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Abstract

Background: Gene Ontology (GO) is a community effort to represent functional features of gene products. GO
annotations (GOA) provide functional associations between GO terms and gene products. Due to resources limitation,
only a small portion of annotations are manually checked by curators, and the others are electronically inferred.
Although quality control techniques have been applied to ensure the quality of annotations, the community
consistently report that there are still considerable noisy (or incorrect) annotations. Given the wide application of
annotations, however, how to identify noisy annotations is an important but yet seldom studied open problem.

Results: We introduce a novel approach called NoGOA to predict noisy annotations. NoGOA applies sparse
representation on the gene-term association matrix to reduce the impact of noisy annotations, and takes advantage
of sparse representation coefficients to measure the semantic similarity between genes. Secondly, it preliminarily
predicts noisy annotations of a gene based on aggregated votes from semantic neighborhood genes of that gene.
Next, NoGOA estimates the ratio of noisy annotations for each evidence code based on direct annotations in GOA files
archived on different periods, and then weights entries of the association matrix via estimated ratios and propagates
weights to ancestors of direct annotations using GO hierarchy. Finally, it integrates evidence-weighted association
matrix and aggregated votes to predict noisy annotations. Experiments on archived GOA files of six model species (H.
sapiens, A. thaliana, S. cerevisiae, G. gallus, B. Taurus and M. musculus) demonstrate that NoGOA achieves significantly
better results than other related methods and removing noisy annotations improves the performance of gene
function prediction.

Conclusions: The comparative study justifies the effectiveness of integrating evidence codes with sparse
representation for predicting noisy GO annotations. Codes and datasets are available at http://mlda.swu.edu.cn/
codes.php?name=NoGOA.
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Background
With the influx of biological data, it is difficult for
researchers to collect and search functional knowledge
of gene products (including proteins and RNAs), as dif-
ferent databases use different schemas to describe gene
functions. To overcome this problem, Gene Ontology
Consortium (GOC) collaboratively developed Gene
Ontology (GO) [1]. GO has two components: GO and
GO annotations (GOA) files. GO uses structured vocab-
ularies to annotate molecular function, biological roles
and cellular location of gene products in a taxonomic and
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species-neutral way. Particularly, GO arranges GO terms
into three branches: molecular function (MF), biological
process (BP) and cellular component (CC). Each branch
organizes terms in a direct acyclic graph to reflect hierar-
chical structure relationship among them. GOA files store
functional annotations of gene products, which associate
gene products with GO terms. Each annotation encodes
the knowledge that the relevant gene products carry out
the biological function described by the associated GO
term. Hereinafter, for brevity, we abuse annotations of
gene products as annotations of genes.
GO annotations are originally extracted from published

experimental data by GO curators. These annotations
provide solid, dependable sources for function inference

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1764-z&domain=pdf
http://orcid.org/0000-0002-1667-6705
http://mlda.swu.edu.cn/codes.php?name=NoGOA
http://mlda.swu.edu.cn/codes.php?name=NoGOA
mailto: gxyu@swu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Yu et al. BMC Bioinformatics  (2017) 18:350 Page 2 of 13

[2], and are also biased by the research interests of biolo-
gists [3]. With the development and application of high-
throughput technologies, accumulated large volume of
biological data enable to computationally predict gene
functions. Various computational approaches have been
proposed to predict gene function without curator inter-
vention [4, 5]. Manually checking these electronically pre-
dicted annotations is low throughput and labor-intensive.
Electronically inferred annotations provide a broad cov-

erage and have a significantly larger taxonomic range
than manual ones [6, 7]. On the one hand, since these
annotations are not checked by curators, they may have
lower reliability than manual ones [8]. On the other hand,
curated annotations are restricted by experiment proto-
cols and contexts [3]. Therefore, both inferred and curated
annotations include some incorrect annotations [9]. As we
known, GO is regularly updated with some terms obso-
lete or appended as the updated biological knowledge.
Similarly, annotations of genes are also updated as the
accumulated biological evidences and evolved GO. How-
ever, we want to remark that the removed annotations in
archived GOA files, from our preliminary investigation,
do not solely result from updated GO terms and struc-
ture. For example, in an archived (date: May 9th, 2016)
GOA file of S. cerevisiae, ‘AAC1’ (ADP/ATP Carrier)
was annotated with a GO term ‘GO:0006412’ (transla-
tion), but ‘AAC1’ was not annotated with ‘GO:0006412’
in a recently archived (date: September 24th, 2016) GOA
file. Further investigation using QuickGO [10] shows
this removed annotation is not caused by the change
of GO. In fact, annotations in archived GOA files have
already underwent several quality control measures to
ensure consistency and quality [7]. Gross et al. [11] stud-
ied the evolution and (in)stability of GO annotations and
found that there were evolution operations for annota-
tions. These instable annotations are not only caused by
the changes of gene products or ontology, but also by the
incorrect (or inappropriate) annotations. Gross et al. [12]
further found that past changes in the GO and GOA are
non-uniformly distributed over different branches of the
ontology. Gillis et al. [13] also showed instabilities of anno-
tation data and detected that 20% annotations of the genes
could not be mapped to themselves after a two year inter-
val. Clarke et al. [14] investigated annotations and struc-
tural ontology changes from 2004 to 2012, and found that
annotation changes are largely responsible for the changes
of enrichment analysis on angiogenesis and the most sig-
nificant terms. These observations suggest that there are
some incorrect annotations in GOA files. Hereinafter,
we call these incorrect annotations as noisy annotations.
These noisy annotations can mislead the downstream
analysis and applications, such as GO enrichment analy-
sis [14, 15], diseases analysis [16], drug repositioning [17]
and so on.

Some researchers tried to improve annotation qual-
ity using association rules. Faria et al. [18] summarized
that erroneous annotations, incomplete annotations, and
inconsistent annotations affect the annotation quality, and
introduced a association rule learning method to evalu-
ate inconsistent annotations in the MF branch. Agapito
et al. [19] considered different GO terms have different
information contents, and proposed a weighted associa-
tion rule solution based on the information contents to
improve annotation consistencies. This solution only uses
one ontology. Agapito et al. [20] extended this solution
to mine cross-ontology association rules, i.e., association
rules whose terms belong to different branches of GO.
Despite these efforts to avoid errors and inconsistencies,
most groups are more concerned with replenishing (or
predicting) new GO annotations of genes than removing
noisy ones [5, 7], and how to predict noisy annotations is
a rarely studied but essential problem.
Each GO annotation is tagged with an evidence code,

recording the type of evidence (or source) the annotation
extracted from [1, 8]. GO currently uses 21 evidence codes
and divides them into four categories, which are shown in
Table 1. All these evidence codes are reviewed by curators,
except IEA (Inferred from Electronic Annotation). There
are several studies on assessing GO annotation quality
with evidence codes. Thomas et al. [21] recommended
to use evidence codes as indicator for the reliability
of annotations. They investigated annotations of differ-
ent species and categorized homology-based, literature-
based and other annotations, and found that literature-
based (experimental and author statement) annotations
are more reliable than others. Clark et al. [22] investi-
gated the quality of NAS (Non-traceable Author State-
ment) and IEA annotations, and found IEA annotations
were much more reliable in MF branch than NAS ones.
Gross et al. [11] estimated stability and quality of differ-
ent evidence codes by considering evolutionary changes.
Buza et al. [23] took advantage of GO annotation quality
score based on a ranking of evidence codes to assess the
quality of annotations available for specific biological pro-
cesses. Jones et al. [24] found that electronic annotators
that using ISS (Inferred from Sequence or structural Sim-
ilarity) annotations as the basis of predictions are likely to
have higher false prediction rates, and suggested to con-
sider avoiding ISS annotations where possible. All these
methods just analyze the quality of annotations for differ-
ent evidence codes. However, none of them pay attention
to automatically predicting noisy GO annotations.
Evidence codes are also adopted to measure the seman-

tic similarity between genes [25, 26]. Benabderrahmane
et al. [25] assigned different weights to GO annotations
based on the evidence codes tagged with these anno-
tations, and used a graph-based similarity measure to
compute the semantic similarity between genes. They
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Table 1 Four categories of evidence codes used in GO and their meanings

Experimental Computational Author Curatorial

EXP: inferred from experiment ISS: inferred from sequence or structural
similarity

TAS: traceable author
statement

IC: inferred by curator

IDA: inferred from direct assay ISO: inferred from sequence orthology NAS: non-traceable author
statement

ND: no biological data
available

IPI: inferred from physical
interaction

ISA: inferred from sequence alignment

IMP: inferred from mutant
phenotype

ISM: inferred from sequence model

IGI: inferred from genetic
interaction

IGC: inferred from genomic context

IEP: inferred from
expression pattern

IBA: inferred from biological aspect of
ancestor

IBD: inferred from biological aspect of
descendant

IKR: inferred from key residues

IRD: inferred from rapid divergence

RCA: inferred from reviewed
computational analysis

IEA: inferred from electronic annotation

observed this evidence weighted semantic similarity was
more consistent with the sequence similarity between
genes than the counterpart without considering the evi-
dence codes. Semantic similarity is found to be positively
correlated with the sequence similarity between genes,
protein-protein interactions and other types of biolog-
ical data [27, 28]. Given that, it has been applied to
predict the missing annotations of incompletely anno-
tated genes and to validate protein-protein interactions
[29–31]. Lu et al. [32] pioneered noisy annotations pre-
diction and suggested a method called NoisyGOA. Noisy-
GOA firstly computes a vector-based semantic similarity
between genes, and a taxonomic similarity between terms
using GO hierarchy. Then, it aggregates the maximal tax-
onomic similarity between terms annotated to a gene and
terms annotated to neighborhood genes. After that, it
takes terms with the smallest aggregated scores as noisy
annotations of the gene. However, NoisyGOA is still suf-
fered from noisy annotations in measuring the semantic
similarity between genes, and it does not differentiate the
reliability of different annotations.
There are more than 43,000 terms in GO and each

gene is often annotated with dozens or several of these
terms. From this perspective, the gene-term association
matrix, encoding GO annotations of genes, is sparse
with some noisy entries. To accurately measure the
semantic similarity between genes, we use sparse rep-
resentation [33], which has been extensively applied in
image and signal de-noising, sparse feature learning [34].
When the input signals are sparse with some noises,
sparse representation shows superiority in capturing the

ground-truth signals. Motivated by these observations,
we advocate to integrate sparse representation with evi-
dence codes to predict noisy annotations and introduce
an approach called NoGOA. NoGOA applies sparse rep-
resentation on the gene-term matrix to compute the
sparse representation coefficients and takes the coeffi-
cients as the semantic similarity between genes. Then,
it votes noisy annotations of a gene based on annota-
tions of its neighborhood genes. Next, it estimates ratios
of noisy annotations for each evidence code based on
archived GOA files in different releases, and weights each
entry of the gene-term matrix by estimated ratios and
GO hierarchy. The final prediction of noisy annotations
is obtained from the integration of the weighted gene-
term matrix and the aggregated votes from neighborhood
genes.
There are no off-the-shelf noisy annotations to quanti-

tatively study the performance of NoGOA in predicting
noisy annotations. For this purpose, we collected GOA
files archived on four different periods, May 2015, May
2016, September 2015 and September 2016. For each year,
we call the GOA file archived in May as the historical
one, and the GOA file archived in September as the recent
one. We take the annotations available in the historical
GOA file but absent in the recent one as noisy annota-
tions. Based on this protocol, we conducted experiments
on archived GOA files of six model species (H. Sapiens,
A. thaliana, S. cerevisiae, G. gallus, B. Taurus andM. mus-
culus). Comparative study shows that noisy annotations
are predictable and NoGOA outperforms other related
techniques in predicting noisy annotations. The empirical
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study also demonstrates removing noisy annotations can
significantly improve the performance of gene function
prediction.

Methods
Let A ∈ R

N×|T | be a gene-term association matrix, N is
the number of genes, T is the set of GO terms and |T | is
the cardinality of T . A is defined as follows:

A(i, t) =
⎧
⎨

⎩

1, if gene i is annotated with
term t or t′s descendants
0, otherwise

(1)

The objective of NoGOA is to identify noisy annota-
tions in A and update corresponding entries from 1 to
0. Although identifying noisy annotations can be viewed
as a different face of gene function prediction, we still
would like to remark that identifying noisy annotations is
different from replenishing missing annotations of incom-
pletely annotated genes [29, 31], which updates some
entries of A from 0 to 1. It is also different from negative
examples selection [35, 36], which updates some entries
of A from 0 to -1 and indicates that the relevant genes are
clearly not annotated with the given GO terms.

Preliminary noisy annotations prediction using sparse
representation
In this section, we firstly compute the semantic similar-
ity between genes, and then use this similarity to select
neighborhood genes of a gene and to preliminarily infer
noisy annotations. There are some noisy annotations in
theGOA files. In other words, there are some noisy entries
in A. Although various semantic similarity measures have
been proposed and widely applied, most of them are still
suffered from shallow and incomplete GO annotations
of genes [27, 28, 37, 38]. Sparse representation has been
widely and successfully applied to handle images with
blurs, speech data with noises and to recover samples with
noisy features [33, 34]. Actually, the portion of non-zero
entries in A is no more than 2%. Therefore A is a sparse
matrix with some noisy entries. Given the characteris-
tics of A and of sparse representation, we resort to sparse
representation on A to measure the semantic similarity
between genes. In this paper, we use an l1 norm regular-
ized sparse representation objective function as follows:

γ̂i = argmin
γ i

||A(i, ·)−γ T
i Āi||2+λ||γ i||1, s.t. γ i ≥ 0 (2)

The target of sparse representation is to find a sparse
coefficient vector γ i ∈ R

(N−1), with A(i, ·) ≈ γ T
i Āi

and ||γ i||1 is minimized. ||γ i||1 is the l1 norm that sums
the absolute values of γ i, and minimizing ||γ i||1 can
enforce γ i to be a sparse vector. λ(> 0) is a scalar reg-
ularization parameter that balances the tradeoff between
reconstruction error and sparsity of coefficients [34]. Āi ∈

R
(N−1)×|T | is a sub-matrix ofAwith the i-th row removed.

In this way, A(i, ·) is linearly reconstructed by other rows
of A, instead of itself. γ i(j) can be seen as the reconstruc-
tion contribution of A(j, ·) to A(i, ·). In other words, the
larger the semantic similarity between A(i, ·) and A(j, ·),
the larger the γ i(j) is. Here, we solve the optimal γ i
using the sparse learning with efficient projection package
[39]. To further explain the usage of sparse representa-
tion to measure the semantic similarity between genes, we
provide a simple workflow in Additional file 1: Figure S1.
Next, we employ γ i to define the semantic similarity

between the i-th gene with respect to other genes, and
use S ∈ R

N×N to store the semantic similarity between
N genes. S(i, ·) stores the similarity of the i-th gene with
other genes, and it is defined as follows:

S(i, j) =
⎧
⎨

⎩

γ i(j), if j < i
γ i(j − 1), if j > i
0, otherwise

(3)

By iteratively applying Eqs. (2–3) for N genes, we can
sequentially fulfil each row of S. The similarity between
a gene and itself is set as 0, since noisy annotations of a
gene are predicted based on the annotations of seman-
tic similar genes of that gene, instead of itself. To make
S being a symmetric matrix, we set S = (ST + S)/2. In
fact, various approaches [34] utilize Eq. (3) to measure the
similarity between samples, and find this similarity often
performs better than many other widely-used similarity
metrics, and is robust to noisy features.
A simple and intuitive idea to predict noisy annotations

of a gene is to select neighborhood genes of a gene based
on the semantic similarity between them and regard these
genes as voters, and then to vote whether a term should
be removed or not, based on the term’s association with
these voters. The fewer votes the term obtains, the more
likely the term as a noisy annotation of the gene is. In fact,
this idea is widely used to aggregate annotations and to
solve the disagreement between annotators [40, 41], and
also adopted by NoisyGOA [32]. However, this idea does
not differentiate varieties of neighborhood genes. To take
into account these varieties, we use the semantic similarity
derived from sparse representation to predict noisy anno-
tations. If t is annotated to gene i, namely A(i, t) > 0, the
aggregated vote of t for the gene is counted as follows:

VSR(i, t) =
∑N

j=1
S(i, j) × A(j, t) (4)

Equation (4) is similar to a weighted k nearest neighbor-
hood (kNN) classifier [42], since S(i, ·) is a sparse vector
with most entries as (or close to) zeros and neighbor-
hood genes of gene i are automatically determined by
these nonzero entries. Equation (4) can be regarded as a
weighted voting method and the weights are specified by
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the semantic similarity between them. If a term is anno-
tated to a gene, but this term is not (or less frequently)
annotated to that gene’s neighborhood genes than other
terms, then this term has a larger probability as a noisy
annotation of that gene than other terms. Here, we want to
remark that if gene i has few similar genes, then all entries
in S(i, ·) will be equal or close to zeros. Consequently,
terms annotated this gene are more likely to receive lower
voting scores and to be identified as noisy annotations.
Indeed, this extreme case is worthwhile for future pursue.

Weighting annotations using evidence codes
Using aggregated votes to predict noisy annotations
is a feasible solution [32, 41], but it does not take
into account the differences among annotations. Evi-
dence codes, attached with GO annotations, illustrate the
sources where these annotations collected from. Some
researchers used GO annotations archived on different
periods to analyse the quality of annotations under dif-
ferent evidences codes [11, 21, 24], and found the quality
varying among different branches and evidence codes.
Motivated by these analysis, we estimate the ratios of
noisy annotations for each evidence code in each branch
and then employ the ratios to weight the gene-term asso-
ciation matrix A. Here, we collected two GOA files that
archived on different months, then we take the annota-
tions available in the former month but absent in the latter
month as noisy annotations of the former GOA file. To
account for GO change and its cascade influence on GO
annotations, we only use the shared GO hierarchy in the
two contemporary GO files. Let Nm(c) be the number
of annotations attached with evidence code c in the m-
th version GOA file, and N̄m(c) be the number of noisy
annotations tagged with evidence code c in that GOA
file. The estimated ratio of noisy annotations for c can be
approximated as:

rmec(c) = N̄m(c)
Nm(c)

(5)

To more accurately estimate the ratio of noisy annota-
tions for them-th version, we sum up the ratios estimated
from its l previous versions as follows:

r̃mec(c) = 1
l

m∑

l′=m−l+1
rl

′
ec(c) (6)

Obviously, a large r̃mec(c) indicates annotations tagged
with c are unstable and more likely to contain noisy anno-
tations, since they change frequently in the previous ver-
sions. Based on r̃mec(c), we set different weights to different
evidence codes as follows:

wec(c) =
{
1, if r̃mec(c) < τ

θ , otherwise (7)

τ is a threshold and set as the average value of r̃mec with
respect to different evidence codes. Annotations tagged
with evidence codes whose r̃mec(c) � τ are unstable and
likely to be noisy annotations. Therefore, we set wec of
these annotations as θ(< 1), and others as 1. Other spec-
ifications of θ and τ is postponed to be discussed in the
next section.
GOC follow a convention to annotate genes with the

appropriate and as well as specific terms that correctly
describe the biology of the genes. The annotations stored
in the GOA files are called direct annotations, and each
of them is tagged with an evidence code. To make use
of these direct annotations and evidence codes, if Ad(i, t)
is tagged with evidence code c, we update the gene-term
association matrix Ad ∈ R

N×|T | as follows:

Ad
ec(i, t) = Ad(i, t) × wec(c) (8)

where Ad is initialized by direct annotations only. If
there are multiple evidence codes for the same gene-term
association Ad(i, t), we set the maximal weight of these
involved evidence codes to Ad

ec.
Annotated with a term implies the gene also annotated

with its ancestor terms via any path of GO hierarchy. In
other words, if a gene is annotated with term t, this gene
is inherently annotated with all the ancestors of t. This
rule is called true path rule [1, 43]. To make use of this
rule, we propagate the weights and extend Ad

ec to ancestor
annotations of direct ones as follows:

Aec(i, s) = max
{
Ad
ec(i, t)|s ∈ anc(t)

}
(9)

where anc(t) includes all ancestors of t. If ancestor annota-
tion s is propagated from two or more direct annotations,
we take maximal value of these direct annotations as
the weight of Aec(i, s). This setting ensures the weights
of ancestor annotations equal (or larger) than descen-
dant annotations, since a descendant term describes more
specific biological function than its ancestor terms and
annotations with respect to ancestor terms are generally
more easier to be verified than descendant ones. Another
reason for this maximal setting is motivated by accumu-
lated evidences from different sources. If the weight for an
ancestor annotation is smaller than its descendant ones,
the relevant term will be more likely to be identified as a
noisy annotation than its descendants. This setting is not
desirable. From the true path rule, if the ancestor term is
not annotated to a gene, then all its descendants are not
annotated to that gene, too.

Noisy annotations prediction
To this end, we integrate the evidence weighted annota-
tions in Eq. (9) and aggregated votes in Eq. (4) to predict
noisy GO annotations of genes as follows:

V(i, t) = α × VSR(i, t) + (1 − α) × Aec(i, t) (10)
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where α is a scalar parameter to adjust the contribution of
VSR andAec. If both t and s are annotated to the i-the gene
and V(i, t) < V(i, s), then t is more likely to be a noisy
annotation than s. Eq. (10) is motivated by the observa-
tion that if a term is annotated to a gene, but this term
is not (or rarely) annotated to neighborhood genes of the
gene and the evidence code attached with this annotation
has a large estimated ratio of noisy annotations, then the
annotation is more likely to be a noisy one. One short-
coming of Eq. (10) is that if a noisy annotation appears
in successive GOA files and its relevant GO term is fre-
quently annotated to neighborhood genes of the gene, this
noisy annotation is difficult to be identified by NoGOA.
This kind of noisy annotations are more challenging and
remain for future pursue. To select a reasonable value for
α, we can adjust it in the range [0, 1] by taking GOA files
archived prior to the historical GOA files to train NoGOA
and use the GOA files archived no late than the histor-
ical GOA files to validate the prediction. After that, we
can select the optimal α to train NoGOA on the historical
GOA files. Fortunately, our following empirical param-
eter sensitivity analysis shows that it is easy to select a
reasonable and consistent α for NoGOA on GOA files of
different species.
To predict noisy annotations, NoGOA not only takes

advantage of sparse representation to reduce the inter-
ference of noisy annotations and of aggregated votes
from neighborhood genes, but also weights annotations
based on the estimated ratios of noisy annotations
with respect to different evidence codes. Therefore,
NoGOA has the potential to achieve better perfor-
mance than using sparse representation or evidence codes
alone. Our following experimental study corroborates
this advantage and shows evidence codes can be used
as a plugin with other semantic similarity based meth-
ods to improve the performance in predicting noisy
annotations.

Results and discussion
Experimental protocols and comparing methods
We downloaded four versions of GOA files (archived in
May and September) of six model species [44], H. sapi-
ens, A. thaliana, S. cerevisiae, G. gallus, B. Taurus and
M. musculus to comparatively study the performance of
NoGOA and of other comparing methods in two suc-
cessive years (2015 and 2016), respectively. To mitigate
the impact of GO change in long intervals, we use the
GO annotations archived in the first four months of
the year (2015 or 2016) to estimate the ratio of noisy
annotations for each evidence code and the annotations
archived in May for prediction. We then validate the pre-
diction based on annotations archived in September of
the same year. Accordingly, we also downloaded contem-
porary GO files [45], which were archived on the same

date as GOA files. To reduce the impact of evolved GO
and annotations for evaluation, similar to the 2nd CAFA
(Critical Assessment of protein FunctionAnnotation algo-
rithms) [5], we retain the terms that are included both
in the historical and recent GO files, and filter out terms
that are absent in historical or recent GO files. Next,
these retained terms, direct annotations in the GOA files
and the inherited ancestor annotations of these direct
ones, are used to initialize the historical (archived in May)
gene-term association matrix Ah and recent (archived in
September) gene-term matrix Ar , respectively. We con-
sider the annotations available in Ah but absent in Ar

as noisy annotations. To be honest, this consideration is
not very good, because of the complicated evolutionary
mechanism of GO and GO annotations [7, 11]. How-
ever, since noisy annotations are not readily available, we
regard these removed annotations as ‘noisy annotations’
and use them to validate the predicted noisy annotations
made by the comparing methods. The statistics of genes
and annotations in 2015 and 2016 are listed in Tables 2
and 3. For instance, in 2016, there are 18,932 genes in
H. sapiens and these genes are annotated with 13,172 BP
GO terms. These genes in total have 1,141,456 annota-
tions in BP branch, among them there are 22,706 noisy
annotations.
To comparatively study the performance of NoGOA,

we take eight related methods as comparing meth-
ods. The details of these methods are introduced as
follows:

(i) Random randomly chooses a term annotated to a
gene as the noisy annotation of that gene.
(ii) LF randomly selects the term annotated to a gene
but with the Lowest Frequency among N genes as the
noisy annotation of the gene.
(iii) SR is solely based on Sparse Representation [34]
in Eq. (4) to predict noisy annotations.
(iv) EC is solely based on Evidence Code to predict
noisy annotations. More specifically, it chooses the
term annotated to the i -th gene but with lowest
weight in Aec(i, ·) as a noisy annotation of the gene.
(v) NtN is a semantic similarity based approach that
can be adopted to predict noisy annotations [46]. It
views each gene as a document and terms annotated
to the gene as words of that document. It firstly
utilizes the term-frequency, inverse document
frequency in vector space model [47], and GO
hierarchy to weight annotations located at different
locations. Next, it employs singular value
decomposition on the weighted gene-term
association matrix and then chooses the term
annotated to a gene but with lowest entry value in the
decomposed matrix as a noisy annotation of that
gene.
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Table 2 Statistics of GO annotations of H. sapiens, A. thaliana, S.
cerevisiae, G. gallus, B. Taurus andM.musculus (archived date: May,
2015)

Branch(|T |) Annotations Noisy annotations

H. sapiens(18939)

BP (13875) 1183415 23143

CC (1672) 375982 2770

MF (4244) 234599 2322

A. thaliana(24377)

BP (5132) 794092 2651

CC (848) 222465 498

MF (2684) 197422 2301

S. cerevisiae(5887)

BP (4768) 244374 898

CC (931) 104831 87

MF (2282) 65745 338

G. gallus(12782)

BP (11783) 572194 19603

CC (1451) 201471 3859

MF (3350) 144112 2345

B. Taurus(17316)

BP (11783) 768861 20788

CC (1521) 272289 3745

MF (3350) 189509 2371

M. musculus(21188)

BP (13744) 1036467 15376

CC (1621) 356694 1603

MF (4148) 231078 2195

The data in the parentheses of the 1st column is the number of genes, data in the
2nd column is the number of involved GO terms (|T |), the 3rd column is the
number of annotations for a particular branch, and the last column is the number of
noisy annotations, which were available in the GOA file archived in May, but absent
in the GOA file archived in September of the same year

(vi) NoisyGOA is originally proposed for predicting
noisy annotations by our team [32]. It was elaborated
in the last part of the 6th paragraph of Introduction
section.
(vii) NtN+EC integrates the predictions from
evidence code updated gene-term association matrix
Aec (see Eq. (9)) and those from NtN (similar as
Eq. (10)) to predict noisy annotations.
(viii) NoisyGOA+EC integrates the predictions from
Aec and those from NoisyGOA (similar as Eq. (10)) to
predict noisy annotations.

λ = 0.5 is used in Eq. (2), and the parameters of NtN
and NoisyGOA are fixed as the authors suggested in their
original papers. In practice, we conducted experiments to
study the sensitivity of λ ∈[ 0.1, 1] (as suggested by the
package provider) [39] and found that NoGOA has sta-
ble performance in this range, so we use the median value
λ = 0.5 for experiment. In the following experiments, we
denote the number of noisy annotations for gene i as q,
and then take q entries with nonzero values in A(i, ·) but
with the smallest values in V(i, ·) ∈ R

|T | (see Eq. (10))
as the predicted noisy annotations of that gene. In this

Table 3 Statistics of GO annotations of H. sapiens, A. thaliana, S.
cerevisiae, G. gallus, B. Taurus andM.musculus (archived date: May,
2016)

branch(|T |) Annotations Noisy annotations

H. sapiens(18932)

BP (13172) 1141456 22706

CC (1707) 385525 3141

MF (4345) 243928 4660

A. thaliana(6931)

BP (4157) 243249 15918

CC (750) 97616 2937

MF (2271) 81318 3554

S. cerevisiae(6719)

BP (4385) 222754 13647

CC (990) 108186 2768

MF (2379) 65032 4394

G. gallus(10912)

BP (10643) 244374 898

CC (1429) 177491 4448

MF (3298) 124997 2130

B. Taurus(17886)

BP (11724) 753976 6541

CC (1550) 281284 2244

MF (3298) 194425 1396

M. musculus(21279)

BP (13141) 481417 18182

CC (1686) 367461 3917

MF (4238) 239664 2705

The data in the parentheses of the 1st column is the number of genes, data in the
2nd column is the number of involved terms (|T |), the 3rd column is the number of
annotations for a particular branch, and the last column is the number of noisy
annotations, which were available in the GOA file archived in May, but absent in the
GOA file archived in September of the same year

way, we can avoid genes having fewer neighborhood genes
to receive systematically lower voting scores, since we
determine noisy annotations by referring to A(i, ·) and
V(i, ·), instead of all entries in V. To reach fair compar-
ison, NoGOA and all other comparing methods use the
same protocol to select q noisy annotations. This adopted
protocol may affect the prediction of noisy annotations.
Other more appropriate protocols are interesting future
pursue. From the true path rule, if a term is not annotated
to a gene, its descendant terms are also not annotated to
this gene. To ensure consistency, if the descendant terms
of the predicted q terms are annotated to the i-th gene,
all the comparing methods will take descendant terms of
these q terms as predicted noisy annotations of the gene,
too.
To quantitatively analyze the performance of noisy

annotations prediction, three metrics are adopted: Preci-
sion, Recall and F1-Score. The formal definitions of these
metrics are provided as follows:

pi = TPi
TPi + FPi

, ri = TPi
TPi + FNi

(11)
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Precision = 1
N

N∑

i=1
pi, Recall = 1

N

N∑

i=1
ri (12)

F1-Score = 1
N

N∑

i=1

2 × pi × ri
pi + ri

(13)

where TPi is the number of correctly predicted noisy
annotations of the i-th gene, FPi is the number of wrongly
predicted noisy annotations, and FNi is the number of
noisy annotations not predicted by the predictor. pi and ri
are the precision and recall on the i-th gene, they evaluate
the fraction of predicted noisy annotations that are true
noisy annotations and the fraction of noisy annotations
that are correctly predicted, respectively. F1-Score firstly
computes individual precision and recall for each gene,
and then takes the average of harmonicmean of individual
precision and recall of N genes.

Results of predicting noisy annotations
In this section, we predict noisy annotations of genes
based on the annotations in the historical GOA files,
and then use the annotations in the recent GOA files
to validate the predicted noisy annotations. Similar to
CAFA2 [5], to get reliable and repeatable experimental
results, we use bootstrapping to randomly take 85% genes
and their annotations in the recent GOA files to vali-
date the predicted noisy annotations. We independently
repeat the above bootstrapping 500 times to avoid ran-
dom effect. In these experiments, α in Eq. (10) is set as
0.2, and θ in Eq. (7) is set as 0.5. Other input values of α

and θ will be discussed later. The recorded experiments
results (average and standard deviation) on a particular
species for a particular branch are revealed in Table 4 and
Tables S1-S11 of the supplementary file. We use pair-
wise t-test at 95% significant level to check the difference
among these comparing methods and highlight the best
(or comparable best) performance in boldface.
From these tables, we can easily observe that NoGOA

achieves the best (or comparable best) performance

among these comparing algorithms in most cases in
terms of Precision and F1-score. NoisyGOA or Noisy-
GOA+EC get better performance than NoGOA on some
species (such as A. thaliana in the BP branch (archived
in May, 2015), and G. gallus in the BP branch (archived
in May, 2016)), but NoGOA still obtains better results
than other comparing approaches (Random, LF, NtN,
EC and NtN+EC). This global observation validates the
effectiveness of NoGOA in identifying noisy annotations.
Both NoGOA and SR employ sparse representation to
define the semantic similarity between genes and then
use a kNN style algorithm to predict noisy annotations.
SR often loses to NoGOA. This is principally because
NoGOA additionally takes advantage of evidence codes
to set different weights to different annotations. Simi-
larly, NoGOA always gets better Precision and F1-score
than EC, which predicts noisy annotations by only uti-
lizing the evidence code weighted gene-term association
matrix. This observation shows that integrating sparse
representation with evidence code can generally improve
the performance of noisy annotation prediction.
We adopt Wilcoxon signed rank test [48, 49] to assess

the difference between NoGOA and these comparing
algorithms with respect to F1-score on multiple species
across three GO branches, and observe that NoGOA sig-
nificantly works better than them with all the p-value
smaller than 0.001. From these results, we can draw a
conclusion that it is necessary and effective to integrate
evidence codes with sparse representation for identifying
noisy annotations. However, the F1-Score is between 34%
and 74%, which means only a portion of noisy annota-
tions can be correctly predicted and there is much space
for future pursue.
Another observation from these tables is that EC has

larger Recall than SR and NoGOA in most cases. The
reason is that EC picks up terms with the lowest val-
ues in Aec(i, ·) as noisy annotations, without considering
the terms’ association with other genes. EC also takes

Table 4 Performance of predicting noisy annotations in GOA files of H. sapiens (archived date: May, 2016)

Random LF NtN NoisyGOA SR EC NtN+EC NoisyGOA+EC NoGOA

BP Precision 23.99 ± 0.49 29.50 ± 0.57 23.71 ± 0.47 33.98 ± 0.67 35.24 ± 0.56 29.43 ± 0.56 26.30 ± 0.51 38.55 ± 0.72 41.14 ± 0.76

Recall 57.75 ± 1.00 29.58 ± 0.57 55.84 ± 0.87 41.08 ± 0.76 35.67 ± 1.48 49.04 ± 0.86 52.52 ± 0.89 44.82 ± 0.81 41.45 ± 0.76

F1-Score 31.51 ± 0.60 29.54 ± 0.57 30.94 ± 0.55 36.63 ± 0.70 35.44 ± 0.69 35.04 ± 0.64 33.24 ± 0.61 40.93 ± 0.75 41.28 ± 0.76

CC Precision 19.34 ± 0.52 28.62 ± 0.77 17.75 ± 0.52 36.41 ± 0.89 41.41 ± 1.01 17.40 ± 0.45 18.00 ± 0.48 36.13 ± 0.88 41.34 ± 0.97

Recall 50.62 ± 1.12 28.69 ± 0.77 49.68 ± 1.18 44.45 ± 1.02 41.91 ± 1.02 79.22 ± 1.40 44.80 ± 1.07 44.15 ± 1.02 41.85 ± 0.98

F1-Score 25.98 ± 0.65 28.65 ± 0.77 24.22 ± 0.65 38.79 ± 0.93 41.63 ± 1.02 25.34 ± 0.58 24.34 ± 0.61 38.50 ± 0.92 41.56 ± 0.97

MF Precision 27.74 ± 0.39 23.60 ± 0.38 36.43 ± 0.45 38.16 ± 0.48 46.18 ± 0.54 41.25 ± 0.50 49.90 ± 0.55 52.18 ± 0.57 58.92 ± 0.60

Recall 41.94 ± 0.50 23.63 ± 0.38 48.83 ± 0.57 46.41 ± 0.55 46.57 ± 0.54 60.46 ± 0.64 56.80 ± 0.60 58.26 ± 0.62 59.47 ± 0.60

F1-Score 30.35 ± 0.41 23.61 ± 0.38 38.82 ± 0.47 39.44 ± 0.48 46.34 ± 0.54 44.45 ± 0.51 51.75 ± 0.56 53.23 ± 0.58 59.14 ± 0.60

The numbers in boldface denote the best performance
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descendant terms of these picked up terms as noisy
annotations of the i-th gene and results in a large num-
ber of predicted noisy annotations. For this reason, it gets
larger Recall but lower Precision than NoGOA, and loses
to NoGOA on F1-score.
NtN also weights the gene-term association matrix by

employing the GO hierarchy, but it does not consider
the evidence codes attached with annotations. It fre-
quently has large Recall but low Precision and F1-score.
That is because NtN sets larger weights to specific terms
(or annotations) than general ones, and the terms cor-
responding to general annotations are ranking ahead of
specific ones as candidate noisy annotations. Because of
true path rule, all the annotations with respect to descen-
dant terms of these general terms are also deemed as noisy
annotations by NtN. For this reason, NtN often gets larger
Recall but much lower Precision and F1-score than other
comparing methods.
Similar as SR, NtN and NoGOA, NoisyGOA also uti-

lizes the semantic similarity between genes and it addi-
tionally uses taxonomic similarity between GO terms.
NoisyGOA outperforms NtN, Random, and LF in many
cases. This fact indicates taxonomic similarity is help-
ful for predicting noisy annotations. However, NoisyGOA
is frequently outperformed by SR. This observation sug-
gests that semantic similarity contributes much more
than taxonomic similarity in predicting noisy annotations.
NoisyGOA often loses to NoGOA. The reason is three-
fold: (i) NoGOA differentially treats neighborhood genes
to aggregate votes, whereas NoisyGOA equally treats
neighborhood genes; (ii) NoGOA takes advantage of evi-
dence codes of annotations, while NoisyGOA does not;
(iii) NoGOA adopts sparse representation to measure the
semantic similarity between genes, which is less suffered
from noisy annotations than the Cosine similarity adopted
by NoisyGOA.
LF selects terms annotated to a gene but with the low-

est frequency among N genes as noisy annotations of
the gene. It frequently gets larger Precision and F1-score
than Random and NtN. This observation indicates that
the frequency of terms can be used as an important fea-
ture for predicting noisy annotations. In fact, NoGOA,
SR and NoisyGOA also take advantage of this feature.
More specifically, to determine whether a term should
be annotated to a gene or not, they count how many
times the term annotated to neighborhood genes of the
gene.
Random randomly selects terms from all the terms

annotated to a gene, and took these selected terms and
their descendant terms as noisy annotations of that gene.
It sometimes can get the largest Recall. That is princi-
pally because these randomly selected terms often have
many descendants, which are also annotated to the same
gene. Given the superior results of NoGOA to Random,

LF and EC, we can conclude that noisy annotations are
predictable.
To further study the rationality of using evidence codes,

we also report the results of NoisyGOA+EC and NtN+EC
in Table 1 and Additional file 1: Tables S1–S11. With the
help of evidence codes, NoisyGOA+EC has improved per-
formance than NoisyGOA, and NtN+EC also shows this
pattern. These results show evidence codes can be used
as a plugin to improve the performance of noisy anno-
tation prediction. NoGOA performs significantly better
than NoisyGOA+EC and NtN+EC. The fact again justifies
the rationality of synergy SR with EC for predicting noisy
annotations.

Parameter sensitivity analysis
NoGOA are involved with three parameters α (in
Eq. (10)), τ and θ (in Eq. (4)). We conduct additional
experiments on GOA files of H. sapiens, A. thaliana
and S. cerevisiae to study the sensitivity of NoGOA to
these parameters and report the results in Fig. 1 (for α),
Additional file 1: Figure S2 (for θ ) and Additional file 1:
Tables S12–S17 (for τ ). When α = 0, NoGOA is equiva-
lent to EC. Likewise, when α = 1, NoGOA is equivalent
to SR.
In Fig. 1, we set θ as 0.5 and τ as the average of rmec .

There are 18 broken lines, and each of them denotes
the change of F1-Scores under different input values of
α. With the increase of α, these lines rise at first and
then decrease (14 of 18) or keep stable. NoGOA always
gets better results than the special case α = 0 (or
EC), and it also performs better than the special case
α = 1 (or SR). When α ∈[ 0.1, 0.3], NoGOA gener-
ally achieves better (or similar) performance than EC and
SR across GOA files of different species archived in dif-
ferent years, so we set α as 0.2 for experiments. The
sensitivity analysis of α further corroborates the necessity
and advantage of integrating sparse representation with
evidence codes. In some branches, F1-Scores remains
relatively stable when α ∈[ 0.1, 1]. That is because SR
plays a major role in noisy annotation prediction in these
branches.

Removing noisy annotations improves gene function
prediction
To further study the influence of removing noisy annota-
tions, we downloaded protein-protein interactions (PPI)
network of H. sapiens, A. thaliana and S. cerevisiae from
BioGrid [50] (archived date: 2016-05-01) for experiments.
We take annotations whose aggregated scores V(i, t)
smaller than 0.45 as predicted noisy annotations, and then
update the gene-term associationmatrixA. From Eq. (10),
for α = 0.2 and θ = 0.5, α × VSR(i, t) ∈[ 0, 0.2] and
(1 − α) × Aec(i, t) ∈[ 0.4, 0.8]. So we take the annota-
tions with the lowest Aec(i, ·) and VSR(i, ·) < 0.25 as noisy
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Fig. 1 Performance of NoGOA in predicting noisy annotations under different input values of α

annotations of the i-th gene. Next, we apply a majority
vote based function prediction model [51], which pre-
dicts GO annotations of a gene using the annotations of
its interacting partners based on updated A. After that,
we use the annotations in the recent GOA files to vali-
date the predicted annotations. For comparison, we also
apply the majority vote model on the same PPI network
and the original A, and then follow the same protocol to
evaluate the predictions. We label the latter method as
‘Original’.
To reach a comprehensive evaluation of gene func-

tion prediction, we use six evaluation metrics, namely
MicroAvgF1, MacroAvgF1, AvgPrec, AvgROC, Fmax and
Smin. These metrics have been applied to evaluate the
results of gene function prediction [5, 36]. Except Smin,
the higher the value of these metrics is, the better the
performance is. These metrics measure the performance
from different aspects, it is difficult for a method con-
sistently better than others across all the metrics. The
formal definitions of these metrics are provided in the
supplementary file. The results with respect to H. sapiens,
A.thaliana and S. cerevisiae are included in Table 5 and
Additional file 1: Tables S18-S19.
From the results in Table 5 and Additional file 1: Tables

S18-S19, we can see that NoGOA has improved perfor-
mance in gene function prediction than Original in most
cases. We use Wilcoxon signed rank test to check the dif-
ference between the results of NoGOA and Original on

these three model species, and find the p-value is smaller
than 0.003.
From these results, we can draw a conclusion that

removing noisy annotations improves the performance of
gene function prediction.

Real examples
To further investigate the ability of NoGOA in pre-
dicting noisy annotations of genes, we firstly study the
number of predicted noisy annotations of H. sapiens, A.
thaliana and S. cerevisiae for each evidence code. Since

Table 5 Results of gene function prediction on H. sapiens
(archived date: May, 2016)

BP CC MF

Original NoGOA Original NoGOA Original NoGOA

MicroAvgF1 92.85 92.64 93.72 93.92 93.10 93.10

MacroAvgF1 89.04 90.05 88.06 89.96 89.55 90.30

AvgPrec 88.45 88.50 88.75 89.19 90.78 90.81

AvgROC 94.94 96.73 95.12 96.66 97.66 98.35

Fmax 93.85 93.50 93.85 93.89 94.62 94.57

Smin ↓ 8.69 7.96 2.09 2.09 2.40 2.32

The data in boldface denote the better result. ‘Original’ directly uses annotations in
the historical GOA file to predict gene function; ‘NoGOA’ removes predicted noisy
annotations from the historical GOA file and then predicts gene function. ↓ means
the lower the value, the better the performance is
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only direct annotations can obtain the sources and evi-
dences in archived GOA files, we only count the numbers
of direct noisy annotations, predicted noisy annota-
tions and correctly predicted direct ones by NoGOA.
These numbers are shown in Table S20-S25 of the
supplementary file. Then, we take the first 4 genes
(‘AAC1’,‘AAC3’,‘AAD14’,‘AAP1’), which have removed anno-
tations in the recently archived (date: September 2016)
GOA file of S. cerevisiae for illustrative study, and list the
correctly (wrongly) predicted direct noisy annotations by
NoGOA. The results of S. cerevisiae in CC branch are
listed in Table 6. Other experimental results of S. cere-
visiae in other branches are revealed in Additional file 1:
Tables S26-S27.
From Additional file 1: Tables S20–S25, we can find that

the distribution of predicted noisy annotations for differ-
ent evidence codes is often approximately consistent with
the distribution of noisy annotations. This fact shows the
effectiveness of NoGOA in identifying noisy annotations.
The number of predicted noisy annotations is often larger
than that of direct noisy annotations. That is because if an
annotation is predicted as a noisy one of a gene, then its
descendant annotations (if any) are also deemed as noisy
annotations of that gene. Since the annotations expanded
from GO hierarchy and direct annotations maybe sup-
ported by different evidence codes, we just report the
correctly predicted direct noisy annotations here. In prac-
tice, by expanding these direct noisy annotations via the
true path rule of GO, the number of correctly predicted
noisy annotations can be sharply increased.
Inmost cases, IEA generally hasmuchmore noisy anno-

tations than other evidence codes. That is mainly because
the number of IEA annotations is the largest, and it does
not mean that IEA annotations are the most unreliable.
Similar to IEA, IBA also hasmany noisy annotations. TAS,
IMP or IGI have more noisy annotations in BP than in
MF and CC branches. EXP, ISA, ISO, ISM, RCA, IGC,
IBD, IKR, IRD and IC annotations are relatively stable
and have much fewer noisy annotations. The possible
reason is that the number of annotations attached with

these evidence codes is smaller than that of other evidence
codes. These statistic numbers show that most evidence
codes have no clear pattern of noisy annotations across
all the GO branches. These numbers also support our
motivation to adaptively set weights to annotations based
on the estimated ratio of noisy annotations per evidence
code, instead of presetting weights solely based on the
categorization (i.e., Experimental and Computational) of
evidence codes.
The selected 4 proteins have 16 direct noisy annotations

in three branches. NoGOA predicts 20 noisy annotations,
and 13 of them are correct. In actual fact, we rechecked
the subsequent GOA files (till to February, 2017) of S.
cerevisiae, and also found these 13 correctly predicted
noisy annotations were always removed in these GOA
files. It is anticipated that these correctly predicted noisy
annotations could be confirmed by biological experi-
ments. From Table 6 and Additional file 1: Tables S26-S27,
we can find that these noisy annotations are attached with
different evidence codes (IBA, IPI, IDA, IMP and TAS). In
fact, these annotations are reviewed by curators, but they
are not alwaysmore reliable than IEA [6, 8]. Another inter-
esting observation is that, NoGOA only makes incorrect
predictions on ‘AAP1’. The reason may be that compared
with other genes, ‘AAP1’ contains more noisy annotations,
which heavily mislead the semantic similarity between
‘AAP1’ and other genes.

Conclusion
Current efforts toward computational gene function pre-
diction are more focused on predicting GO annotations
of un-annotated genes or replenishing missing annota-
tions of partially annotated genes. Given the increasing
application of GO annotations in various domains and
misleading effect of noisy annotations, it is necessary to
identify noisy annotations, which is a rarely studied but
important open problem.
In this paper, we investigated whether noisy annota-

tions are predictable or not, and how to predict noisy
annotations. For this purpose, we introduced a method

Table 6 Examples of correctly (
√
) and wrongly(×) predicted direct noisy annotations by NoGOA in CC branch of S. cerevisiae

Protein GO term Evidence
codes

Details

AAC1(ADP/ATP carrier)
√ GO:0005758 (mitochondrial intermem-

brane space)
TAS Reactome:R-SCE-1252255

GO:0005829 (cytosol) TAS Reactome:R-SCE-1252255

AAP1 (Alanine/arginine aminopeptidase)

√ GO:0005886 (plasma membrane) IBA GO REF:0000033

GO:0005664 (nuclear origin of replica-
tion recognition complex)

IDA PMID:9372948

× GO:0000276 (mitochondrial proton-
transporting ATP synthase complex,
coupling factor F(o))

IDA PMID:9224714
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called NoGOA. NoGOA takes advantage of evidence
codes attached with annotations and sparse representa-
tion to predict noisy annotations. Experimental results
on six model species (H. sapiens, A. thaliana, S. cere-
visiae, G. gallus, B. Taurus and M. musculus) show that
noisy annotations are predictable and NoGOA can more
accurately predict noisy annotations than other compar-
ing algorithms. We believe our work will prompt more
research toward removing noisy GO annotations.

Additional file

Additional file 1: Supplementary file of ‘NoGOA: predicting noisy GO
annotations using evidences and sparse representation’ This PDF file
includes additional experimental results mentioned in the main text.
(PDF 1300 kb)
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