all insertions, we generated dispersion parame-
ters from a gamma distribution with a shape = 1, scale
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= 0.5 (these two parameters were determined based on the
real dataset). In this study, we tried two sample sizes: 1)
2 input vs 4 output samples, and 2) 1 input sample vs 3
output samples.
We applied TnseqDiff to 20 simulated datasets as

described above and assumed equal weights for combin-
ing the insertion-level CD functions. We considered both
moderated and unmoderated CD functions in TnseqDiff
and call them moderated and unmoderated TnseqDiff.
Simulation results: As shown in Fig. 2, TnseqDiff per-

formed significantly better than edgeR and the permuta-
tion test under the two studied sample sizes, as evidenced
by improved accuracy in separating the truly DE and non-
DE genes and a much smaller false discovery rate given
the same number of selected genes. Moreover, moderated
TnseqDiff performed slightly better than the unmoder-
ated TnseqDiff. Similar conclusions can be reached for the

conditionally essential gene detection (i.e., the one-sided
test) except that the unmoderated TnseqDiff is similar
to the moderated TnseqDiff (ROC and False discovery
curves were shown in Additional file 1).

The second simulation study: some insertions are spurious
insertions
In this study, we included 500 (about 10% of bacte-
rial genome) absolutely essential genes in each simulated
dataset. Since an absolutely essential gene should not con-
tain any real insertion, we generated low read count data
for these spurious insertions from a Poisson distribution
with rate = 3 (1-14 “insertions" were assumed within each
absolutely essential gene). Additionally, 2,132 spurious
insertions (5% of the total 42,639 insertions) were ran-
domly added to the bacterial genome such that a DE gene
may contain false insertions. The rest of the simulations
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Fig. 5 False discovery curves where y axis is the percentage false discoveries and x axis is the percentage of selected genes. Four methods applied
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were the same as in the first simulation study. This study
has 2 input vs 4 output samples.
We applied moderated TnseqDiff to 20 simulated

datasets as described above and considered the equal and
the hc weight function. The hc weight function down-
weighs spurious insertions in the analysis (see details in
step 2 of the Method section).
Simulation results: As shown in Fig. 3, TnseqDiff with

equal weights performed similarly, or slightly bet-
ter in terms of the false discovery rate, than edgeR
and the permutation test. The TnseqDiff with the hc
weight function performed better than the TnseqD-
iff with the equal weight function. Furthermore, we
found that all absolutely essential genes were correctly
identified as non-DE genes in the weighted TnseqD-
iff and edgeR, while 68 (13.6%) absolutely essential
genes were wrongly identified as DE genes in the
permutation test.

The third simulation study: each gene has a fixed number of
insertions
To investigate the effect of number of insertions per
gene on the model performance, we assumed that each
gene has a fixed number of insertions (denoted by n).
Each simulated dataset consists of 5000 genes with n =
1, 3, 5, 10, 20, 30, or 50. We first sampled 5000 genes con-
taining at least n sites from the above 4075 genes with
replacement (the sampling weight for each gene is pro-
portional of the number of sites in that gene). Then we
sampled nmean parameters from each gene with replace-
ment and these parameters were used in the Poisson
distribution to generate the input data. The rest of the
simulations are the same as in the first simulation study.
This study has 2 input vs 4 output samples.
We applied both themoderated and unmoderated Tnse-

qDiff to 10 simulated datasets as described above. Since all
insertions are true insertions, we assumed equal weight in
TnseqDiff.
Simulation results: As shown in Figs. 4 and 5, TnseqDiff

performed significantly better than edgeR and the permu-
tation test when the number of insertions is > 1. When
there is just one insertion per gene, TnseqDiff is equiv-
alent to Limma for detecting DE genes (no CD function
combining in this case), and themoderated TnseqDiff per-
formed better than the unmoderated TnseqDiff since the
moderated estimates borrowed information from simi-
lar insertions across all genes. Furthermore, all methods
had increased accuracy when the number of insertions
per gene was increased. In other words, a gene with a
larger number of insertions contains more information
and is more likely to be identified as a DE or non-DE gene
correctly.
To our surprise, the permutation test performed the

worst in all studied scenarios. This could be due to the fact

that the permutation test requires that the two distribu-
tions are identical [30], however, Tn-Seq studies generally
have very different distributions for the input and output
data.
Furthermore, TnseqDiff is much faster to implement

than the permutation test especially when the number of
insertion sites per gene is small (see Fig. 6).

Application to a real transposon dataset
We applied TnseqDiff to a published Tn-Seq dataset
[29]. The Tn-Seq dataset was generated from a Serratia
marcescens transposon mutant library with the objective
of identifying bacterial genes that contribute to fitness
in a murine model of bloodstream infection. A mariner-
based transposon encoded in suicide plasmid pSAM-Cm
[1] was used to generate a random library of transpo-
son insertion mutants in strain UMH9. An initial mutant
library of > 32, 000 unique transposon insertion mutants
was equally split into five inoculum pools. Each pool was
used to infect 4 mice and spleens from infected mice were
collected after 24 hrs. The insertion sites from input and
output pools were PCR-amplified and then sequenced via
the Illumina HiSeq platform using 50 cycle single-end
reads [31]. Sequence reads were mapped to the UMH9
annotated genome using the ESSENTIALS pipeline with
default parameter settings. One output sample from each
of pools 3-5 was eliminated from the analysis due to mice
that succumbed to infection or insufficient PCR product
for sequencing. The final dataset consisted of 4106 genes
with at least one transposon insertion, and the number
of insertions for a given gene ranged from 1 to 322, with
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over 50% of the genes having 12 or less insertions. HMM
approach is not appropriate for analyzing this dataset
since the density of the transposon library is not high.
In TnseqDiff (moderated or unmoderated), equal

weights were assumed because the data has been pre-
processed using the ESSENTIALS to exclude absolutely
essential gene detection. Conditionally essential genes
were determined based on the fold-change (input over
output) ≥ 2 and the adjusted p-value < 0.025. We also
applied ESSENTIALS to the same dataset. As shown in
Fig. 7, majority of fitness genes were identified by both
TnseqDiff and ESSENTIALS and moderated TnseqDiff
identified 21 more genes than the unmoderated Tnse-
qDiff. Seven of these genes, encoding a wide range of
biological functions and identified by TnseqDiff (moder-
ated and unmoderated) and ESSENTIALS, were chosen
for validation of the Tn-Seq screen. Deletion-insertion
mutations were constructed for each of the genes and the
resulting strains were tested for in vivo fitness defects in
competition with the wild-type strain using the murine
bacteremia model. The results from these experiments
confirmed that six of the seven tested genes contribute to
S. marcescens fitness in the mammalian host. Importantly,
none of the seven mutants exhibited a general growth
defect when cultured in vitro. Figure 8 shows four genes
that were identified as conditionally essential by Tnse-
qDiff but not by ESSENTIALS. Genes SmUMH9_0913
(galF) and SmUMH9_0917 (neuA) are both located in the
18-gene S. marcescens capsule biosynthesis locus, within
which other genes are important for fitness [29]. Genes
SmUMH9_1422 and SmUMH9_2227 are predicted to be
co-transcribed with a functionally-related adjacent gene
that was identified by both TnseqDiff and ESSENTIALS.
Complete analysis results from ESSENTIALS and Tnse-
qDiff were presented in Additional file 2.

Conclusions
We developed methods that are specifically designed for
analyzing Tn-Seq data and implemented these methods

in the TnseqDiff function in R package Tnseq. TnseqDiff
takes into account the unique features of Tn-Seq data and
identifies conditionally essential genes using insertion-
level data. TnseqDiff handles data from both low- and
high-density transposon libraries. We have demonstrated
its advantages over the existing methods, including 1) bet-
ter performance in separating true DE and non-DE genes
and a smaller false discovery rate, 2) a much faster com-
putation time, and 3) the ability to accommodate complex
designs (for example, designs with multiple pools). Tnse-
qDiff can be easily extended to analyze data with multiple
experimental conditions. In this case, data from all con-
ditions will be included in the linear model, and coeffi-
cient estimates or estimates of interested contrasts can be
used to construct the CD function for testing interested
hypotheses.
It is worth noting that, unlike the HMM method,

TnseqDiff does not rely on a high-density transposon
library for inference. It focuses on identifying condition-
ally essential genes and is most efficient when abso-
lutely essential genes and spurious insertions have been
removed first. TnseqDiff with the hc weight function
downweighed spurious insertions and it worked well in
simulation studies where absolutely essential genes and
spurious insertions were present in the bacterial genome.
These weights can also be obtained using other exist-
ing softwares for the absolutely essential gene detec-
tion (such as ARTIST or TRANSIT). In these softwares,
an estimated probability for an insertion to be abso-
lutely essential can be considered as the weight for
that insertion and incorporated into TnseqDiff for the
differential test.
Unlike the HMM approach in ARTIST, TnseqDiff is

annotation-dependent. It evaluates conditional essential-
ity for previously-annotated genomic features (e.g., ORFs,
ncRNAs). However, TnseqDiff allows inference for inter-
genic regions and subdomains of ORFs if these regions
are pre-defined in the dataset by combining the insertions
within that region for inference.

ESSENTIALS TnseqDiff (moderated)

3724

685 103

ESSENTIALSTnseqDiff (unmoderated)

3743

497 101

Fig. 7 Overlap of conditionally essential genes from ESSENTIALS and TnseqDiff. A gene is essential if the fold-change (input over output) ≥ 2 and
the adjusted p-value < 0.025
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