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Abstract

Background: Given the current influx of 165 rRNA profiles of microbiota samples, it is conceivable that large
amounts of them eventually are available for search, comparison and contextualization with respect to novel
samples. This process facilitates the identification of similar compositional features in microbiota elsewhere and
therefore can help to understand driving factors for microbial community assembly.

Results: We present Visibiome, a microbiome search engine that can perform exhaustive, phylogeny based similarity
search and contextualization of user-provided samples against a comprehensive dataset of 165 rRNA profiles
environments, while tackling several computational challenges. In order to scale to high demands, we developed a
distributed system that combines web framework technology, task queueing and scheduling, cloud computing and a
dedicated database server. To further ensure speed and efficiency, we have deployed Nearest Neighbor search
algorithms, capable of sublinear searches in high-dimensional metric spaces in combination with an optimized Earth
Mover Distance based implementation of weighted UniFrac. The search also incorporates pairwise (adaptive)
rarefaction and optionally, 165 rRNA copy number correction. The result of a query microbiome sample is the
contextualization against a comprehensive database of microbiome samples from a diverse range of environments,
visualized through a rich set of interactive figures and diagrams, including barchart-based compositional comparisons

and ranking of the closest matches in the database.

Conclusions: Visibiome is a convenient, scalable and efficient framework to search microbiomes against a
comprehensive database of environmental samples. The search engine leverages a popular but computationally
expensive, phylogeny based distance metric, while providing numerous advantages over the current state of the

art tool.
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Background

Similarity search of microbial community profiles against
a comprehensive microbiome database can unravel sur-
prising results. For example, [1] reports that samples
taken from 2.5km below the deep-sea surface are closer
to organotrophic forest soils in terms of microbial com-
position than to samples of shallower depths from the
same study. This similarity is attributed to the abundance
of methanogens. Like in the above-mentioned case, to
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understand the environmental factors that govern micro-
bial community assembly for a particular sample at hand,
it is desirable to find the most similar microbial com-
munities that have been investigated, sequenced and
deposited by other researchers. The subsequent analysis
of commonalities with respect to their isolation source,
description and environmental factors that have led to
the observed taxonomic composition of community con-
stituents can unravel the underlying ecological mecha-
nisms and functionality aspects. Such comparison faces
three main requirements: (i) the consistent deposition
of microbial community profiles in suitable databases,
including standardized metadata, (ii) the availability of
tools that analyze microbial communities and (iii) the
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possibility to query against a comprehensive database of
diverse samples.

The former two problems have been readily addressed.
Thanks to advances in metagenomics, environmental
sampling of microbial communities using Next Gener-
ation Sequencing and multiplexing, large amounts of
descriptive genetic data are accumulated, particularly
16S rRNA profiles of microbial communities. Moreover,
recent years have seen a dramatic increase in microbiome
research, which is in part due to the fact that the role of the
microbiome is recognized in a wider range of diseases but
also environmental processes. Notable trailblazing efforts
are the Human Microbiome Project [2] and the Earth
Microbiome Project [3]. However, few problems remain
and reflect on the quality of solutions for the third prob-
lem. For example, the importance of metadata annotation
has been emphasized in [4], but the complete and con-
sistent implementation of the developed standards is still
in a nascent state. As a result, microbiome search engines
can currently not be equipped with search criteria such
as pH, salinity, isolation source or temperature. The third
problem, to query a user provided sample against a large,
comprehensive dataset has not been tackled, except for
very few approaches [5]. The task of comparing micro-
bial community profiles is computationally expensive and
demands an efficient implementation. Ideally, the imple-
mentation must cope with the growth of users as well as
the growth of the underlying database.

We here set out to improve on this last category in
various aspects: we describe the design and implementa-
tion of a scalable, distributed architecture that can handle
queries from multiple simultaneous users. Each user can
provide multiple samples in form of BIOM tables [6],
representing high-dimensional (but sparse) Operational
Taxonomic Unit (OTU) abundance vectors as measured
by 16S rRNA sequence counts. For comparability rea-
sons, we require that all samples are derived from con-
sistent closed reference OTU picking. These abundance
vectors are not only compared with each other but are
searched and contextualized against samples from a broad
range of environments. We therefore strive to employ the
most comprehensive database of microbial communities
available. NCBI’s Sequence Read Archive (SRA, [7]) is
likely to be the largest repository of 16S rRNA profiles.
However, SRA usually stores raw sequence reads leav-
ing further processing, especially quality control, to the
users. Furthermore, the provision of additional metadata
such as those specified in MIMARKS as well as barcodes,
primer sequences are study-specific, not standardized
and therefore difficult to automatize. Qiime-DB/Qiita [8]
is a microbial study management platform, supporting
multiple analytical pipelines. However as with SRA, it
does not have the capability of querying a user-provided
sample against the underlying database. Likewise, tools
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like VAMPS [9], myPhyloDB [10], Mothur [11] and Megan
[12] can compare, store and analyze microbial commu-
nity profiles, but do not provide a complete similar-
ity search against a comprehensive database. We aim
to complement those tools by providing such database
search while still facilitating interoperability through stan-
dardized file formats such as BIOM and FASTA. This
also includes the incorporation of the most commonly
used phylogenetic and non-phylogenetic distance mea-
sures for microbial communities: weighted UniFrac and
Bray-Curtis dissimilarity, respectively. Weighted UniFrac
calculations are computationally expensive, and was pre-
viously tackled by using Trie-index based heuristics to
reduce the number of comparisons [5]. We show that this
approach is afflicted with a considerable number of False
Negatives (i.e. very similar samples were overlooked due
to slightly differing indices). To overcome this issue, we
deploy an accurate, sublinear similarity search using Geo-
metric Near-neighbor Access Trees (GNAT, [13]) which
facilitate similarity searches in high dimensional met-
ric spaces. In addition, we deploy AESA (Approximating
and Eliminating Search Algorithm), [14], which excels in
query-intensive systems, i.e., in situations where heavy
precalculation is feasible and the number of distance cal-
culations per query needs to be kept minimal. Thanks to
the recent realization that Weighted UniFrac is a metric
([15]), we show that it is suitable for similarity searches in
high dimensional metric spaces using GNATs and AESA.
Finally, various aspects for microbial community compar-
ison are taken into account: copy number correction ([16])
and rarefaction in order to deal with varying sequencing
depths of samples.

Implementation

To tackle the problem of increasing user-base and
increasing popularity of sample querying systems, we
present a web application called Visibiome. Visibiome
features a distributed architecture to maximize usability
and minimize dependency issues for personal and public
deployments. In its entirety, Visibiome is developed using
open-source software. The Visibiome core is built using
the web development framework Django which has sev-
eral benefits for distributed web application development
(e.g. it is database agnostic and modular), which is fitting
for computationally-heavy search query systems since
single-machine implementations will not scale very well
with multiple concurrent queries. Here, we explain the
modularization of Visibiome and how it scales as a search
engine.

Visibiome uses MySQL as the preferred relational
database management system (RDBMS). MySQL is
favourable for being open-source, well-received, able to
handle complex relational models and is performant [17].
Visibiome is connected to two main databases: (i) the
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Visibiome database (Dy/) and (ii) the indexed microbiome
database (Dys). Dy contains user schema and user query
metadata while Dj; houses an annotated database assem-
bled from various other microbiome databases (described
in [18]), comprising additional information for samples
(such as sample size, Environmental Ontology (EnvO)
annotation) and GreenGenes OTUs (taxonomic lineage,
16S rRNA copy number). Visibiome mainly performs
complex, multiple read queries on both databases and few,
simple write queries on Dy. While it can reduce con-
nection lag to install Dy and Dy in the same vicinities
as the computation server, competitions for CPU threads
can happen when a query is invoked. Visibiome prefers
decoupling the database from the server. This separation
enables the web server to focus on serving the web appli-
cation while a dedicated MySQL server performs complex
queries.

Similarly, for the web server, CPU thread hogging of
the query computations over the service of web pages can
happen. In this scenario, it is likely that usability of the sys-
tem will diminish. To remedy this, we deploy Celery for
task queuing and deferring [19]. Celery enables multiple
tasks to be processed in parallel provided that the server
has enough CPUs to match the number of “workers”
(entities which perform computations). Task queuing is
automatically managed by Celery and can be configured
to prioritize urgent tasks (for example, lengthy computa-
tions). Celery requires a message queuing service to queue
the tasks. In Visibiome, we employed Redis as the message
queuing service for its high-performance and speed [20].

Newer standards of server technology has made deploy-
ment of web services highly automated. Legacy solutions
involving configuration is being replaced by conventional
means. Interfacing web services through Web Service
Gateway Interface (WSGI) is currently a growing stan-
dard of which Visibiome takes advantage. Visibiome is
served using Nginx and uWSGI to improve speed over
traditional Apache servers. To ensure rapid content deliv-
ery, considerations have been made for transferring large
files and potentially blocking code. For scalability, we
deploy Visibiome on an Amazon AWS EC2 server fea-
turing flexible CPU and memory scaling and providing
global access for users. A typical schematic of the technol-
ogy and data flow of the Visibiome system can be seen in
Fig. 1.

Using Visibiome and the user interface

Visibiome is free for public use through its web inter-
face on https://visibiome.org/ (see for more options in
“Availability” section). Before submitting a sample into
Visibiome, users are encouraged to register an account.
Anonymous submissions will be stored in a private guest
account which is automatically created upon submis-
sion. It should be noted that although guest accounts
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are private, all guest accounts share the same password.
Also, guest accounts are temporary and will be deleted
within 24 h along with any submissions, uploaded files
and processed files attached to the guest account. To avoid
loss of processed submissions, the user can upgrade the
guest account into a full-fledged account by updating their
username and password for the guest account.
Submissions into Visibiome are OTU tables in BIOM
format [6]. These can be produced with currently avail-
able services such as VAMPS [9] or Qiime [21]. The
BIOM format is notably common (for marker-gene data),
standardized and size-efficient. Visibiome accepts BIOM
tables in the following file formats: TSV (tab sepa-
rated values), JSON or HDF5 which allows the data
to be human-readable and also space-efficient. User-
submitted BIOM tables must be produced by closed-
reference OTU picking against GreenGenes 13.5 [22] in
order to ensure comparability to database samples, but
also guarantee fast taxonomic composition analysis of
user samples. Visibiome will yield errors for BIOM tables
subjected to de novo and open referenced OTU pick-
ing. This restriction is imposed by the indexing of Dy;.
Note that closed reference OTU picking is far more suit-
able for the type of database search presented here, and
we further justify this choice in the “Results” section.
In addition, we provide the possibility for users to sub-
mit FASTA files with sequence identifiers that are in
a format as expected by QIIME’s OTU picking scripts
(<sample-id>_ <sequence-id>, see QIIME’s doc-
umentation on file formats, giime.org/documentation/
file_formats.html). Visibiome automatically recognizes
FASTA files (by file extension) and picks OTUs com-
patible with the outlined workflow. For full metage-
nomic shotgun datasets we recommend to preprocess the
sequences with tools that produce taxonomic profiles,
such as SortMeRNA [23]. Last but not least, Visibiome
works with normalized and non-normalized OTU counts
by prompting users to normalize 16S copy numbers during
query (which is achieved by extracting pre-calculated values
for all OTUs from the database, populated with PICRUSt’s
script normalize by copy number.py [24]).
Present-era web applications often feature data man-
agement and browser-based user interface; for example,
in the realm of bioinformatics: [5, 9, 25, 26] and many
others. Considering the numerous combinations of query
settings and outputs available in Visibiome, a simple but
sophisticated organization of these information is imper-
ative. We ease client-side file management by recording
user submissions as individual entities called jobs. When
performing a query, a user provides settings and filters for
a job, along with the desired BIOM file, before submitting
it into the system. All jobs are private to the submitting
user and are conveniently listed in the user dashboard.
Jobs are annotated with metadata which includes links
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Visibiome System

distributed access to the service.

Celery is a Django-compliant Python package which
o acts as the task scheduler for large jobs. It requires
a Redis (or similar message queuing system)
deployment.

Django provides the framework for modular
development and user interface.

Nginx is the preferred server for its robustness and
ease of setup. (Flexible)

On live deployments, Amazon EC2 is being used for
ease of scaling and access. The EC2 server also acts
as the computational machine. Locally, an Ubuntu
virtual machine is sufficient. (Flexible)

User submitted files and processed visualizations
6  stored in a Linux filesystem for security and quick
access.

database which contains pre-computed sample distances and metadata
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1 Visibiome features a web-based user interface for = Redis is used for message queuing as per the

requirement of Celery. (Independent, Flexible)

The Visibiome database containing the web-
8 ' application related data (e.g. user information, job
information, etc.). (Independent, Flexible)

The Microbiome database containing 16s rRNA
profiles, EnvO, etc. (Independent)

Binary data of numpy array of pre-calculated database
10 ' sample distances in numpy matrix format and HDF5
format.

Original heterogenous datasets processed into a

1 single contiguous MySQL database.

Pre-computation of the database sample distances
12 from various published sources of microbiome data
stored in the filesystem

Fig. 1 Visibiome's schematic. A brief schematic of a typical Visibiome deployment showing implemented technology (depicted as different shapes
and models) and data flow paths (depicted as arrows). Visibiome features a distributed architecture. Independent entities can be deployed as a
dedicated service rather than coupled to the web server. Flexible entities can be customized to user preferences such as RDBMS. The schematic
shows how data are transferred between the implemented technology. The orange paths depict user interaction to the web server. The green paths
depict data flow when queries (computations) are performed. The grey path shows the set of original databases compiled into a single MySQL

to access the output visualizations, time-based informa-
tion, all user-selected settings during query and any error
messages encountered during processing. Jobs can also be
removed and rerun.

Visibiome produces visualizations of user queries as
an output. Visualizations are displayed on the user’s
browser by leveraging cutting-edge plotting libraries:
matplotlib [27], d3.js [28] and mpld3 [29]. These
output visualizations are separated into different pages.
The “Ranking” page presents a high-level summary of the
search query. Closest matching database samples to the
user-queried samples are ranked into a list of cards. Each
card contains metadata relating to the database-matched
samples and, where possible, provide a URL to the source
of the data. The “Ranking” page also features barcharts for
comparison of sample compositions, thus allowing users

to inspect the culprit of taxonomic similarity between
query samples and matched samples, see Fig. 2. Visibiome
produces interactive, zoomable barcharts for up to three
user selected taxonomic ranks. An interactive, metadata-
labelled, principle coordinate analysis (PCoA) plot is also
available with zoom functionality to closely distinguish
sample points. Queried samples can also be contextual-
ized through a metadata-labelled dendrogram plot of the
closest matches. More details regarding the contextualiza-
tion of the samples can be found in later sections of this
work. For a list of secreenshots of Visibiome, see Fig. 3.

Search algorithms

In order to speed up search against a large database,
we deploy two fast search algorithms: Geometric
Near-neighbor Access Trees (GNATs) [13] and the
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Fig. 2 Compositional comparison of query sample and matched sample. The barcharts show compositional correspondences on genus-, family-,
and phylum level. The fractions of constituents are consistently ordered with respect to the size in the query sample. This facilitates visual inspection
as to why samples have been deemed similar in terms of the chosen distance measure

Visibiome (alpha release)
A webserver to Visualize Diversity Against Annotated 16s rRNA Microbial Profiles

Analyze your 16s rRNA sample against the reference database. Need help? Check out the help pages for information on what to submit. You could also view a pre-run job

Name Unnamed Job

OTU table Paste 0TU table here
5 OTUs only!

GreenGenes

Choose File | No file chosen

|=nagse e |

Select the ecosystem(s) @ Al Freshwater Plant
Animal/Human Marine Geothermal
Anthropogenic Soil Biofilm

| GNAT/UniFrac ¥ 03v|

Analysis type Range query value

@ Phylum Order @ Genus

Class w Family

Fig. 3 Screenshot of the user interface. User interface with input mask, providing the user with several ways to upload an OTU table in BIOM format
or raw sequences in FASTA format and to select search criteria to narrow the search to a subset of predefined ecosystems. Users can also supply
other available search parameters to a query such as the distance measure and the ranking levels for visualization
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Approximating and Eliminating Search Algorithm (AESA)
[30]. While GNATS are suitable for larger databases due to
the lower (subquadratic) precalculation cost, AESA excels
by reducing the number of distance (metric) computa-
tions per query to O(1) on average. We chose GNATSs
and AESA over other similarity search techniques due
to their great performance in high-dimensional metric
spaces. We combine both algorithms with an optimized
weighted UniFrac calculation as metric. As we use Green-
Genes 13.5 as closed reference, every sample is expressed
as a sparse vector of (relative) abundances of dimension-
ality equal to the size of our OTU reference (99.325 OTUs
for 97% sequence identity) which we denote as L.

We use the Python based GNAT implementation
from coord util [31], which is compatible with any
user defined metric. We implemented AESA accord-
ing to the algorithm description in [32]. We use our
previously published and indexed MySQL database for
rapid sample information retrieval [18]. We calculate the
weighted UniFrac metric using an optimized version of
EMDUnifrac [33], an efficient algorithm inspired by the
recognition that weighted UniFrac is a metric equivalent
to the Earth Mover Distance (EMD) [34]. EMDUnifrac
starts with relative abundance differences at the leaves
of the phylogeny and propagates “earth” (here: abun-
dance differences) in a bottom-up manner, while balanc-
ing sources and sinks during each traversed node. The
original algorithm traverses every node of the phylogeny
and its complexity is provided with O(L). Note that the
chosen choice of similarity threshold (here 97%) relates to
L and hence affects the emdusparse In our case, L is very
large. To further reduce the complexity, we base our opti-
mization on the observation that most abundance vectors
are sparse (i.e. 0 for most OTUs) and thus do not con-
tribute to the distance calculation. We therefore consider
only leaves that have non-zero abundance differences. To
account for the varying depth of the GreenGenes phy-
logeny we perform tree traversal strictly level-wise using
a list of dictionaries, one for each level. The dictionaries
maintain the amount of unbalanced “earth” received from
its children. Only when all children are processed can the
remaining amount be propagated to the node’s parent,
if the amount is non-zero. We refer to this algorithm as
emdusparse.

We build GNATs for the entire database comprising
|M| = 24.615 samples as well as for individual ecosystems.
We denote the cardinality of the user-submitted samples
as |N|, which varies between 1 and 10 in the interest of
timely computation. Contextualization through principal
coordinates analysis (denoted as PCoA) and Hierarchical
Clustering (denoted as HC) requires a complete |M' U
N| x |M’' U N| distance matrix that includes meaning-
ful samples from our database (M’ C M) as well as
the provided user samples (N). For each user sample, we
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initiate a GNAT range search with a distance threshold of
0.3 (motivated by the empirical p-value discussed below
and the amount of pruning that is possible with smaller
thresholds). All computed distances of encountered com-
parisons are recorded; however, the encountered GNAT
nodes for each search differ from user sample to user
sample, in particular when user samples are very dif-
ferent from each other. In our implementation, a full
beta-diversity distance matrix without missing values is
required for contextualization (HC, PCoA). We therefore
consider only those database samples that have been com-
pared to all user samples during the individual GNAT
searches. From this set, we retain only those that are
within the top k (default 20) for at least one of the user
samples, yielding a conveniently sized context M. Note
that the encounters of samples associated with GNAT
nodes make for a meaningful combination for contextu-
alization: a few remote samples (from top-level GNAT
nodes) and a number of more closely related samples as
the GNAT search narrows in. This procedure yields a
|M'| x |N| distance matrix without missing values (see
also Fig. 4, second and third item in the box for Analysis
Type I). We then compose the complete matrix as fol-
lows: the |[M’| x |M’| distance matrix is extracted from
the pre-calculated |M| x |M| matrix (fourth item in Anal-
ysis Type 1, Fig. 4). The required (') = 302.961.420
weighted UniFrac calculations were performed on our
in-house High Performance Computing Center using a
parallelized script splitting the task into 10.000 jobs over
384 processors. In order to extract the submatrix from this
matrix (4.6 GB on disk space), we use NumPy, Dask [35]
(which facilitates out-of-core computation), and fancy
indexing with the matrix being stored in HDF5 format.
The user samples N are compared with each other, calling
emdusparse for each pair (fifth item in Analysis Type
I, Fig. 4). We finally combine all submatrices to obtain
the complete beta-diversity distance matrix for all samples
including the context M’ and the user samples N.

Note that GNAT and AESA require distance measures
that are metrics, i.e. fulfil the triangle inequality, are sym-
metric and non-negative, which is not the case for the
popular Bray-Curtis dissimilarity. To address the lack of
such properties, we introduce a coarse-level search algo-
rithm by searching against up to 1000 randomly-selected
representative samples (derived from HC) seeded from
a pool of representatives by an ecosystem filter. Once
completed, the user samples are contextualized against
the representative samples by means of visualizations.
We pre-calculated the Bray-Curtis dissimilarity for a large
subset of 10.500 samples in the database. For PCoA/HC
that requires a complete beta-diversity distance matrix,
a query sample still would give rise to M individual
comparisons. However, by comparing only against rep-
resentatives, we can substantially reduce the amount of
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Fig. 4 Visibiome’s workflow. The figure outlines the typical workflows when using Visibiome. The upper part deals with the Web interface and user
interaction. At the core of Visibiome are two analysis types, comprehensive/phylogeny based and quick/non-phylogenetic distance based. Note
that Analysis Type | (GNAT search) selectively compares to chosen database samples during GNAT traversal which are specific to the query sample.
For some parts of the visualization however, a complete beta diversity distance matrix is required. As a consequence, the algorithm chooses M’
samples from the intersection of the individual search spaces. Moreover, barcharts for compositional comparisons* are currently only generated for

comparisons to identify the top k samples and to produce
a relevant beta-diversity distance matrix.

Contextualization

The dataset used in this work to contextualize user-
submitted samples is described in [18]. Notably all
samples are associated with metadata. In particular,
standardized, hierarchically structured descriptors about
the sample’s environment are utilized: every sample

from QIIME-DB contains up to three annotations from
the Environmental Ontology (denoted as EnvO, [36]),
namely environmental material, environmental feature
and biome. Other samples in the dataset did not have
EnvO annotations originally and were added retroactively
using text mining as described in [18]. For improved com-
prehension of context, further grouping of EnvO annota-
tions into high-level ecosystems (soil, human-associated,
fresh water, marine, plant associated, etc.) were carried
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out exploiting the hierarchical nature of the ontology, the
details of which are also provided in [18].

Results and discussion

We here presented a multi-component architecture that
performs search and contextualization of microbial com-
munity 16S rRNA profiles against a large database of
samples from all environments. Several computational
challenges are tackled. The overall work-flow is shown
in Fig. 4. In summary, user samples uploaded to the web
server undergo a series of analysis types, namely search
against the database, yielding a ranking of closest matches.
Subsequently, the algorithm constructs an extended dis-
tance matrix—while utilizing pre-calculated distances for
database samples—in order to perform PCoA and HC
of ranked database samples and user samples together.
A typical result is shown in Fig. 5: the user can see
the submitted samples in relation to each other and in
the context of the closest matches. More screenshots
are in the Additional file 1: Figures S4—S8. We provide
two types of searches, one for the most popular non-
phylogenetic distance measure (Bray Curtis dissimilarity)
and one for the most popular phylogenetic distance mea-
sure, weighted UniFrac. The latter is a distance metric
and as such lends itself to similarity search algorithms in
metric spaces. The dimensionality of the metric space is
in our case determined by the size of the deployed refer-
ence library, GreenGenes 13.5, as samples are represented
as equal-sized OTU abundance vectors. The high dimen-
sionality is thus a result of the recognized microbial diver-
sity and it is conceivable that this number is to grow even
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further as more OTUs enter the reference. We reference
[37], who reported 5.6 million OTUs from open reference
picking.

Feasibility of OTU picking strategies in online database
search

While open reference or de novo OTU picking is desirable,
it would incur further requirements and inaccuracies: in
addition to extremely high dimensionality in open ref-
erence picking, OTU picking (at least for the de novo
part) would be required for the entire database after user
submission. Moreover, an all-encompassing phylogeny
(including de novo OTUs) is needed to run UniFrac (or
any other phylogenetic distance measure), a demanding
feat best performed on full length sequences (it is not
straightforward, how phylogenies for millions of OTUs
should be generated). Last but not least, open reference/de
novo OTU picking is not feasible for comparison of sam-
ples for which non-overlapping segments (i.e., different
hypervariable regions where sequenced) which limits the
scope of meta-analyses further. Instead, we here esti-
mate the impact from the loss of information for the
task of similarity search to show that closed reference
based distances are a suitable approximation. We cal-
culate B-diversity distances with and without sequences
that don’t match the reference for a set of environmental
samples that have around 66% matches against the refer-
ence (GreenGenes 13.5), see [18], Table S2 therein. The
results show that distance calculations do not differ much
(Additional file 2) and hence rarely affect the ranking in
similarity searches.
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Fig. 5 PCoA plot of user-submitted samples against closest matches. The figure shows a typical PCoA plot from the output of querying several
samples (depicted as red star points) against the Visibiome database samples (depicted as circular points in varying colors). The PCoA plot allows
users to contextualize the submitted samples against its closest matching database samples. Visibiome displays the matched samples with
ecosystem labels and EnvO labels. Other metadata are also attached to each sample point (if available)
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Search efficiency

We investigated the state-of-the-art Nearest Neighbor
search techniques such as K-D trees, Ball Trees, and Van-
tage Point Trees explained in [32]. All of them performed
poorly (i.e. resorted to brute force linear search) due to the
very high dimensionality of the present search space. Only
GNAT and AESA avoided a complete linear search, but
the former still required several thousands of comparisons
during a single query while the latter reduced compar-
isons significantly (for details, see Additional file 1: Figure S9.
On the other hand, note that the pre-calculation of the
complete |M| x |M]| distance matrix constitutes the main
computational challenge and is the central requirement
for AESA. Therefore, contextualization and AESA search
will only be possible for mid-size databases, while GNAT
can go beyond. Since also the phylogeny-based distance
measure calculation is computationally expensive, we
not only minimized the number of calculations but also
optimized the distance measure (weighted UniFrac) itself
through building on recent results presented in [33], in
which the authors present an algorithm that traverses the
entire phylogeny (i.e., 198.642 nodes for the comprehen-
sive GreenGenes phylogeny encompassing 99.325 OTUs
from 97% sequences similarity clustering). The sparse
vector based calculation presented here led to a reduc-
tion of traversed nodes as exemplified for ten samples in
Fig. 6. The boxplot shows, for each sample, the number
of traversed nodes of the reference phylogeny when
emdusparse is invoked with the samples encountered
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during GNAT search (each yielding a data point, respec-
tively). This approach requires only the traversal of
subtrees above leaves with non-zero abundance dif-
ferences. Thus, by traversing only the relevant part of
the phylogeny, the number of visited nodes is roughly
two orders of magnitudes smaller than the full-size
phylogeny.

Note that rarefaction further decreases the number of
non-zero entries in abundance vectors by ridding low
abundance OTUs. Also note that traversal is generally
faster for less complex samples with lower numbers of
OTUs, i.e., lower (phylogenetic) «-diversity.

We empirically evaluated the running time of Analysis
Type I and Analysis Type II by simulating user submis-
sions. Each submission contains varying number of sam-
ples and are distributed randomly. For GNAT search and
Bray-Curtis distance, the number of samples range from 1
to 10 samples; for AESA search, 10 to 100 samples in inter-
vals of 10. Samples were randomly generated from various
sources such as NCBI SRA, MgRAST and unpublished
samples, meaning that submissions can contain samples
which are very distant and possibly foreign to the server
samples. To be conservative, we measured the running
time of each analysis type from the moment the submit-
ted BIOM file was validated. The preceding measurement
takes into account all facets of the computations in Vis-
ibiome: computation of pairwise distances, querying of
the pre-indexed database, queuing times and generation
of visualization files.
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Fig. 6 Efficient search through search spaces similarity search and sparse EMD-UniFrac (emdusparse). The number of nodes visited during an
individual emdusparse traversal of the reference phylogeny reduces from 198.642 to an average of 400-1300 nodes, i.e. 0.2-0.6%, respectively.
Note that for each boxplot we collected the traversal counts from all emdusparse comparisons during the entire GNAT search for the respective
sample. The speedup is particularly noticeable for samples with few distinct or phylogenetically similar OTUs
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The evaluation was done on a t2.medium AWS EC2
machine (specified to have 2 vCPUs and 4GB of RAM)
utilizing two Celery workers to perform search queries.
We subjected the submissions into two scenarios: (i) when
the server is under no stress and search jobs are initiated
infrequently and (ii) when the server is under stress of
a large influx of jobs. We make our case by performing
searches against the “All” criteria, implying searching over
all ecosystem types, which is a heavy workload. To artifi-
cially replicate scenario A, a script automatically submits
a new search job every 15 min. For scenario B, the time
interval between new search jobs is 15 s. A total of 200
jobs were submitted split over 10 sample sizes giving 20
data points per sample size.

We found that in scenario A (Additional file 1: Figure
S1(a)), Analysis Type II generally performs a search
against “All” ecosystems in under one minute. This is
attributed to the minimal queuing time for each search
job and the coarse-grained nature of the Bray-Curtis anal-
ysis type. The processing time rises due to the complexity
of pairwise distance calculations for increasing number of
samples. The results of Analysis Type I (for both GNAT
and AESA search) were similar: ranging from an average
time of just under 2 min for a submission containing 1
sample (and 10 samples, respectively) up to 13 min for
10 samples (and 100 samples, respectively). See Additional
file 1: Figure S2 and Fig. 7 for the empirical plots. For
scenario B, it can be seen in Additional file 1: Figure
S1(b) that, under heavy stress, Analysis Type II completes
in around 5 min, on average. Again, similar trends were
observed in Analysis Type I although queuing times were
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significantly longer (see Additional file 1: Figure S2 and
Fig. 8).

This delay is due to the random queue into which
jobs are put. Since jobs are collected asynchronously
into a queue, and coupled with the speed at which jobs
are invoked, jobs can be processed much later although
requested earlier. The randomized queuing is unfortu-
nately a feature of Celery which can possibly be mitigated
by relaying jobs into priority queues. The algorithm for
performing the relays are nontrivial and can have caveats
in real scenarios due to randomness.

To evaluate the running time of range searches at dif-
ferent range values, we subjected a single sample size to
the different meaningful ranges provided in Visibiome
(which are 0.1, 0.2, 0.3 and 0.4). Similar to the tests we
performed above, we executed 20 trials for each range
with randomized samples under low and high stress. The
results can be viewed in Additional file 1: Figure S10
and S11. As expected, we see similar trends to the anal-
ysis shown in Additional file 1: Figure S9 depicting a
polynomial increase in number of comparisons. In high
stress situations, the queuing of jobs levels the processing
time although at 0.4 range the running time are mostly
escalated.

It is important to note that the running time of search
queries have been recorded to be as long as 48 h for AESA
search (again, due to extended queuing instead of pro-
cessing time) when the server is encumbered. We expect
such scenarios to be unlikely and can be mitigated by
scaling up the server specifications and employing more
Celery workers. Note that thanks to cloud elasticity, this
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step has minimal requirements: we just had to order
additional (virtual) hardware for a short period of time.
To evaluate this, we scaled up the deployment server
from t2.medium to c4.4xlarge with 16 vCPUS and
30 GB of RAM and employed only 8 Celery workers.
We subjected the same high-stress scenario as previously
described to GNAT and AESA search. The results for the
simulation under high stress situations revealed that run-
ning times were significantly reduced by upscaling (see
Fig. 8 and Additional file 1: Figure S3).

According to these findings, our suggestion for prospec-
tive heavy users is to download the prepared distribu-
tion of Visibiome and perform queries on their personal
computers. We envision a way to make Visibiome more
available to users: our modular, scalable architecture lends
itself to crowd-deployed pool aggregation of Visibiome
servers, from which users can select to quickly obtain
results from their queries.

Comparison to existing microbial community analysis
tools/databases
Our web interface, job management and querying features
are akin to those presented in IMNGS [25], although no
searching of 16S rRNA profiles against a comprehensive
database was provided in the system. Our approach com-
pares well to Meta-Storms [5], the only other published
microbiome search engine (to the best of our knowledge).
In the original work, Meta-Storms was described to
require the building of a database from samples collected
by the users before comparison is done. Visibiome features
a comprehensive set of prepared samples against which
user samples can be immediately compared removing

the need to self-curate databases. While an example
database was provided for demonstration purposes in
Meta-Storms, Visibiome boasts a much larger sample
database. The sample sources collected in Visibiome were
formed from various study sizes but is broad in terms of
ecosystems. Meta-Storms (as part of the Parallel-META
pipeline [38]) can make use of the GPU for faster pro-
cessing. On the other hand, Visibiome focuses on being
catered to commodity server hardware, enabling cheap
horizontal and vertical scaling. A summary of these differ-
ences are listed in Table 1.

Sample comparison in Meta-Storms is guided by indices
derived from the ordered top five most abundant phyla
of a sample. A quick analysis in our database of 24.615
samples shows a relatively large number of False Neg-
atives, i.e.,, samples that would not be retrieved but
should have been: from the (24315) pre-calculated dis-
tances, we chose distances that are below a certain thresh-
old. From the selected distances, we check whether the
corresponding sample pair has differing indices. The
results are shown in Table 2. Even with a very small
UniFrac distance of 0.1 (wrt. the utilized GreenGenes
phylogeny), a substantial number (1402) of pairs of sam-
ples have differing top 5 phyla indices. With our Analysis
Type I search we avoid this type of error all together.
Instead we ensure efficient computation and 100% recall
(wrt. to the user provided range search threshold) algo-
rithmically: When using precalculated data structures,
the search space is rapidly pruned by discarding all
samples for which their representatives are too dis-
tant from the query, in terms of the chosen ecological
distance metric.
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Table 1 Comparison of key features between Meta-Storm and

Visibiome
Criterion Meta-Storms Visibiome
Scalable architecture No Yes
Job-queuing/Scheduling No Yes
GPU support Yes No
(Parallel-Meta)
Web interface No Yes
Database implementation Indexed Flat files MySQL and
NumPy matrix
Database size 1,318 samples 24615
Number of studies 18 2767
Input Custom FASTA or BIOM
Preprocessing
Max. samples per submission 1 10 (GNAT)/100
(AESA)
Copy number correction No Yes
Adaptive Rarefaction No Yes
Interactive bar diagrams No Yes
PCoA Yes (Parallel- Yes
Meta req.)
Hierarchical Clustering Yes (Parallel- Yes
Meta req.)
Distance Measure Unifrac-Like Score EMD-UniFrac

Significance of matches

We estimate the significance of a match m to a query sam-
ple g by calculating the empirical p-value (see Fig. 9): the
computed distance between a query and a match is put
into perspective by relating to all 302 Million observed
distances, i.e., what fraction of them is smaller than the
distance d(m, q), see Eq. 1.

_Hm' m" e M| d(m',m") < d(m,q)}|
- )
2
In order to perform this computation efficiently, we pre-
calculated a histogram of distances with 10.000 bins and

1

Table 2 Observed False Negatives for top 5 phyla indexing (as
done in Meta-Storms) in the presented database, i.e,, the number
of sample pairs below a specified threshold though with differing
top 5 phyla indices; listed in dependence of various UniFrac
thresholds

Weighted UniFrac Total pairs Pairs with Percentage
threshold below threshold different keys

0.05 28,247 351 1.24

0.10 96,977 1,402 145

0.20 846,107 14,993 1.77

030 4,847,874 91,902 1.90

Note that this type of error is avoided in our work by the use of GNAT data
structures (Analysis Type I)
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in turn, the cumulative sum thereof, thus obtaining an
accurate estimate for the numerator in Eq. 1.

Application of Visibiome
Recall the findings in [1] where the authors found
deep subsurface metagenomes to be similar to forest
metagenomes. In light of this relatively “alien” sample,
we took to Visibiome to discover other similar samples.
We subjected the subsurface samples (which varied in
the sampling depth) to the available search methods in
Visibiome and discuss the results.

The output results from Visibiome can be viewed (pub-
licly) at the following links

e GNAT search: https://visibiome.org/public/jobs/
2801/details

e AESA search: https://visibiome.org/public/jobs/
2800/details

e Bray-Curtis search: https://visibiome.org/public/
jobs/2797/details

Surprisingly, the deepest sample (SRR1777625) exhibits
similarities to database samples from entirely different
environments, not reported previously. Figure 2 shows the
compositional similarities to one of the closest matches,
sample ID 4.1.CD.N from Qiita study 314: airborne
microbial communities at high altitude. Both samples
are composed of the families Comamonadaceae, Pseu-
domonadaceae, Methylobacteriaceae, Oxalobacteraceae,
Xanthomonadaceae and Propionicateriaceae. On genus
level, compositional similarities are less obvious. We argue
that these nontrivial commonalities are rarely possible to
retrieve manually from a search space of many thousands
of samples.

Availability

All described functionality is freely accessible through the
web interface https://visibiome.org/. We provide the web
interface generously but users may suffer from long queue
times as a result of few CPUs available to process jobs
in parallel. The choice of few processing CPUs is in the
interest of minimizing hosting costs and it is encouraged
that prospective users download a distribution of Visi-
biome for personal use. For those who intend to have a
personal deployment of Visibiome, a VirtualBox distribu-
tion with Ubuntu and Visibiome is also freely available for
download. The current implementation of Visibiome has
some strict, albeit light, system requirements to be usable
on an independent installation. Visibiome has only been
tested to work as expected on Ubuntu 12.04 or newer.
A minimum of 3 GB of RAM is recommended due to
the need to load large files during computation; however,
Dask based out-of-core computation enables functioning
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on lower specifications. Adequate storage is necessary
for pre-calculated data, the indexed MySQL database and
user-uploaded files. As explained previously, Visibiome
pairs with Python libraries seamlessly giving users the
freedom to customize and augment the computational
scripts. The source code for Visibiome is available from
Bitbucket licensed under GPL v3.0. The Git repository
can be found at https://bitbucket.org/syaffers/visibiome.
git and the authors welcome future contributors to the
project.

Conclusion

Visibiome is a microbiome search engine that boasts
various architectural features to be scalable to many
simultaneous user requests. It was demonstrated to serve
computationally demanding jobs under high stress. We
also showed that job completion time scales well through
addition of more processors and according adjustment of
number of workers. In addition to the state of the art
job distribution and user management, users can provide
multiple samples at once, which are then compared to
each other as well as to the database.

We offer two types of analysis. The rationale for this
is to provide one phylogeny-aware search technique with
high accuracy (no false negatives as with phyla based
indices) and one search with speed as top priority with a
coarse-grained overview. For the former, we have imple-
mented a search engine that is able to perform thou-
sands of Weighted UniFrac calculations for a complete
database search in a reasonable amount of time thanks
to two main algorithmic advances: the use of GNAT and
AESA structures for microbiome similarity search and
the deployment of an optimized form of EMDUniFrac.

Visibiome is available as a web server, as source code or as
a pre-configured virtual machine.

Availability and requirements
Project name: Visibiome
Project home page: https://bitbucket.org/syaffers/
visibiome
Archived version: Not applicable
Operating system(s): Platform independent (tested
on Ubuntu 12.04 and above)
Programming language: Python
Other requirements: Nginx 1.10, MySQL 5.5, Redis
3.0.6, Python 2.7+, QIIME 1.9.1, NumPy 1.10+, see
requirements. txt in the repository for more
Python package requirements
License: GPL v3.0
Any restrictions to use by non-academics: None
The randomly generated BIOM tables used in this
study are available in the Amazon AWS S3 bucket,
https://s3.amazonaws.com/visibiome-data-files/
supplementary/generated-biom.tar.gz, https://
s3.amazonaws.com/visibiome-data-files/supplementary/
AESA-biom.tar.gz
Supplementary figures and data can be found in a git
repository, https://bitbucket.org/syaffers/visibiome-
supplementary/

Additional files

Additional file 1: Supplementary figures are collected in this document.
(PDF 723 kb)

Additional file 2: Spreadsheet comparing Open and Closed reference
OTU picking The file is a spreadsheet in Microsoft Excel format. (XLSX 15 kb)
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