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Abstract

Background: Disease progression models are important for understanding the critical steps during the development
of diseases. The models are imbedded in a statistical framework to deal with random variations due to biology and the
sampling process when observing only a finite population. Conditional probabilities are used to describe dependencies
between events that characterise the critical steps in the disease process.
Many different model classes have been proposed in the literature, from simple path models to complex Bayesian
networks. A popular and easy to understand but yet flexible model class are oncogenetic trees. These have been
applied to describe the accumulation of genetic aberrations in cancer and HIV data. However, the number of
potentially relevant aberrations is often by far larger than the maximal number of events that can be used for reliably
estimating the progression models. Still, there are only a few approaches to variable selection, which have not yet
been investigated in detail.

Results: We fill this gap and propose specifically for oncogenetic trees ten variable selection methods, some of these
being completely new. We compare them in an extensive simulation study and on real data from cancer and HIV. It
turns out that the preselection of events by clique identification algorithms performs best. Here, events are selected if
they belong to the largest or the maximum weight subgraph in which all pairs of vertices are connected.

Conclusions: The variable selection method of identifying cliques finds both the important frequent events and
those related to disease pathways.
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Background
Disease progression models describe the step-wise devel-
opment of diseases over time. The steps are defined by
binary events that occur at different stages of the disease.
A disease progression model represents the dependencies
between these events, mostly by specifying assumptions
on the order and the independence of pairs of events. The
goal of these models is a better understanding of disease
progression and in the long run support for medical deci-
sion making in terms of dose selection and therapy choice,
based on individual disease trajectories.
In the literature, many explicit probabilistic model

classes have been proposed and analysed, starting with
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a simple path model [1]. The list of extensions includes
oncogenetic trees [2], distance based trees [3], directed
acyclic graphs [4], contingency trees [5], oncogenetic tree
mixture models [6], network aberration models [7], con-
junctive Bayesian networks and their extensions [8–10],
hidden-variable oncogenetic trees [11], progression net-
works [12] as well as new techniques to infer probabilis-
tic progression like RESIC [13, 14], CAPRESE [15] and
CAPRI [16].
Hainke et al. [17] compare several progression model

classes and discuss their advantages and disadvantages.
In simulation studies data are drawn from predefined
models and the ability to recapture the true model is
examined. In this analysis the number of events is always
fixed. However, often not all events that have been mea-
sured or that are available for model building should be
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included in the final model. This is especially relevant for
modern high-dimensional genetic data. Variable selection
for disease progression models has not been analysed in
detail in the literature. Here, we present a comprehen-
sive analysis of variable selection methods for oncogenetic
trees. We introduce ten different methods to identify the
important events of disease progression. By means of a
simulation study, we compare these methods for several
data situations. We choose the oncogenetic trees for our
analysis, because they are a very simple but popular, easy
to understand and yet flexible model class.
The events that are the basis for our disease progres-

sion models are typically clinicopathological and genetic
measurements. In this paper, as practical examples we
consider glioblastoma andmeningioma, two brain tumour
types, where the events are chromosomal aberrations in
the tumour tissue, and HIV, where the events are muta-
tions in the viral genome. We apply our variable selection
methods to these data sets and compare the selected
events and the corresponding tree models to the ones
found in the literature.

Methods
Oncogenetic trees
Oncogenetic trees [2] describe disease progression by the
ordered accumulation of genetic events. In many appli-
cations the genetic events are chromosomal aberrations,
i.e. gains and losses on chromosome arms, which are
assumed to be non-reversible, but all other events that can
be described by binary variables could also be used. An
oncogenetic tree is a directed tree whose vertices repre-
sent genetic events and whose edges represent transitions
between these events. Each edge is weighted with the con-
ditional probability of the child event given that the parent
event has already occurred.
Formally, an oncogenetic tree T = (V ,E, r,α) is defined

by a set V of vertices (genetic events), a set E of edges
(relationship between events), the root vertex r (starting
point of the disease) and a map α : E →[ 0, 1] (conditional
probabilities) such that:

• (V ,E) is a branching, that means each vertex has at
most one incoming edge.

• The vertex r is the null event and has no incoming
edge.

• There are no cycles.
• For all edges e = (i, j) ∈ E,

– α(e) = P(j = 1|i = 1) is the conditional
probability of event j given event i has already
occurred,

– α(e) > 0 (if α(e) = 0, we can delete e from E),
– α(e) < 1 if e = (r, i), i.e. e leaves the root

(otherwise merge r and i).

One can characterise a probability distribution over the
power set 2V and calculate the probability that every event
in S ⊆ V is observed in the following way. If r ∈ S and
E′ ⊆ E such that S contains all vertices reachable from r
in the tree T ′ = (V ,E′, r,α), then

p(S) =
∏

e∈E′
α(e) ·

∏

e=(u,v)∈E
u∈S,v/∈S

(1 − α(e)).

If E′ is empty for the constraints mentioned above, then
p(S) = 0. Thus, some sets of genetic events have probabil-
ity 0 and are not represented by the tree.
To specify the tree structure, one defines edge weights

wij for every combination of events based on relative
frequencies estimated from the data:

wij = log
(

pi
pi + pj

· pij
pipj

)

= log(pij) − log(pi + pj) − log(pj)

with pi := P(Xi = 1) and pij := P(Xi = 1,Xj = 1).
Then, Edmonds’ branching algorithm [18] is used to find
the rooted tree with maximum weight.
An example of an oncogenetic tree model with n = 6

events is given in Fig. 1.

Fig. 1 Example of an oncogenetic tree model with n = 6 events. The
edge weights represent the conditional probability that the child
event occurs given that the parent event already occurred
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Variable selection methods
In this section we introduce ten variable selection meth-
ods. The goal is to separate the events that are relevant for
disease progression from those representing only random
noise. Starting point for the variable selection is a binary
data matrix X = [x1, . . . , xn] ∈ B

m×n that represents the
occurrence of n genetic events inm observations, i.e. xi is
a vector of length m corresponding to the genetic event i.
The overall procedure then is to first identify the relevant
subset of events and then fit an oncogenetic tree model
using only the selected events.
Table 1 contains an overview of all variable selection

methods considered here. The methods are divided into
four groups. Two methods are based on univariate fre-
quencies of events, three on pairwise interactions, three
select events with benefit for the subsequently fitted onco-
genetic tree, and two are based on the identification of
cliques of events.
Only two of these methods have been applied in the lit-

erature so far: the frequency based method freq [19–22]
and the method of Brodeur brod [4, 23–30]. We add and
investigate some new proposals based on the following
concepts. Since oncogenetic trees represent dependencies
between events, one idea is to consider this by means of
pairwise correlation or pairwise independence. Another
approach is to use some main aspects of the underlying

Table 1 Overview of all variable selection methods considered
here

Name Short name Short description of
criterion for selected
events

Univariate Frequency freq Frequency above cutoff

Method of Brodeur brod High frequency, compared
to uniform distribution

Pairwise Correlation cor Event pairs with high
correlation

Fisher’s Exact Test fisher Event pairs with significant
dependence

Fisher’s
z-transformation

z Event pairs with significant
dependence

Weights of Edmonds’
Algorithm

weight Event pairs with large
weights in algorithm

Conditional
Probabilites in Tree

OT Large conditional
probabilities in
oncogenetic tree

Independence in Tree single Remove single
independent events in
fitted tree

Largest Clique
Identification

lcliq Member of the largest
subgraph

Maximal Clique
Identification

mcliq Member of the maximum
weight subgraph

tree fitting algorithm. This includes the weights used in
the construction algorithm, the conditional probabilities
in the resulting tree as well as the tree representation of
independent events.

Univariate frequency
A simple intuitive approach is to select all events with a
relative frequency of occurrence in the underlying data
set above a fixed threshold τfreq ∈ (0, 1). An event i ∈
{1, . . . , n} is selected if xi ≥ τfreq, with xi = 1

m
∑m

k=1 xki
where xki is the k-th component of xi.

Method of Brodeur
Brodeur et al. [23] proposed a method to identify non-
random events in human cancer data. Under the null
hypothesis that all events occur randomly, they assume
that the events occur independently and with equal prob-
ability. Using this uniform prior, one can compare the
distribution of observed and expected events. By means
of a Monte Carlo simulation one generates 10 000 random
data sets to obtain the frequencies for each event under
the null hypothesis. For each of the 10 000 replicates the
maximum frequency is recorded. Then an event is consid-
ered nonrandom, if the observed frequency exceeds the
95th percentile of these maximum scores, i.e. xi ≥ τ ∗

freq,
where τ ∗

freq is the mentioned 95th percentile.
The method of Brodeur is a frequency-based selection

procedure, where the threshold is not defined in advance,
but is calculated by the selection procedure itself.
If one uses data sets where the events are mutations on

chromosome arms, Brodeur et al. suggest not to use the
uniform distribution but a distribution taking the length
of the chromosome arms into account. Using this length
proportional null distribution one needs to calculate nor-
malised frequencies for each event and to compare these
to the normalised observed frequencies, see [23] or [26]
for details.

Pairwise correlation
The idea of this method is to select all events with suf-
ficient correlation to at least one other event. For binary
events, Pearson’s correlation coefficient is equivalent to
the phi coefficient. The pairwise correlation between
events i and j (i, j ∈ {1, . . . n}) is defined by

rij :=
∑m

k=1

(
xki − xi

) (
xkj − xj

)

√
∑m

k=1

(
xki − xi

)2 ∑m
k=1

(
xkj − xj

)2
,

where xki and xkj are the k-th component of the corre-
sponding vectors.
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The definition of the phi coefficient that describes the
association of event i and j is

φ = n11n00 − n10n01√n1·n0·n·1n·0
,

where n11 is the number of samples with events i and j, n10
the number of samples only with event i, and so on. Given
the threshold τcor ∈ (0, 1) for the correlation, we select an
event i if ∃ j ∈ {1, . . . , n}\{i} : |rij| ≥ τcor.

Fisher’s exact test
Another approach based on interaction analysis is to apply
Fisher’s exact test for pairwise independence [31]. We
compute all

(n
2
)
p-values pij of event pairs (i, j) (i, j =

1, . . . , n, i < j) and select all event pairs whose corre-
sponding p-values indicate dependence. For a threshold
τfisher ∈ (0, 1) we select both events i and j if pij ≤ τfisher.

Fisher’s z-transformation
A variable selection method also based on a test proce-
dure uses confidence intervals for Pearson’s correlation
coefficient. Pigott [32] suggests to first apply Fisher’s z-
transformation to the correlation coefficient of event pairs
to obtain an approximately normally distributed random
variable. The transformation is defined as

zij = 0.5 ln
(1 + rij
1 − rij

)
.

The asymptotic variance of zij is given by Var(zij) = 1
m−3

such that

CI =
[
zij − u1− α

2
· 1√

m − 3
, zij + u1− α

2
· 1√

m − 3

]

is an asymptotic (1 − α) confidence interval, where u1− α
2

is the (1− α
2 ) quantile of the standard normal distribution.

This confidence interval can be used for variable selec-
tion. We calculate all pairwise correlation coefficients rij.
If the corresponding confidence interval does not include
0 (0 /∈ CI),
we select both events i and j. The threshold in this case

is defined by τz = 1 − α ∈ (0, 1).

Weights wij of Edmonds’ branching algorithm
Another approach is to use the weights of Edmonds’
branching algorithm that are the basis for the construc-
tion of an oncogenetic tree. Only those events are selected
that are associated with large weights wij, defined by

wij = log
(

pi
pi + pj

· pij
pipj

)

for i, j = 1, . . . , n, i �= j. We first determine the maxi-
mum ofwij andwji, since a fitted tree would rather contain
the edge with the larger weight. Let this be w.l.o.g. wij.
Then we set a relative threshold τweight ∈ (0, 1) and deter-
mine the �100 · τweight
% largest weights wij. All events

corresponding to at least one of these weights are then
selected.

Conditional probabilities in tree
In contrast to all variable selection methods presented so
far, we now fit an oncogenetic tree T = (V ,E, r,α) to the
entire data set with n events. Then we select those events
whose adjacent edges have sufficiently large conditional
probabilities i.e. edge weights. All edges (i, j), (j, k) ∈ E are
called adjacent to event j. Let τOT ∈ (0, 1) be the mini-
mally required conditional probability. We include event j
in our final model if

max(α(e),α(f ) : e = (i, j) ∈ E, f = (j, k) ∈ E) ≥ τOT.

Note that e is clearly defined since all vertices in the
tree except r have exactly one parent, whereas there can
be more than one edge f , because each vertex can have
several children.

Independence in tree
We again fit an oncogenetic tree to the entire data set.
Events that are independent from all others are repre-
sented as vertices directly leaving the root with no chil-
dren. We remove these independent events. The remain-
ing events represent our set of selected variables.
Note that this kind of variable selection method does

not imply that independent events are always unnecessary
or not important for disease progression.

Clique identification
The last two methods are based on the identification of
cliques. A clique C is a subgraph of an undirected graph
Gu = (V ,E,w), with w being the edge weights, where all
pairs of vertices are connected by an edge. The idea to
determine a clique with certain properties as a variable
selection method originates from Desper et al. [2].
As a start, consider the complete graph Gc = (V , Ẽ,w),

where all n events are pairwise connected, i.e. Ẽ = {e =
(i, j) : i, j ∈ 1, . . . , n, i < j}. As edge weights w we use the
weightswij of Edmonds’ branching algorithm. Thus define
w : E → R+ withw(e) = wij+wji, e = (i, j). Using the sum
of these edge weights we include both directions in the
undirected graph. To enable the clique identification we
delete edges from Gc and obtain Gu. Desper et al. delete
those edges e = (i, j) whose vertices i and j have not been
observed simultaneously at least five times in the data set.
For our variable selection method we define a relative

frequency τclique ∈ (0, 1) instead of an absolute one as
suggested by Desper et al. and delete an edge e = (i, j)
from Gc if

1
m

m∑

k=1
I
((

xki = 1
)

∧
(
xkj = 1

))
< τclique,
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where I is the indicator function. Let F denote the set of
deleted edges, then E = Ẽ\F is the resulting set of edges
in the undirected graph Gu.
Starting from Gu we present two variable selection

methods: lcliq is based on the largest clique and mcliq
on the maximal clique. An illustrating example concern-
ing the difference between largest and maximal cliques is
given in Additional file 1: Figure A.1.
A clique C is called largest if there is no other clique

including more vertices. The events of this largest clique
are chosen for the final model fit. It is possible that C is
not unique. There might be more than one clique with the
same largest number of vertices. In this case we select all
events from all largest cliques.
A clique C is called maximal if it cannot be extended to

a larger clique. The largest cliques are always maximal, but
a maximal clique is not necessarily largest. We identify all
maximal cliques C1, . . . ,Cq of Gu, Ci = (Vi,Ei,w). The
maximum-weight clique then is

C := argmax
Ci

∑

e∈Ei
w(e).

The set Vi of vertices of this maximal clique with maxi-
mum weight represents the selected subset of events.

Results
Comparison of variable selection methods by means of a
simulation study
In this section we evaluate the ten variable selectionmeth-
ods presented above. First, we describe the design of the
simulation study. Then, we choose a suitable threshold
separately for each variable selection method. And finally,
using these best threshold values, we compare all methods
and identify the best one(s).

Design of the simulation study
The following evaluation procedure is used to evaluate
the ten variable selection methods, see also the detailed
explanation afterwards.

1. Sample a random oncogenetic tree T with n1 events.
2. Samplem observations from T and obtain a data

matrix X ∈ B
m×n1 .

3. Samplem observations from Yi ∼ Bin(1,πi), with
πi ∈ (0, 1), i = 1, . . . , n2.

4. Combine the data from step (2) and (3) to a data
matrix X̃ ∈ B

m×(n1+n2).
5. Apply a variable selection method to X̃ and obtain a

data matrix X∗ containing only the selected events.
6. Fit an oncogenetic tree T∗ to X∗.
7. Compare T∗ to T .
8. Compare X∗ to X.

The oncogenetic tree T is the underlying true model.
This tree is generated randomly in step (1), with a fixed

number n1 of events and a fixed interval [αl,αu] (0 < αl <
αu < 1) for the edge weights. Here, the Prüfer encod-
ing of trees is used to draw a tree uniformly at random
from the tree topology space [33, 34]. In a next step, we
generate a random data matrix X = [

x1, . . . , xn1
]
with

m observations from T . (We do not simulate waiting and
sampling times.) Ideally, these n1 events would in the end
be reidentified by our variable selectionmethods. Tomake
the selection process more difficult and realistic, we draw
realizations from a binomial random variable with param-
eter πi for n2 further events, see step (3). We call these n2
additional events ’noise events’, because not every observ-
able event is associated with the disease process, some are
just random mutations. Note that this definition of noise
events should not be mixed up with independent white
noise that is used to represent uncertainty in the data gen-
erating process. We do not simulate measurement errors
in our data, so far. Next we join the true and noise events
to a single data matrix X̃ ∈ B

m×(n1+n2). Then, in step (5),
we apply a variable selection method to this data matrix.
Each method selects p ≤ n1 + n2 columns from X̃. This
choice is denoted by X∗ and one can fit an oncogenetic
tree T∗ to this data set.
To evaluate the performance of the selection methods,

we compare the true and the fitted tree, T and T∗, and
also the true and the selected events, i.e. the data matrices
X and X∗.
The comparison of different tree models can be based

on the induced probability distribution [17]. Assume we
have two oncogenetic trees T1 and T2, each with n events.
The two probability vectors for the 2n combinations of
events are denoted by p1 and p2 ∈[ 0, 1]2n . Distances
between these two vectors, i.e. between the two tree mod-
els, can then be calculated by the L1-distance, L2-distance
and cosine-distance:

dL1(p1,p2) =
2n∑

i=1
|p1i − p2i |,

dL2(p1,p2) =
√√√√

2n∑

i=1
(p1i − p2i)2

dcos(p1,p2) = 1 − cos�(p1,p2) = 1 − < p1,p2 >

||p1|| ||p2||

= 1 −
∑2n

i=1 p1i · p2i√(∑2n
i=1 p21i

)
·
(∑2n

i=1 p22i
)

The cosine-distance denotes the angle spanned by the
two probability vectors.
Applying these distance measures in our simulation

study, notice that T and T∗ may contain different events,
because of the selection process. The number of events
can also differ. Thus, we need to consider all n1 + n2
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events when calculating the induced probability distribu-
tion. Combinations of events which contain an event that
is not present in the underlying tree are assigned prob-
ability 0. Thus, the Kullback-Leibler divergence [35] as a
potential measure of discrepancy between probabilities is
not applicable.
Another way to evaluate variable selection methods,

step (8), is to examine the false positives and false neg-
atives, i.e. count how many of the noise events have not
been detected and how many of the true events have been
removed. These absolute counts are converted to relative
ones. In order to have two criteria whose best value is 1,
we calculate the converse probability for the proportion of
removed true events. Thus, the criteria sens (for sensi-
tivity) and spec (for specificity) measure the proportion
of correctly identified true events respectively correctly
removed noise events.
In the evaluation procedure mentioned above, there

are some parameters that need to be defined in advance.
These are the number n1 of true events, the number n2 of
noise events, the number m of observations, the interval
[αl,αu] for the edge weights and the probability πi for the
proportion of noise.
Based on these parameters, one can investigate data sit-

uations with different degrees of difficulty for the variable
selection methods. In this simulation study, we choose
two different values for each parameter (parameter πi
is sampled randomly and independently from the given
interval for each noise variable):

n1 ∈ {5, 7}
n2 ∈ {2, 12}
m ∈ {50, 1000}

[αl,αu] ∈ {[ 0.2, 0.8] , [ 0.5, 0.8] }
πi ∈ {I0.1 =[ 0, 0.2] , I0.3 =[ 0.2, 0.4] }

The full factorial experiment with all 32 parameter com-
binations is given in Additional file 1, Table B.1. In the
simulation study presented in the following, we focus
on 8 of these 32 parameter settings, since it turned out
that not every parameter has a relevant influence on the
results. If we cluster the L1-distances (see Additional file 1:
Figure A.2) those distances are the smallest, where only n1
differs and the other four parameters are fixed. The value
of n1 does not influence the results strongly. The same
holds for the lower probability αl of edge weights. In 6 out
of 8 times, the second closest distances refer to parame-
ter combinations with differences only in αl. Thus, only
n1 = 5 and αl = 0.2 are considered in the following. Com-
bining the remaining three variables n2,m and πi leaves us
with 8 different parameter settings.
In addition, we also need to identify a suitable thresh-

old for each variable selection method. We choose four

different values for each method. In further simulations
smaller or higher values did yield worse results.

τfreq ∈ {0.05, 0.10, 0.15, 0.20}
τcor ∈ {0.10, 0.20, 0.30, 0.40}

τfisher ∈ {0.01, 0.05, 0.10, 0.15}
τz ∈ {0.50, 0.63, 0.77, 0.90}

τweight ∈ {0.05, 0.10, 0.20, 0.30}
τOT ∈ {0.10, 0.15, 0.20, 0.25}
τlcliq ∈ {0.05, 0.10, 0.15, 0.20}

τmcliq ∈ {0.05, 0.10, 0.15, 0.20}

For each parameter combination we generate M =
100 random oncogenetic trees with corresponding data
sets. We apply ten different variable selection methods,
each with four different thresholds (except the method of
Brodeur where the threshold is calculated implicitly and
the method of independence in trees with no threshold at
all). Based on these results, we evaluate our methods.
All variable selection methods as well as our evaluation

procedure are implemented in the statistical program-
ming language R, version 3.0.1 [36]. We used the R pack-
ages Rtreemix [37] to fit oncogenetic trees and igraph
[38] to perform the clique calculations. The execution of
all methods is computationally feasible.

Results: choosing the best threshold
We first determine a suitable threshold for each variable
selection method. For this purpose, we focus on the L1-
distance, because the results do not differ much for the L2-
or cosine-distance, see Additional file 1: Figure A.3. Using
the other two criteria sens and spec is not meaningful,
since both criteria need to be considered simultaneously
and this would always lead to contradictory thresholds.
Concerning the criterion sens one would choose the
highest threshold and concerning spec the lowest, or vice
versa.
Using the L1-distance, the results for the univariate fre-

quencymethod freq are shown in Fig. 2 (top left). On the
x-axis, one can see the 8 different parameter settings. The
y-axis shows the mean of the 100 L1-distances between
the fitted model and the true model. The four different
lines represent the four different thresholds.
One can see that for the first four parameter settings

with proportion of noise πi ∈ I0.1 =[ 0, 0.2] the distances
are smaller than for πi ∈ I0.3 =[ 0.2, 0.4], where the high-
est considered threshold is τfreq = 0.2. In this case τfreq
is clearly below the proportion of noise such that noise
events are not eliminated in the variable selection step.
Choosing τfreq = 0.2 leads to the best or nearly best

results for all parameter settings. An even larger threshold
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Fig. 2 Results of the simulation study. The eight different parameter settings are displayed on the x-axis whereas the means of the 100 L1-distances
for combinations of method and threshold are shown on the y-axis. Top left: Results for the univariate frequency method with all chosen thresholds.
Top right: Results for the largest cliques method with all chosen thresholds. Bottom left: Comparison of seven different selection methods, each with
one threshold that was globally best for all parameter situations. Bottom right: Comparison of three different selection methods. The chosen
threshold is given in brackets, because there was no globally best one

would improve the results for πi ∈ I0.3, but is unrealistic
for most applications we have in mind.
Figure 2 (top right) displays the results for the largest

cliques method lcliq. Again, we observe larger dis-
tances to the true model for higher proportion of noise
events. In data situations with low proportion of noise
events (πi ∈ I0.1), the order from best to worst thresh-
old (in terms of the smallest L1-distances) is from the
lowest to the highest value. For a high noise proportion
(πi ∈ I0.3), we discover exactly the opposite. Now, the
highest threshold leads to the best result, whereas the low-
est threshold performs worst. Thus, we need to adapt the
threshold to the noise proportion.
The results for the other sixmethods are shown in Addi-

tional file 1: Figure A.4. In summary, Table 2 shows our
recommendation, which threshold to use in which data
situation.
Note that the method of Brodeur brod requires no

threshold choice, as it is part of the method. The mean
thresholds for the 8 different data situations (and in brack-
ets their standard deviations) are 0.38 (0.088), 0.26 (0.086),
0.30 (0.041), 0.19 (0.036), 0.46 (0.082), 0.33 (0.085), 0.49
(0.034), and 0.34 (0.035). Thus, they are almost always
higher than the one we chose for the univariate frequency
selection.

Results: comparison of variable selectionmethods via the
L1-distance
Now, we compare the different variable selection meth-
ods. For this comparison, we choose the best thresholds
from above. For the reason of clarity we first compare the
seven selection methods with an overall best threshold

Table 2 Recommendation of the thresholds to be used for each
method and each data situation

n1 50/1000 50/1000 50/1000 50/1000

n2 2 12 2 12

πi [0,0.2] [0,0.2] [0.2,0.4] [0.2,0.4]

freq 0.2 0.2 0.2 0.2

cor 0.3 0.3 0.3 0.3

fisher 0.01 0.01 0.01 0.01

z 0.9 0.9 0.9 0.9

weight 0.3 0.05 0.3 0.05

OT 0.25 0.25 0.25 0.25

lcliq 0.05 0.05 0.2 0.2

mcliq 0.05 0.05 0.15 0.15

The method of Brodeur generates its threshold implicitly and the single method
does not need any threshold at all
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separately from the other three methods with a situation-
dependent threshold (see bottom of Fig. 2). The mean
standard error for the data in these two figures is 0.034.
In the bottom left of Fig. 2, one can see that the z-

transformation method z is never the best method. The
correlation method cor as well as the independence in
tree method single are among the best ones in two data
situations (directly followed by the Fisher-test), but a lot
worse in others. Thus z, cor and single are not con-
sidered any further. For noise proportion πi ∈ I0.1 the
best methods are the oncogenetic trees OT and in one
scenario the frequency method freq, whereas for higher
noise values (πi ∈ I0.3) one should choose the Fisher-test
fisher.
Figure 2 (bottom right) shows that in the case of lit-

tle noise (πi ∈ I0.1) both clique methods lcliq and
mcliq perform best (each with the lower threshold). If
there is more noise πi ∈ I0.3) themethod using the weights
of Edmonds’ branching algorithm weight leads to the
smallest L1-distances in two situations. However, one
needs to know the number of noise variables in advance to
choose the best possible threshold. Neglecting this weight
method, the two clique methods are again the best, this
time each one with the higher threshold.
Now, we summarise these results in Fig. 3 to find an

overall best variable selection procedure. Based on the
results shown in Fig. 2, we first compare the best methods
subject to the amount of underlying noise. For πi ∈ I0.1 the
best methods are the largest cliques lcliq and OT. How-
ever, having few observations and many noise variables
OT performs worst. Thus, we propose to use the largest
clique method with threshold 0.05. In the case of πi ∈ I0.3,
fisher and mcliq (with threshold 0.15) perform best.
All in all, the clique methods show the globally best per-

formance. They do not always achieve the best results, but

Fig. 3 Comparison of all variable selection methods. Based on the
results from Fig. 2 we need to distinguish between situations with
low and high proportion of noise variables (πi ∈ I0.1 vs. πi ∈ I0.3)

they provide very good results for all data situations con-
sidered here, which no other method does. The largest
cliques lcliq perform a little better in case of little noise
and the maximal cliques mcliq in case of higher noise,
but they do not differ substantially. In addition, one needs
to select a suitable threshold. We propose to adaptively
choose the low threshold for a low proportion of noise and
the high threshold for a higher proportion of noise.

Results: comparison of variable selectionmethods via false
positives and negatives
We now want to compare the performance of the variable
selection methods with regard to the two criteria sens
and spec. A good method should obtain high values
for both criteria simultaneously, i.e. the method identi-
fies most or all true events and removes most or all noise
events. A method that is only good in one of these aspects
is not convenient, since one can always achieve the best
value for sens by selecting all events and the best value
for spec by selecting no event.
The analysis of these false positives and negatives is

performed analogously to the one of the L1-distance. For
the reason of clarity we again compare the seven meth-
ods with one overall best threshold separately from the
other three methods with a situation-dependent thresh-
old. Afterwards we compare the best methods of each
approach to identify the overall best method.
As a result, we discovered that in contrast to the L1-

distance no separation between situations with πi ∈ I0.1
or πi ∈ I0.3 is necessary. But we also observed that
the clique methods are not good in identifying the true
events. Further investigations revealed that this is due to
the parameter αl, which we set to the value 0.2, since it
did not change the results for the L1-distance. It turned
out that this is not true for the clique methods and the
criterion sens. The explanation is that having a small
value for αl can lead to very low probabilities for the leaf-
events. If a single event only occurs very seldom, e.g. less
often than the clique threshold, it is impossible that this
event is included in the selection process, since it can-
not occur simultaneously with any other event sufficiently
frequent.
Thus, we now show the results for the same 8 data sit-

uations as before but with the parameter αl set to the
value 0.5, see Fig. 4. The results with αl = 0.2 are shown
in Additional file 1: Figure A.5 so that one can check
that the major differences only concern the clique meth-
ods. Another representation of these results for sens
and spec are shown in ROC-curves in Additional file 1:
Figures A.6 and A.7.
Concerning the criterion sens (top row), one can see

that nearly all methods with one overall best thresh-
old perform well regarding the identification of true
events. Only the method of Brodeur shows poor results.
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Fig. 4 Results of the simulation study. The eight different parameter settings are displayed on the x-axis whereas the means of the 100 values for
sens and spec are shown on the y-axis. For all figures it holds that αl = 0.5 (instead of αl = 0.2 for the L1-distance). Top row: Results for the
criterion sens, left: comparison of all seven methods with one overall best threshold, right: comparison of all three methods with two thresholds
depending on the underlying data situation.Middle row: Results for the criterion spec, left: comparison of all seven methods with one overall best
threshold, right: comparison of all three methods with two thresholds depending on the underlying data situation. Bottom row: Comparison of all
variable selection methods for the two criteria sens (left) and spec (right)

Furthermore, all clique methods (the lower threshold bet-
ter than the higher one) and the weight-method with
threshold 0.3 show good results. In contrast, with respect
to the criterion spec (middle row), the only two ade-
quate methods with one overall best threshold are brod
and fisher. In addition, the two cliquemethods with the
higher threshold also performwell. Thus, the cliquemeth-
ods can again be recommended, since they can identify
both the true and the noise events (bottom row). Clique
identification with a high threshold allows to remove
noise events. Using the lower threshold is favourable for
identifying true events. All in all, the higher threshold is

recommended. Nevertheless, one needs to bear in mind
that we consider only situations where the true events
have a sufficient probability of occurrence due to the
parameter αl = 0.5. The second best method is the Fisher
test, which also achieves high values for both sens and
spec simultaneously.
If one is in doubt, whether the assumption of αl =

0.5 holds in an underlying data set, one can choose the
fisher method, since this is the only one with results
mostly over 80% for both criteria and all data situations if
αl = 0.2, see Additional file 1: Figure A.5. Having a low
probability for noise events, i.e. πi ∈ I0.1, one can still rely
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on the clique methods with a low threshold to perform
good.

Application to real data
We now apply all variable selection methods to three dif-
ferent data sets and compare the corresponding resulting
tree models with models provided in the literature for the
application scenarios.

Meningioma
The meningioma data set with 661 observations and 9
events is taken from Urbschat et al. [39]. Events represent
chromosomal gains or losses on chromosomes or chro-
mosome arms in brain tumours. The genetic state of a
tumour is characterised by the most frequent pattern of
event combinations, as observed in a set of clones for each
tumour. For fitting a tree model, Urbschat et al. chose
9 events based on the frequency selection freq with a
threshold of 1.8%. Thus, all other possible events occur in
less than 1.8% of the tumours.
On this data set we apply all variable selection methods

with corresponding best thresholds from our simulation

study. The results are shown in Table 3. The methods
based on the Fisher test fisher, the z-transformation z
and the independence in tree single select all events,
whereas the two clique methods lcliq and mcliq (high
threshold) select none at all. Many events are selected
using the correlation method cor, the weight method
(high threshold) and the OT approach. Only three events
or even less are selected based on freq, the Brodeur
method brod, weight and the clique procedures with
low threshold. We can assume a low proportion for the
noise, because only 9 events occur in more than 1.8% of
the cases. Thus, our simulation suggests to use the clique
methods with a low threshold. In this case only the events
14−, 22− and 1p− are selected.
Because of the low number of only 9 events we added 39

additional noise variables representing possible gains and
losses on the other chromosomes. Since the proportion
for these noise events in the real data is less than 1.8%, we
set the event frequency for all simulated additional vari-
ables to 0.5% and randomly draw all additional data from a
binomial distribution with π = 0.005. Results for all vari-
able selection procedures for this extended data set are
shown in Additional file 1, Table B.2.

Table 3 List of events (meningioma and HIV data set) respectively number of events (glioblastoma data set) that were chosen by our
variable selection methods using the thresholds from the simulation study (x = event was selected)

Method freq brod cor fisher z weight weight OT single lcliq lcliq mcliq mcliq

threshold 0.2 - 0.3 0.01 0.9 0.05 0.3 0.25 - 0.05 0.2 0.05 0.15

MENINGIOMA data set

Chr14- x x x x x x x x x

Chr22- x x x x x x x x x

Chr1p- x x x x x x x x

Chr6- x x x x x x

Chr10- x x x x x x

Chr18- x x x x x x

Chr19- x x x x x

ChrY- x x x x

ChrX- x x x

HIV data set

215 F,Y x x x x x x x x x x x x

41 L x x x x x x x x x x x

70 R x x x x x x x x x x

67 N x x x x x x x x x

219 E,Q x x x x x x x x

210 W x x x x x x x

GLIOBLASTOMA data set

23 29 73 99 102 89 102 85 131 22 10 22 11

The thresholds for the method of Brodeur are 0.1, 0.33 and 0.17 respectively
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Interestingly only the frequency methods freq and
brod and the clique methods lcliq and mcliq select
none of the additional noise variables. All other meth-
ods select some or even many false positives. Additionally,
the methods brod and weight select more of the true
nonrandom variables.
Assuming that the 9 original variables are the ’true’ ones,

one could also try to find the best threshold for each
method that distinguishes best between the two groups.
These thresholds, again with the number of selected noise
variables, are also given in Table B.2. Again, only the fre-
quency and the clique methods manage to clearly separate
’true’ and random events.
We now compare the progression pathway of menin-

gioma presented by [39] to the oncogenetic trees based on
the results for the best variable selection methods freq
and lcliq (largest clique), see Fig. 5, top row.
Precisely, we fit an oncogenetic tree to all events, result-

ing in a slightly different model as compared to [39] who

fitted an oncogenetic tree mixture model instead of a
single oncogenetic tree. We can see that even if the fre-
quency and the largest clique method select very few
events, they choose the important ones. Event 22− is the
first event to occur and also the first event of all pathways.
Thus, the occurrence of every other event depends on it.
Although the frequency method selects only one event,
it is at least the most important one. The largest cliques
method lcliq selects three events and thereby covers
the most frequent pathway. Thus, our variable selection
methods detect the important events.

HIV
The HIV data set is also well studied [40], with knowledge
about the existing pathways. This data set is available in
the R package Rtreemix [37] and consists of 364 obser-
vations of 6 mutations that develop in the viral genome
under zidovudine monotherapy. We again apply our ten

Fig. 5 Some trees resulting from the variable selection process concerning the three data sets. The three rows represent the meningioma (top), HIV
(middle) and glioblastoma (bottom) data sets, respectively. The columns show as a kind of reference tree the tree with all events (left), then two trees
based on the frequency (middle) and clique selection (right)
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variable selection methods to this data set. The results are
also shown in Table 3.
Six out of thirteen selection methods (applying different

thresholds) select all six events, whereas three methods
select only two events. The frequency method freq and
the two clique methods lcliq and mcliq (with low
threshold) select four or five events. For the low number
of only six events we assume a low proportion of noise and
thus prefer the low threshold for the clique methods. We
again show the comparison between the oncogenetic tree
using all events and the ones based on the frequency and
largest clique selection, see Fig. 5, middle row.
The tree with all six events shows two independent

pathways with three variables each. Looking at the two
other trees, one can recognise these two pathways as well.
For the largest clique tree only event 210W at the end
of one pathway is left out. This event is missing in the
frequency tree as well. Interestingly, the second missing
event by the frequency method is one in the middle of a
pathway.
In summary, the results of many variable selection

methods are quite similar here. We expected that many or
all events will be selected, which was achieved by many
methods including our promising clique techniques.

Glioblastoma
This glioblastoma data set is taken from the public data
base ’The Cancer Genome Atlas’ and was preprocessed by
Laura Tolosi [41, 42]. We have a binary data matrix with
539 observations of 132 events. The events are gain (+),
loss (-) and amplification (++) of the chromosome arms 1
to 22.
The number of events in the glioblastoma data set is by

far larger than in the meningioma and the HIV data set.
Applying the variable selection methods using the thresh-
olds from our simulation study often leads to a very large
number of selected events, see Table 3. Again, the fre-
quency and the clique methods yield the most reasonable
results. They choose between 10 and 23 events, which are
still manageable numbers for oncogenetic trees. All other
methods select at least 73 events. This is not acceptable as
estimated trees then become very unstable.
Thus, we decided to limit the number of selected events

to approximately 11. We choose this number, because the
maximal clique method mcliq (high threshold) selects
11 events and this method yields good results both in the
simulation study and for the application to the other data
sets. One should choose the high threshold here, because
for 132 events in total we assume a higher proportion of
noise events.
To select approximately 11 events, we choose the fol-

lowing thresholds for the selection methods: τfreq =
0.41, τcor = 0.70, τfisher = 10−26, τweight = 0.0018,
τOT = 0.90, τlcliq = 0.2, τmcliq = 0.15. We exclude the

z-transformation, since even with a threshold of τz =
1−10−16 themethod still selects 60 events and is therefore
no reasonable choice. The method of Brodeur selects 29
events, based on the computed threshold τ ∗

freq = 0.1725.
The independence in tree method single removes only
one of the 132 events and is therefore useless on this data
set and excluded from further comparison.
The results of the variable selection methods are given

in Table 4. The frequency method freq selects almost all
events mentioned in the literature [43], plus some addi-
tional ones. This is no surprise because the frequency
method is a very common variable selection method. The
method of Brodeur brod selects 29 events, including all
events mentioned in the literature. The methods based on
the pairwise correlation cor, the conditional probabilities
of the oncogenetic tree OT and the weights of the branch-
ing algorithm weight detect only one or zero known
events, whereas the Fishermethod fisher identifies four
out of eight known events. The clique methods lcliq
and mcliq select almost all known events. Only the event
13q- (and for the largest clique also 1p- and 22q-) was not
included in their selection.
Again, we compare the resulting trees for all selection

methods. First, we look at the tree including only the
events mentioned in the literature and compare it to the
frequency and the maximal clique tree, see Fig. 5, bot-
tom row. The literature tree is exactly included in the
frequency tree, because the dependency structure does
not change if we consider more events. Only the path
10q− → 7p+ is slightly different, because the event 7q+
is inserted in the middle. Two other additional events are
estimated as independent events directly leaving the root,
and a third one is extending one pathway.
The tree resulting from the maximal clique method also

contains the structure of the literature tree (again with the
insertion of 7q+ in one pathway). Only the event 13q− is
missing. This can be neglected, because this event is inde-
pendent from all other pathways. The other additional
events in this tree extend the existing pathway of 9p−
and 7q++. Thus, the events 19p+, 20p+ and 20q+ might
contain some further information concerning the progres-
sion of glioblastoma. In addition, these three events were
selected by 6 of the 8 variable selection methods. Only
two other events were selected more often. The frequency
method, which can be considered as the standard method,
detects only one of these three events. Thus, the maximal
clique method mcliq is again convincing, as it identifies
the important events already known in the literature and
also some promising additional ones.
Looking at the trees resulting from the other selection

methods (see Additional file 1: Figure A.8), we see that
the Brodeur tree includes all pathways from the maxi-
mal clique tree, but also a lot more. Thus, it is difficult
to identify the most important events and pathways. The
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Table 4 List of events from the glioblastoma data set that were chosen by our variable selection methods (x = event was selected)

Method freq brod cor fisher weight OT lcliq mcliq

threshold 0.41 0.1725 0.70 10−26 0.0018 0.90 0.2 0.15

Chr7p+ x x x x x x x

Chr7q+ x x x x x x x

Chr19p+ x x x x x x

Chr20p+ x x x x x x

Chr20q+ x x x x x x

Chr10p- x x x x x

Chr10q- x x x x x

Chr7p++ x x x x x

Chr9p- x x x x

Chr19q+ x x x x

Chr9q++ x x x

Chr12p++ x x x

Chr18p++ x x x

Chr18q++ x x x

Chr21q++ x x x

Chr22q- x x x

Chr1p- x x

Chr2q++ x x

Chr3p++ x x

Chr8q++ x x

Chr11p- x x

Chr11q- x x

Chr13q- x x

Chr14q- x x

Chr15q- x x

Chr1q+ x

Chr1q- x

Chr3q- x

Chr4q- x

Chr6p- x

Chr6q- x

Chr8p- x

Chr9q- x

Chr12q+ x

Chr12q- x

Chr15q+ x

Chr21p- x

Chr7q- x

Chr13q+ x

Chr18p+ x

The events are sorted according to their selection frequency. Events already mentioned in the literature are printed in bold
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correlation tree contains only two events from the litera-
ture, but also the new ’19p+ → 20q+ → 20p+’ pathway.
The other six events are highly connected (edge weight 1),
but occur almost never (edge weight 0.011). The Fisher
test method performs only slightly worse than the max-
imal clique method, and the resulting tree contains the
most important pathways. The weight method is useless,
because the initial event occurs only in 3% of the samples.
Some other events in the tree are highly correlated, but
from this tree one cannot make any reasonable statement
concerning progression in glioblastoma. The same holds
for the OT tree. Two events from the literature are iden-
tified, but seven events are included in pathways with too
small edge weights. The largest clique tree is very simi-
lar to the maximal clique tree and covers the important
events and pathways.

Discussion and conclusion
We introduced and analysed ten variable selection meth-
ods for disease progression models. To obtain meaningful
information about the disease process, it is important to
distinguish between events that significantly contribute to
disease progression and events that only represent ran-
dom noise. So far, only two variable selection methods
were used in the literature, both based on a frequency
approach. We extended this range and also considered
methods that are based on pairwise interactions, on the
tree model itself, and on the identification of cliques of
events.
In an extensive simulation study we first optimised each

method individually by finding the best parameter setting.
Then, we compared all ten methods in many different
data situations. It turned out that variable selection based
on clique methods is very promising. Events that occur
together in a certain fraction of observations are con-
nected by an edge. In the resulting graph, we look for
largest or maximal cliques and select the events associ-
ated with this clique. Only these clique methods were
consistently among the best methods.
The results of this simulation study do not change if

we run them again with different random seeds. We also
did not include noise in the data generating process. That
means the observations drawn from the underlying true

tree (see step (2) of the simulation study) are all with-
out measurement errors. Still, if such noise is included,
the results are similar, as one can see in Additional file
1: Figures A.9 and A.10. We simulated the measurement
errors by changing each entry of the true data matrix with
probability 0.01 respectively 0.10.
Concerning our variable selection method ’indepen-

dence in trees’ one might object that this method indi-
cates that single independent events are not necessary for
modelling disease progression. This is not true. We still
included this method to investigate the influence of these
independent events. In fact, there are about 38% of the
true trees that possess at least one independent event in
step (1) of our simulation study. Thus, sometimes this
method will definitely fail in identifying all true events.
Nevertheless, we wanted to analyse how this method
competed against the others, and the performance was
poor.
The quality of the clique methods was confirmed by

the application to real data sets. Starting with two quite
small but well studied data sets (meningioma and HIV)
we could compare the outcome of our methods to results
from the literature: The clique methods were consistent
with already known facts. This was true for some other
methods as well. But in the presence of additional noise
variables in the meningioma data, the clique methods
were the only robust ones.
To illustrate the comparability between the simulated

and the real data sets, we investigate the distribution
of event probabilities. Table 5 shows a summary of the
occurrence rates for the events in our analysis.
Most data sets we considered contained only few events.

In the simulations we did not usemore than 19 events, due
to runtime constraints when calculating the induced prob-
ability distribution. However, we need methods that are
also robust for larger number of events, for example when
considering chromosome bands or even single genes. The
analysis of the glioblastoma data set with 132 events con-
firmed the advantage of our clique methods in larger data
sets. Almost all other variable selection methods chose
too many events to fit a meaningful tree. Also when lim-
iting the number of events to 11 only the frequency and
the clique methods detected almost all events that were
already mentioned in the literature.

Table 5 Overview of the occurrence rates for all events for simulated data and the three data sets

Data set Minimum 1st quartile Medium Mean 3rd quartile Maximum

simulation data 0.00 0.14 0.29 0.33 0.49 0.96

simulation data with noise 0.00 0.12 0.23 0.26 0.36 0.96

meningioma 0.02 0.07 0.04 0.08 0.06 0.38

HIV 0.12 0.20 0.24 0.27 0.36 0.42

glioblastoma 0.00 0.00 0.04 0.12 0.14 0.85
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Table 6 Proportion of events from the three data sets that fit to
the estimated model

Data set All events Frequency tree Clique tree

meningioma 0.90 1.00 0.97

HIV 0.87 0.94 0.88

glioblastoma 0.79 0.69 0.59

For the glioblastoma data the numbers are lower due to the tree depth of 4 and 6
for freq and cliq, respectively. For the simulated data, minimum, 1st quartile,
median, mean, 3rd quartile and maximum are 0.47, 0.94, 0.99, 0.92, 1.00 and 1.00

Thus, freq and cliq are the two competitive variable
selection methods. Since frequency selection is standard
in the literature so far, it is no surprise that this method
identifies the already known events. Nevertheless, only
taking the frequency into account is not enough to cover
all important events concerning disease progression. We
can see this by looking at the other selected events in
the glioblastoma data set. The frequency method selects
additional events that were independent and did not con-
tribute to existing pathways. However, the clique method
mcliq even omits the one event known from the litera-
ture that is independent of all other events, and chooses
only additional events that extend the known disease pro-
cess. Thus, if we use the clique methods, which also take
variable interaction into account, we can find both the
important frequent events and those related to disease
pathways.
We analysed these variable selection methods for the

basic and popular model class of oncogenetic trees. We
are aware that these models cannot represent every pos-
sible combination of events and that there can be certain
observations that do not fit to the estimated model, see
Table 6. Nevertheless, we believe that variable selection
methods should first be investigated for a basic model
class to understand their fundamental properties. As a
next step, this analysis should be extended to further
complex model classes, of course.
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from the variable selection process concerning the glioblastoma data set.
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