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Abstract

Background: The field of protein sequence analysis is dominated by tools rooted in substitution matrices and
alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage
of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be
related to each other and differences can be meaningfully interpreted.

Results: Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple
methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of
characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures,
Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of

n-grams and computes the Zipf's law coefficient.

Conclusions: We propose three main fields of application of the Quantiprot package. First, quantitative
characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence
sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families
and organisms. Third, the feature space can be used for evaluating generative models, where large number of
sequences generated by the model can be compared to actually observed sequences.

Keywords: Protein sequence analysis, Python package, Quantitative properties, Quantitative recurrence analysis,

n-grams

Background

This is a trivial observation that functional and structural
characteristics of protein sequences emerge from physico-
chemical properties of amino acids. Many properties can
be quantified: the well-known A Aindex database [1] holds
over half thousand indices. An established example of use
of quantitative properties of amino acids to character-
ize proteins is recognition of disordered proteins, which
can be well separated from ordered proteins in the fea-
ture space defined by the net absolute charge and the
mean hydrophobicity [2]. A practical implementation of
the method, the FoldIndex tool detects disordered regions
within proteins [3]. A more complex approach consists
on combining multiple quantitative properties into multi-
dimensional sequence descriptors, as implemented in
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a Python package propy [4]. Quantitative properties of
amino acids can also be used to generate reduced alpha-
bets for generative and discriminative models of proteins
(5, 6].

A level up in characterizing protein sequences is anal-
ysis of amino acid tuples or n-grams. For example, it
was demonstrated that distribution of n-grams varied
for different secondary structures [7, 8]. A newer study
reported that the most available 5-grams in proteins were
twice enriched in known functionally important sequence
motifs [9]. Interestingly, distribution of amino acid tuples
can often be approximated with the power-law distribu-
tion (the Zipf’s law) [9]. Most recently, n-gram-based ran-
dom forests were sucessfully applied for accurate discrim-
ination between amyloidogenic and non-amyloidogenic
peptides [6]. Several tools for analysis of n-grams in pro-
teins were made available, e.g. in the R language package
biogram [10] and in the SCS Package web server [11].
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A prominent feature of protein sequences are recur-
ring patterns [12, 13], which can be quantified with the
Recurrence Quantification Analysis (RQA) [14]. Early
works showed that a feature space defined by the RQA
parameters allowed for discrimination between func-
tionally different protein family members or mutants
[15, 16]. The technique was also used to investigate
the role of hydrophobicity patterns in protein folding,
aggregation and interactions [17, 18]. More recently,
a Support Vector Machine on RQA parameters calcu-
lated for multiple physico-chemical properties of pro-
tein sequences was proposed for the remote homologyz
detection [19].

Our contribution, the Quantiprot package, gathers
multiple methods for quantitative analysis of protein
sequences and makes them easily accessible to the com-
munity of computational biologists.

Implementation

The Quantiprot package was developed using Python 2.7
[20]. The number of dependencies is kept low to make
the package light-weight and easily portable to various
environments. Majority of functionalities were written in
pure Python, while several others require only the numpy
package [21]. In addition, matplotlib [22] is required for
plotting figures, powerlaw [23] for the power-law fitting
to the n-gram distribution, scipy.stats [24] for calculat-
ing the Fisher exact test. The requests package [25] is
needed only if the AAindex database is to be accessed
online.

The package is built around five utility classes. The
Sequence and SequenceSet classes store and manipulate
sequences of various types, e.g. raw amino acid symbols
and their quantitative projections. The Feature and Fea-
tureSet classes store and perform sequence quantification
actions and their chains. The Mapping class stores amino
acid projections, reduces alphabet and performs sequence
data conversions, e.g. using indices from the AAindex
database.

The main utility classes are complemented by a large
set of predefined quantitative metrics. In addition, user-
defined metrics can be easily utilized. Finally, the package
implements advanced analyses.

Functionalities

Sequence manipulation

The package reads sequences in the FASTA format
and stores them in the SequenceSet class objects.
There are provided convenience functions for merg-
ing sequence sets and extracting matrices of specified
columns. Moreover, there are functions for extract-
ing subsets and compacting multiple single-value
features (e.g. net charge, average hydropathy and
entropy).
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Sequence conversion

Raw amino acid sequences can be easily converted
to quantitative properties (e.g. charge, hydrophobicity,
propensity towards a secondary structure etc.). The user
may choose a predefined mapping or any of the AAindex
scales, or use own mapping. The mapping can be sim-
plified through discretization of the quantitative property
based on the user-defined or linear thresholds, or using
the k-means clustering.

Sequence quantification

It is possible to quantify raw and converted protein
sequences with a single value or to calculate sequence
profiles using a sliding window. Currently implemented
features range from basic measures such as property aver-
age and sum, through more sophisticated ones such as
entropy, to recurrence and determinism used in the RQA.
Of note, the package introduces a new RQA parameter
termed palindromism, which is defined as the percent-
age of recurrence points forming antidiagonal lines in the
recurrence plot.

Feature chaining

Conversion mappings and quantification measures are
wrapped in the Feature class objects, which provides an
easy interface for chaining. A typical complex feature
may consist of a conversion from amino acid sequence to
sequence of numeric values, followed by a quantification.
Importantly, the Feature object can wrap any function that
accepts the list-like inputs making it trivial to add new
functionalities.

Patterns and n-grams counting

The package can find matches and count occurrences of
arbitrary patterns (without gaps). Importantly, it is possi-
ble to define a similarity radius in several metrics in order
to find inexact matches. In addition, the analysis.ngram
module supports counting n-grams in the entire sequence
set and fitting their distribution with the power-law distri-
bution (Zipf’s law).

Feature space exploration

Quantiprot allows comparing two sequence sets in a 2-
d feature space defined by the quantitative properties of
sequences. The implemented analysis calculates a local
ratio of number of sequences from each set in part of the
feature space and compare it to the global ratio in the
whole feature space using the Fisher’s exact test.

Results and discussion

Sample application

Handling of the Quantiprot package can be illustrated by
generating the Uversky plot (Listing 1). The script cre-
ates a feature set consisting of the net absolute charge and
mean hydropathy. Then the feature set is used to process
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sequences from the DisProt database [26]. Finally, feature
values for all sequences are extracted and plotted using
matplotlib (Fig. 1). Import statements in Listing 1 are
omitted for the sake of brevity.

aa2charge = get_aa2charge(default=0)
aa2hydropathy = get_aa2hydropathy
(default=0)

net_abs_charge = Feature(aa2charge).then
(average_absolute)

mean_hydropathy =Feature (aa2hydropathy).
then(average)

uversky = FeatureSet("uversky")
uversky.add (mean_hydropathy, name=
"mean_hydropathy ")
uversky.add(net_abs_charge , name=
"net_abs_charge")

disprot =
fasta")
disprot_uversky =
disprot_data =
columns ()

load_fasta_file (" Disprot.

uversky (disprot)
compact(disprot_uversky).

plt.plot(disprot_data[O0],
[11,’k.”)
plt.plot([—-0.78, 0.835], [0.0, 0.5],’k’)
plt.xlabel ("mean hydrophobicity")
plt.ylabel ("net abs charge")

disprot_data
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Feature space exploration

A more advanced use of the package is to compare two
protein sequence sets in a two-dimensional space defined
by quantitative features of sequences. The analysis cal-
culates a local ratio of number of sequences from each
set in part of the feature space and compare it to the
global ratio in the whole feature space using the Fisher’s
exact test. This can be useful for comparing two pop-
ulations, or two samples of a population, and also to
verify if a sample generated by a model fits real obser-
vations. In practical terms, the two-dimensional feature
space is divided into a square grid of cells. Then a slid-
ing window is moved over the grid and the Fisher’s
exact tests are performed in the window against the
null hypothesis that the sequence distribution in the
particular window is the same as in the whole feature
space.

In this sample case (Listing 2), populations of amyloido-
genic and non-amyloidogenic peptides in the AmyLoad
database [27] are compared in the feature space defined
by hydropathy and volume of amino acids. Import state-
ments in Listing 2 are omitted.

amyload_pos = load_fasta_file
("Amyload_positive. fasta ")
amyload_neg = load_fasta_file
("Amyload_negative. fasta ")

mean_volume =
then(average)
mean_hydropathy = Feature

(get_aa2hydropathy ()).then(average)

Feature (get_aa2volume ()).

plt.show ()
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Fig. 1 The Uversky plot for the DisProt database. The expected division line between ordered and disordered proteins is drawn
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fs = FeatureSet ("volume’ n’ hydropathy")
fs .add (mean_volume)
fs .add (mean_hydropathy)

amyload_pos_conv = fs(amyload_pos)
amyload_neg_conv fs (amyload_neg)

result = local_fisher_2d
(amyload_pos_conv, amyload_neg_conv,
windows_per_frame=5, overlap_factor=5)

_plot_local_fisher_2d (result,
xlabel ="mean volume",
ylabel ="mean hydropathy",
popl_label="amyloids",
pop2_label="non amyloids")

This sample study (Fig. 2) shows significant over-
representation of amyloidogenic sequences among pep-
tides composed of larger hydrophobic amino acids.
Non-amyloidogenic peptides are relatively more frequent
among sequences made of smaller hydrophilic residues.
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Many more examples are provided in the package
documentation.

Computational complexity

The essential time complexity of dataset processing with
Quantiprot depends linearly on the number of sequences
and on complexity of operations performed on each
sequence. For example, amino acid conversions and basic
operations such as averaging property value depends lin-
early on the sequence length, making the overall com-
plexity in this typical use case dependent on the total size
of the protein set. The most computationally demanding
measures are RQA parameters which scale quadratically
with the sequence length and linearly with the embedding
level [14]. To limit computational burden, the specialized
RQAFeatureSet object is recommended when calculat-
ing several RQA parameters in order to re-use results of
previous calculations. Similarly, the specialized Ngram-
FeatureSet object is provided for matching and counting
all n-grams of a given length in a single pass through
each sequence. When processing is performed with a slid-
ing window, time complexity for each sequence depends
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on the sequence length and on complexity of operations
performed in each window.

Practical estimates of time and memory required for
simple tasks were obtained for a set of 20,188 sequences
of the human reference proteome (average length 560,
total size 11M amino acids) on a Debian Stretch-operated
Fujitsu Celsius J550n desktop workstation equipped with
Intel Xeon Env5 3.40GHz and 16GB Random-Access
Memory (RAM). For example, conversion from amino
acids to hydropathy indices took 1.5s on a single thread.
While averaging over full sequence length did not increase
the time, the same operation over the window of size
10 took 7.8s (the script consumed ca. 0.5GB RAM). In
contrast, calculating the recurrence rate required almost
1h42m (and 0.9GB RAM) for full length sequences and
just 10m for the window size of 10. Full bigram profiles
for all sequences were calculated in 2m16s at the expense
of 6GB RAM memory used. Depending on performed
task and available memory of the user system, it may
be advisable to process large sequence sets in a smaller
chunks.

Conclusions

Quantiprot is a powerful, flexible and extensible Python
package for analyzing protein sequences in feature spaces
defined by quantitative properties of amino acids and their
tuples. The package provides a uniform interface to mul-
tiple methods in order to facilitate novel applications of
quantitative analysis of protein sequences.

We propose three main fields of application of the
Quantiprot package. First, quantitative characteristics can
be used in alignment-free similarity searches, and in clus-
tering of large and/or divergent sequence sets. Second, a
feature space defined by quantitative properties can be
used in comparative studies of protein families and organ-
isms. Third, the feature space can be used for evaluating
generative models, where large number of sequences gen-
erated by the model can be compared to actually observed
sequences. For example, in a recent study the latter
approach was used to investigate if an unequal crossing-
over model assuming simple compositional pressure can
explain observed recurrence patterns at highly variable
sites of highly intrinsically conserved repeats in the NLR
(Nucleotide-binding oligomerization domain (Nod)-like
receptor) proteins in fungi [28].

Technically, whatever the application, the overture is
to generate feature vectors whose elements numerically
describe potentially relevant properties of sequences or
sequence stretches. In the similarity search and cluster-
ing scenarios, the feature vectors are fed to a clustering
or classification method, multitude of which are included
in the scikit-learn package [29]. In the exploratory sce-
narios, it is sometimes practical to reduce dimension-
ality, e.g. using Principal Component Analysis, Linear
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Discriminative Analysis or their non-linear kernal ver-
sions, some of which are also available in the scikit-learn.
Then the feature space can be analyzed for example using
the Fisher’s exact test as proposed in the second example
(see Results and discussion).

Availability and requirements
Project name: Quantiprot
Project home page: https://git.e-science.pl/wdyrka/quantiprot
The repository provides the package, quick-start exam-
ples and command-line scripts for easy testing and per-
forming essential processing. The package can also be
installed from the Python Package Index by typing “pip
install quantiprot”
Operating system(s): any supporting Python 2.7 (tested
on Linux)
Programming language: Python 2.7
Other requirements: matplotlib>=2.0.0, numpy>=1.11.0,
powerlaw>=1.4.1, requests>=2.10.0, scipy>=0.17.0
Licence: The MIT License (https://opensource.org/licenses/
MIT)
The datasets analysed during the current study are avail-
able in the Quantiprot repository, https://git.e-science.pl/
wdyrka/quantiprot.

Abbreviations
NLR: Nucleotide-binding oligomerization domain (Nod)-like receptor; RAM:
Random-access memory; RQA: Recurrence quantification analysis
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