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Abstract

Background: Computational prediction of transcription factor (TF) binding sites in different cell types is challenging.
Recent technology development allows us to determine the genome-wide chromatin accessibility in various cellular
and developmental contexts. The chromatin accessibility profiles provide useful information in prediction of TF
binding events in various physiological conditions. Furthermore, ChIP-Seq analysis was used to determine
genome-wide binding sites for a range of different TFs in multiple cell types. Integration of these two types of
genomic information can improve the prediction of TF binding events.

Results: We assessed to what extent a model built upon on other TFs and/or other cell types could be used to
predict the binding sites of TFs of interest. A random forest model was built using a set of cell type-independent
features such as specific sequences recognized by the TFs and evolutionary conservation, as well as cell type-specific
features derived from chromatin accessibility data. Our analysis suggested that the models learned from other TFs
and/or cell lines performed almost as well as the model learned from the target TF in the cell type of interest.
Interestingly, models based on multiple TFs performed better than single-TF models. Finally, we proposed a universal
model, BPAC, which was generated using ChIP-Seq data from multiple TFs in various cell types.

Conclusion: Integrating chromatin accessibility information with sequence information improves prediction of TF
binding.The prediction of TF binding is transferable across TFs and/or cell lines suggesting there are a set of universal
“rules”. A computational tool was developed to predict TF binding sites based on the universal “rules”.
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Background
Transcription factors (TFs) bind to specific DNA
sequences and regulate expression of downstream genes.
Prediction of TF binding sites in a particular cell type
is still a considerable challenge, because the predictions
simply based on TF binding consensus sequences often
generate a large number of false positives. A number
of computational approaches have been proposed to
improve the prediction of TF binding sites (TFBS) [1, 2].
For example, integration of multiple lines of evidences,
including sequence conservation, binding site conserva-
tion, gene ontology functional annotation and location
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relative to transcription start sites can improve the pre-
diction of TF binding sites [3–5]. Other groups used DNA
3D structural information to model TF binding speci-
ficities [6–8]. A few groups showed that context specific
TF bindings correlate with specific co-occurring sequence
motifs and evolutional conservation [9–12]. Some groups
attempted to use more accurate description of TF bind-
ing sites such as within-motif dependence [13]. A recent
paper presented [14] amodel that predicts TF binding well
based on a small fraction of information across TF and
cell lines from available ChIP-seq data. All these methods
of analyzing TF binding utilized static genomic features
that do not reflect the highly tissue- and/or cell-specific
properties of actual TFBS.
Since most of TFs only bind to chromatin accessible

regions, integration of chromatin accessibility datasets
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can greatly help improve the TF binding site prediction.
First, regions of open chromatin comprise only 2.8–3.2%
of genome, which reduces the prediction space and poten-
tial false positives. Second, differences in chromatin acces-
sibility are cell type specific, and integration of the infor-
mation will reflect the dynamic nature of TFBS in different
cell types. Chromatin accessibility can be determined by
DNase-Seq [15–17] or ATAC-Seq [18, 19], and many of
these datasets have become available in diverse cell and
tissue types.
Different types of computational approaches have been

developed to utilize chromatin accessibility information
for TFBS prediction. One important approach is to iden-
tify footprints of TFBS from DNase-Seq or ATAC-Seq
profiles directly. Since proteins protect the bound DNA
sequences from cutting by DNase I, the cut frequency is
much lower at TFBS, resulting in a footprint in DNase-
Seq profiles. The DNA sequences located in the footprints
can be then used to predict the TFs that bind to the
footprint sequences. Several programs have been devel-
oped to predict the TFBS based on footprints, including
HINT, DNase2TF and PIQ [20–26]. Due to the intrinsic
sequence bias of DNase and short residence time of some
TFs [24, 26–28], for some TFs, it is hard to predict their
binding from DNase/ATAC data even after bias was cor-
rected [27]. Other approaches do not explicitly pinpoint
the location of the footprint [27, 29–33]. For example, a
statistical approach was developed to distinguish the DNA
sequences actually bound by TFs. The approach, CEN-
TIPEDE, utilized a hierarchical Bayesian mixture model
to infer TF binding sites, making the assumption that
the DNase-Seq profile surrounding the TFBS are different
from those not surrounding the TFBS [29]. This approach
integrates features such as position weight matrix (PWM)
score, conservation score, distance to transcription start
sites (TSS), and cut counts in 200 bp window around the
site. Similarly, epigenetic profiles generated from DNase-
Seq and other epigenetic modification data, H3K4me1,
H3K4me3, H3K9Ac, and H3K27Ac ChIP-Seq data were
incorporated to predict active TF binding based on stan-
dard motif model [30]. Yet another tactic was taken
by utilizing ChIP-Seq to generate a discriminative flex-
ible k-mers support vector machine (SVM) model, and
used this to generate a discriminative spatial DNase SVM
model using DNase read counts located around ChIP-
Seq peak regions [31]. BinDNase binned the candidate
binding sites and their flanking regions. The feature sets
were then generated by different ways of merging the
bins. Cut profiles of each merged bin for the feature
set were used to train and predict binding using logistic
regression. The feature set with best prediction is cho-
sen [33]. In another study, TF binding site occupancy
was predicted using a selection of sequence intrinsic and
cell-type specific chromatin features in [34]. Most of

these approaches are geared toward a specific TF and are
unsupervised.
In this work, we attempted to extract features from

chromatin accessibility data and build models based on
existing TF ChIP-seq data. For the supervised learning
model, it is an important issue which datasets are chosen
to build the models. However, it has not been systemat-
ically assessed to what extent the models learned from
other TFs in other cell types can be used to predict TF
binding events. For this purpose, we first develop a new
algorithm using a set of genomic features to predict TF
binding sites. We then extensively evaluated the trans-
ferability using this algorithm, and found that the model
learned from multiple TFs performed well to predict the
binding sites for other TFs in other cell types. A general
model, referred as TF Binding Prediction from acces-
sibility data (BPAC), is thus built to predict TFs in a
cell type, if the chromatin accessibility data (DNase-Seq
or ATAC-Seq data) are available for the cell type. We
also make available a web server and software package
for users.

Methods
Candidate TF binding site identification
Transcription factor binding motifs were obtained from
TRANSFAC [35]. TF motifs used in this study are listed
in Additional file 1: Table S1. TRANSFAC matrices were
converted to log-odd matrix format of the motifs using
trasfac2meme [36]. FIMO [37] was used to scan the
genome for candidate binding sites. The PWM score
of each genomic position was computed by summing
the appropriate entries from each column of the PWM
that represents the TF motif, which is used as a fea-
ture. We used 1e-4 as cutoff as a match to the PWM.
Only the matched positions will be considered for fur-
ther analysis. We then predicted the actual binding sites
among these candidate binding sites based on the motif
search.

ChIP-Seq, DNase-Seq, and ATAC-Seq data processing
Uniformly processed peaks from ChIP-Seq were obtained
from the ENCODE [38] section of UCSC Genome
Browser (http://genome.ucsc.edu/ENCODE/, [39, 40]).
The February 2009 human genome (NCBI Build 37,
hg19 assembly) was used as a reference genome. DNase-
Seq alignment files were retrieved from the ENCODE.
Dnase-Seq and ChIP-Seq used in this study are listed
in Additional file 1: Table S2. Read profiles were gen-
erated from sequencing reads piled up at each base
of the genome. The cut profiles were generated from
the two nucleotides at each end of a read. Read pro-
files and cut profiles were extracted from the align-
ment files using a customized Python script based on
pyDNase [23].

http://genome.ucsc.edu/ENCODE/
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Features used in the model
Features used in this study are shown in Table 1. PWM
scores were scores from FIMO scan of the genome with
uniform background letter frequencies. The candidate
sites were first determined by scanning the PWM of each
TF in human genome. Conservation scores were based
on 100 way phastCons scores, which were retrieved from
UCSC Genome Browser [39, 41]. Distance to TSS was
calculated using BedTools [42] closest command, and the
TSS definition was obtained from UCSC table browser
choosing Ensembl model. Both protein-coding and non-
coding RNAs were considered in the study. Read profiles
and cut profiles at each base were generated from bam
file and converted to bigWig format using wiggleToBig-
Wig [43]. The average read and cut profile over all bases at
each candidate binding site were then extracted. We use
the same length as the length of binding site for upstream
or downstream measurement. The average read and cut
profiles at all bases upstream or downstream of each can-
didate binding site were extracted from bigWig files. The
footprint score, fp, was calculated as:

fp=average counts upstream+average counts downstream+pseudocount
average counts at binding site+pseudocount

,(1)

Where necessary, pseudo-count is added to avoid divi-
sion by zero and is set to one in this study. The higher the
value of fp, the stronger the footprint.

Model construction
A prediction model was constructed by random forest
classification algorithm [44, 45], which was obtained from
scikit-learn package. In a random forest, an ensemble of

Table 1 Features used in the prediction

Features Description

PWM score The score DNA sequence against position
weight matrix

Conservation score PhastCons conservation score for multiple
alignments of 99 vertebrate genomes to
the human genome

Distance to TSS Distance to transcription start site

Reads at site Average reads at the binding site

Cut counts at site Average cut counts at the binding site

Upstream reads Average reads upstream of the binding site

Downstream reads Average reads downstream of the binding site

Upstream cut counts Average cut counts upstream of the
binding site

Downstream cut counts Average cut counts downstream of the
binding Site

Reads footprint score Average footprint score based on reads profile

Cut counts footprint score Average footprint score based on cut profile

decision trees is generated from randomly chosen sub-
set of samples and features. The final prediction is an
average of votes of all decision trees. Random forests can
handle mixed type of data, require less pre-processing of
data, and is one of the state of the art machine learning
algorithm, making it suitable for evaluation for transfer-
ability in one setting. The number of decision trees was
set to 100. Since we were interested in the transferabil-
ity of the models, we chose the same number of trees for
each model. Indeed, out of bag error rate analysis demon-
strated that the number of trees of 100 was in error rate
stable region. The size of subset of features was set to
nearest integer of square root of number of all features.
The model predicts whether a candidate binding site is an
actual binding site. Different sets of features illustrated in
the previous section were used to test the performance of
the resulting model with the selected set of features.

Prediction evaluation
ChIP-Seq was used to evaluate the performance after pre-
diction was made on test set. If a TFBS site overlaps with
a ChIP-Seq peak, it is considered as actual binding, i.e.,
bound, otherwise, it is unbound. Bound binding sites form
a positive set, while unbound binding sites form negative
set. Wemainly used area under receiver operation charac-
teristic curve (AUC) to access the performance as well as
area under precision recall curve (AUPR). Given a binary
classifier, there are four possible outcomes comparing pre-
diction with ground truth: prediction as positive that is
actually positive, which is called true positives (TP), pre-
diction is negative that is actually negative, which is called
true negatives (TN), prediction is positive but is actually
negative, which is called false positives (FP), and predic-
tion is negative but actually is positive, which is called false
negatives (FN). The ratio of true positives over the sum of
ground truth positives is called true positive rate (TPR or
recall), i.e.: TPR = TP / (TP+FN). The ratio of false posi-
tive over the sum of ground truth negatives is called false
positive rate (FPR), i.e.: FPR = FP / (FP+TN). Receiver
operating characteristic (ROC) curve is constructed by
plotting TPR against FPR at different thresholds. AUC
measures the aggregated classification performance. The
higher the better performance is assumed. Specificity or
true negative rate is the ratio of true negatives over the
ground truth negative. It is 1-FPR. Precision is the ratio
of true positives over the sum of predicted positives, i.e.:
precision = TP / (TP+FP). The overall performance of pre-
cision and recall can be represented by the precision recall
curve. AUPR summarizes the classification performance
in terms of precision and recall.

Performance of CENTIPEDE, HINT-BC, and DNASE2TF
We ran the methods using default settings. Identi-
fied binding sites (CENTIPEDE, HINT-BC) or footprint
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(DNASE2TF) were matched with candidate binding sites
scanned by FIMO. The matched binding sites are consid-
ered as positive prediction for each method. When cal-
culating AUC, only those candidate binding sites scanned
by FIMO are considered. Therefore, the candidate bind-
ing sites which does not match the prediction for each
method were considered negative.

Results and discussion
Transcription factors (TFs) show different chromatin
patterns surrounding their binding sites
We first assessed the patterns of TF footprints using
DNase-Seq profiles. Detailed analysis of individual motif
sites for the TFs revealed complex footprints structures.
For this purpose, we integrated TF ChIP-Seq and DNase-
Seq profiles, and analyzed the DNase-Seq profiles sur-
rounding the TF binding sites identified by ChIP-Seq.
The positions of ChIP-Seq peaks formed a positive set.
In the meantime, we also searched for the presence of
TF binding motifs within the DNase-Seq regions. Sites
with the matched motif outside the ChIP-Seq peaks were
considered as negatives. As shown in Fig. 1, the DNase-
Seq profiles were shown for a few representative TFs.
ATF2 illustrates a typical footprint structure. Most of
ATF2 binding sites determined by ChIP-Seq have low
DNase-Seq cut profiles and high cut profiles at the flank-
ing regions. For comparison, we examined the DNase-Seq

profiles around the negative set for ATF2. The overall
cut profiles are much lower surrounding these sites, sug-
gesting that cut profiles (or peak intensity) of DNase-Seq
profiles are one major determinant for the ATF2 binding
events.
In contrast, however, other factors such as CEBPB,

ERG1 and SP1 did not show obvious footprints surround-
ing their binding sites. For example, the cut profiles at the
center of CEBPB binding sites are almost similar to those
in the flanking regions. Interestingly, although the aver-
age DNase-Seq intensities at the sites from the negative
set are lower than those from the positive set, many sites
from the negative set also have high cut profiles, suggest-
ing that cut profiles obtained from DNase-Seq profiles are
not good predictors for CEBPB binding events.
The cut profiles for ERG1 showed an “inverse” foot-

print pattern, in that the cut profiles are much higher
at the center of ERG1 binding sites than in the flanking
regions. A similar pattern was observed for the negative
set. In addition, SP1 showed a more complex footprint
pattern, combining regular footprint and “inverse” foot-
print patterns. Bias corrected [27] did not change the
overall patterns for these factors.
Our analyses suggested that a footprint-based approach

might not be effective to identifying TF binding sites due
to the complex nature of footprints. Approaches solely
based on the DNase-Seq profiles cannot best separate the

Fig. 1 Cut profiles around motif sites show different patterns. The left panel shows the average cut counts around binding sites for bounded sites
(positive) and unbounded sites (negative) respectively. The right panel shows cut counts for each individual site from positive set
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true binding sites and the sites in the negative set. For
example, many sites in CEBPB negative set have compa-
rable cut profiles to the real CEBPB binding sites. This
analysis suggests that TFs have different chromatin acces-
sibility patterns surrounding their binding sites. It raises
the question whether we could have a universal computa-
tional model or we need TF-specific models for different
TFs.

Evaluate the transferability of prediction across different
TFs and cell types
We first described the problem setting for our prediction
of TF binding sites (Fig. 2). Two most basic requirements
for the prediction are (1) the binding motif of a particu-
lar TF, which is often represented by a PWM, and (2) the
chromatin accessibility data (DNase-Seq or ATAC-Seq)
for a cell type of interest.We first scan themotif within the
chromatin accessible regions and obtain a set of matched
positions in these regions. We then attempt to determine
the true TFBS among these matched positions. Our pre-
diction is a supervised learning approach, which is based
on the ChIP-Seq data showing the genome-wide bind-
ing sites for a given TF. We have four scenarios based on
available ChIP-Seq datasets.
(1) The ChIP-Seq data of the TF in the cell type of

interest is available. In practice, we do not need to pre-
dict the binding sites of TF because the ChIP-Seq data
already provide the binding events of the TF. How-
ever, we could train a model using 2/3 of all binding
sites, and use this to predict the binding sites for the
remaining 1/3 of all binding sites. The prediction serves
as a benchmark and was used to test the performance

of the model. We termed this type of prediction as
self-prediction.
(2) The ChIP-Seq data of other TFs in the cell type of

interest are available. We train a model to use the other
TF and use the model to predict the binding site of the TF
of interest. In addition, we can combine ChIP-Seq data for
multiple TFs for training and predicted the binding sites
for the TF (Fig. 2). We termed this type of prediction as
cross-TFs prediction (Fig. 2).
(3) The ChIP-Seq data for the TF of interest in other cell

type is available. In this situation, we also require the chro-
matin accessibility data for that cell type. We will train the
model in other cell type, and predict the binding sites of
the TF in the cell type of interest. We termed this type of
prediction as cross-cell type prediction (Fig. 2).
(4) The ChIP-Seq data for other TF in other cell type are

available. In this situation too, we require the chromatin
accessibility data in the other cell type. We termed this
prediction as mixed prediction (Fig. 2).

Self-prediction: combination of static and dynamic
features increases prediction performance
Our algorithm, BPAC (TF Binding Prediction from acces-
sibility data), used a random forest model to predict the
TF binding sites in a cell type with available chromatin
accessibility information such as DNase-Seq or ATAC-
Seq. We first identify the features that can be used for the
prediction. The features belong to mainly two categories
– static and dynamic. Static features include PWM score,
evolutionary conservation score, and distance to TSS. For
a given TF, these features do not change with respect to
different cell types. Dynamic features are derived from

Fig. 2 Different scenarios of prediction using ChIP-Seq as ground truth
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chromatin accessibility data, including read profiles at,
upstream, and downstream from candidate TFBS, cut
profiles at, upstream, and downstream from candidate
TFBS, footprint scores obtained from read profiles and
cut profiles. These features are cell type specific. For a
given TF, we used 2/3 of binding sites identified by ChIP-
Seq for training and evaluated the prediction using the
remaining 1/3 of binding sites. A random forest model
was trained and then used to make the prediction. The
performance was measured by AUC and AUPR. We first
evaluated different features using 34 TFChIP-Seq datasets
obtained from GM12878 cells. As shown in Fig. 3, for
the static features, the AUC ranges from 0.5 to 0.62 using
individual feature alone (0.17 to 0.24 for AUPR). PWM
score achieved the highest average among three static fea-
tures, with the average AUC of 0.55, average AUPR of
0.23. This finding confirms that sequence specificity of
TFs plays an important role in TF binding events. We
also noticed that the AUC and AUPR for PWM showed
a large variance, indicating that the binding motifs for
some TFs have substantially better prediction power than
others.
Among the dynamic features, the read profile at

the motif sequence and its flanking regions (upstream
and downstream) present the highest performance
(AUC=0.70, AUPR=0.28). This is higher than cut profile
footprint score (AUC=0.58, AUPR=0.21). In this sense,
read profiles alone can provide high prediction perfor-
mance. However, the read profile footprint score, which
combines the read profiles at the center and flanking

regions of candidate binding sites, is not informative in
identifying TF binding (AUC=0.52, AUPR=0.16).
Combining all static features improves prediction accu-

racy, with average AUC of 0.65 (AUPR=0.23). The combi-
nation of dynamic features improves prediction accuracy
relative to comparing single dynamic features. The pre-
diction achieved the highest performance when a com-
bination of all static features and dynamic features was
analyzed, with the average AUC reached to 0.81 and aver-
age AUPR reached to 0.37. In the following analysis, we
used the combination of static and dynamic features.

Cross-TF prediction is comparable with self-prediction
We then evaluated whether the ChIP-Seq data for other
TFs can be used to predict the binding events for the TF
of interest. For this purpose, we obtained 23 TF ChIP-
Seq in GM12878 cell line. We trained a random forest
model based on each TF and used themodel to predict the
binding sites for every individual TF, including the TF for
training. The performance of self-prediction ranged from
0.71 to 0.92 for AUC, 0.01 to 0.87 for AUPR. Interestingly,
majority of the cross-TF predictions based on other TFs
achieved the similar performance with an overall mean
AUC of 0.77, mean AUPR of 0.36.
However, individual TFs showed substantially different

prediction performances (Fig. 4). Some TFs (e.g., ATF3,
RXRA, NRF1) generate models (good predictor TFs) that
predict the binding events for other TFs well, while other
TFs (e.g. CEBPB, IRF4, JUND, MEF2A) generate models
(poor predictor TFs) with less satisfactory performance.

Fig. 3 Combination of static and dynamic features increases prediction performance. Boxplot of AUC of 34 different TFmotifs using selected features
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Fig. 4 Performance of cross-TF predictions. The TFs shown in Y-axis
were used for training and the binding sites of TFs shown in X-axis
were predicted. The cells highlighted in blue boxes are the
self-prediction, which were used as a benchmark. The models were
constructed from a TF motif in GM12878. The color showed the AUC
for each prediction. The bottom panel shows the results using
CENTIPEDE, DNASE2TFand HINT-BC for these TFs

On the other hand, some TFs (e.g. EGR1, ELF1) have
higher prediction performance than most of the train-
ing models used (properly predicted TFs), while other
TFs (e.g., ATF3, JUND, RXRA) have lower prediction
performance than most of training models used (poorly
predicted TFs). We found that correlation between a TFs’
prediction performance and its binding motif ’s informa-
tion content is very weak (0.29). The result suggests that
the sequence motif is not a major determinant for prop-
erly or poorly predicted TFs. In practice, we can choose
good predictor TFs as models to predict the target TF’s
binding (Fig. 4). For example, although JUND is a poorly
predicted TF, from Fig. 5 we see that NRF1 is a good pre-
dictor TF for JUND.We can thus use a model constructed
from NRF1 to predict the location of JUND binding sites.
We also compare our approach with three repre-

sentative methods: CENTIPEDE [29], DNASE2TF [24]
and HINT-BC [26]. The former is an unsupervised
learning approach, and the latter two identify foot-
prints of TF binding. Our approach outperformed
these methods with the dataset. Specifically, HINT-
BC and CENTIPEDE achieves better prediction than
DNASE2TF (Fig. 4). This agrees with results from
Sung et al. [24].

Models obtained frommultiple TFs are better than those
generated using a single TF
We further studied whether increasing the number of
TF motifs used for training increases the accuracy of
TFBS prediction. For each N (N=3, 5, 8, 12, 16, 20, 25,
30), we randomly chose 100 combinations of N TFs.

For each combination, data from these N TF motifs
are used for model training. The model is then used
to predict the binding sites for a target TF, which is
not included in the N TFs. It is clear that the aver-
age performance for the prediction of target TF binding
sites increases with the number of TF motifs used for
training (Fig. 5). When the number of motifs used for
training is 30, there is a significant difference in pre-
dictivity comparing with those training with only one
motif (p =0.0086).
As a benchmark, we also predicted the binding sites of

a TF using self-prediction (i.e. 2/3 of the binding sites
for training, and the remaining 1/3 for prediction). We
compared the performance for 31 TFs in GM12878. We
performed cross-TF prediction using 30 TFs for training.
In most cases, models based on the 30 TFs performed bet-
ter than models based on single TFs (Fig. 6). Furthermore,
the model based on 30 TFs achieved almost the same
performance as the self-prediction model (Fig. 6). Taken
together, our study suggested that a model based on mul-
tiple TFs is a more reliable tool for predicting the binding
sites for a novel TF.

Cross-cell line prediction is comparable with self-prediction
We next studied a situation where we have the ChIP-
Seq for a TF in one cell line, and sought to pre-
dict its binding sites in another cell line, in a case
where both cell lines have data for chromatin acces-
sibility. For example, if we trained a random forest
model of ATF3 in GM12878 cell and predicted its
binding sites in A549, H1-hESC, and K562 cells, we
obtained the AUC of 0.89, 0.80, and 0.81, respectively.
As a benchmark, the AUC of ATF3 self-prediction in
GM12878 cell is 0.87, suggesting that we could trans-
fer the model learned from one cell type to a different
cell line.
Figure 7 summarizes the performance of cross-cell pre-

diction for 19 TFs. These TFs have ChIP-Seq obtained
from multiple different cell types, along with chromatin
accessibility data for the corresponding cell types. For
each TF, we learned the models from one cell type and
predicted the binding events in other cell types. We have
total 3-20 cross-cell prediction for each TF. For compari-
son, we also indicated the performance of self-prediction
in these cell types as benchmark (green squares in Fig. 7).
Among 19 TFs, 14 showed that self-prediction performs
better than the average performance of cross-cell predic-
tion. Interestingly, five TFs have better cross-cell predic-
tion for most of cell types than for self-prediction (panel
with brown background in Fig. 7). These factors are either
poor predictor TFs or poorly predicted TFs. This sug-
gests that using information from additional cell lines
can help improve the TFBS prediction for some poorly
predicted TFs.
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Fig. 5 Average AUC increases with number of training motifs. As the number of motifs used for training increases, the average AUC of prediction of
all motifs increases

Mixed prediction is also comparable with self-prediction
We then examined the performance of the mixed pre-
diction, in which we learned the model from other TFs
in other cell types. When we performed 8855 cross pre-
diction analyses for 20 TFs in six cell types, the cor-
responding average AUC ranged from 0.63 to 0.82. We
compared the performance of mixed prediction with self-
prediction, and found that for most TFs, mixed prediction

performed less well than self-prediction (Fig. 8). Nev-
ertheless, the performance of mixed prediction is still
acceptable in terms of AUC. The above results suggested
that we could build a universal model using existing ChIP-
Seq data from many TFs in multiple cell types. This uni-
versal model can then be used to predict the TF binding
sites in any cell type, so long as the chromatin accessi-
bility data are available for the cell type of interest. We

Fig. 6 Combination of mutliple TF motifs. Prediction combining the profiles of multiple TF motifs is significantly better than prediction using the
profile of a single TF motif. Boxplot is cross-TF prediction using single TF for training. Green asterisks denote the cross-TF prediction multiple TF
motifs for training. Diamonds are the self-prediction
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Fig. 7 Result on cross-cell type prediction. Cross-cell prediction for 19 TFs. As comparison, the performance of the self-prediction was indicated by
green square

developed a program, BPAC (TF Binding Prediction from
ACcessibility data), and made it available as an online
web tool.
The source code and documentation are freely avail-

able under the GNU General Public License via GitHub at
http://github.com/sliu2/BPAC. A web server is also avail-
able at http://bioinfo.wilmer.jhu.edu/BPAC. As shown in
the website, user can provide different type of inputs
according to different situations. If TF motif is not given,
we use STAMP tools [46, 47] to get most probable
motif.

Conclusions
In this work, we proposed a supervised classification
approach to predict TF binding events, using available
TF ChIP-Seq data as a gold standard. The features are
selected from sequence related information, gene related
information, and chromatin accessibility information.
There are cases that based on sequence information, or
gene related information, or chromatin accessibility infor-
mation alone, some TFs have poor predictivity because
of limitation of each type of information. We show that
combining these information improves the prediction.

Fig. 8Mixed prediction is also comparable with prediction using profiles of self-transcription factor. 100 random repeats using data from single TF
motif for training regardless cell line were made for each target TF motif. Green Square is result of single TF motif binding prediction from model
constructed from 34 TFs together

http://github.com/sliu2/BPAC
http://bioinfo.wilmer.jhu.edu/BPAC
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One key question related to the general usefulness of this
approach is whether or not the model learned from other
TFs in other cell types is transferable. We assessed the
transferability for many TFs and different cell lines, and
discovered that in most cases a model learning from other
TFs, especially the combination of many TFs, performed
almost as well as the model learned from the target TF.
The analysis suggested that we could build a universal
model for prediction of TF binding sites. However, we
would like to emphasize that the focus of this paper is to
access the model transferability across TFs and cell lines,
rather than developing the most powerful model for TF
binding prediction. We believe that some genomic fea-
tures such as cofactor PWMs are important to improve
the prediction. However, these features might not be suit-
able for our purpose because they may not be transferable
across different cell lines. For example, different cofactors
might co-exist with one TF in different cell lines. There-
fore, we used a basic model with small number of features
to assess themodel transferability. Based on the analysis of
human TFs, it seems that the model can be used to predict
on any TFs, on any cell type, provided that the TF bind-
ingmotif (i.e. PWM) and the chromatin accessibility of the
target cell type are known. Of course, the transferability
across species requires further investigation. Previous
analysis has shown that some TFs like CTCF are
transferable cross cell lines without loss of predictabil-
ity [34], our study provided a more comprehensive assess-
ment of the model transferability for much more TFs and
cell types.

Additional file

Additional file 1: Supplementary information about data used in this
study. This file contains the following tables: Table S1 – Transcription
factor motifs used in this study. Table S2 – Dnase-Seq (bam format) and
ChIP-Seq (narrowPeak format) used in this study. (PDF 23 kb)
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