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Abstract

Background: Traction Force Microscopy (TFM) is a widespread technique to estimate the tractions that cells exert
on the surrounding substrate. To recover the tractions, it is necessary to solve an inverse problem, which is ill-posed
and needs regularization to make the solution stable. The typical regularization scheme is given by the minimization of a
cost functional, which is divided in two terms: the error present in the data or data fidelity term; and the regularization or
penalty term. The classical approach is to use zero-order Tikhonov or L2-regularization, which uses the L2-norm for both
terms in the cost function. Recently, some studies have demonstrated an improved performance using L1-regularization
(L1-norm in the penalty term) related to an increase in the spatial resolution and sensitivity of the recovered traction field.
In this manuscript, we present a comparison between the previous two regularization schemes (relying in the L2-norm for
the data fidelity term) and the full L1-regularization (using the L1-norm for both terms in the cost function) for synthetic
and real data.

Results: Our results reveal that L1-regularizations give an improved spatial resolution (more important for full
L1-regularization) and a reduction in the background noise with respect to the classical zero-order Tikhonov
regularization. In addition, we present an approximation, which makes feasible the recovery of cellular tractions over
whole cells on typical full-size microscope images when working in the spatial domain.

Conclusions: The proposed full L1-regularization improves the sensitivity to recover small stress footprints. Moreover,
the proposed method has been validated to work on full-field microscopy images of real cells, what certainly
demonstrates it is a promising tool for biological applications.
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Background
Tissue remodeling implies the reorganization of the
extracellular matrix (ECM), which is driven by the con-
version of intracellular-generated mechanical forces into
extracellular traction, which reorganizes the ECM fibers.
This is a crucial process during regeneration (e.g., in
wound healing) but it is equally important in pathologic
scenarios (e.g., in inflammation and/or cancer). In fact,
some of the pathological changes associated to these
diseases are due to the altered ability of cancer, or in-
flammatory cells, to exert abnormal traction on their
microenvironment [1]. Thus, the precise quantification
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of the traction exerted by cells (and groups of cells) is
key to understand the remodeling processes that occur
during these biologically relevant events, including
events on the cellular scale (e.g., cell migration and div-
ision) as well as at a subcellular scale (e.g., signal transduc-
tion events). Cells convert intracellular-generated forces
into extracellular-applied tractions and transmit them to
the microenvironment through micron-sized protein accu-
mulations termed focal adhesions (FA) [2–8].
Traction Force Microscopy (TFM) is a technique that

estimates the tractions exerted by adherent cells placed
on top of a flexible hydrogel that mimics the mechanical
properties of the ECM [9].
In a typical TFM experiment, a large number of fluores-

cent beads are randomly mixed inside the hydrogel. The
fluorescent beads are displaced as the cells exert tractions
on the substratum and act as fiduciary markers enabling
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the transformation of motion into force (see Fig. 1).
Experimentally, fluorescence microscopy is used to
acquire images of the beads before (stressed hydrogel) and
after (relaxed hydrogel) suppressing cell tractions, either
by drug-induced relaxation of cells, or directly via cell
detachment or lysis. The images of the stressed and
relaxed hydrogel are then compared to track the motion
of the embedded beads and obtain the matrix displace-
ment field. This, together with a mechanical model of the
hydrogel based on its height and its elasticity (Young’s
modulus) allows estimating the cellular tractions using
computational methods.
The displacement field of the beads can be obtained using

different image processing methods. Two classical ap-
proaches used in TFM experiments include block-wise
image correlation computation (Particle Image Velocimetry)
[10]; and individual motion tracking of each bead (Particle
Tracking Velocimetry) [11]. One of the novel aspects of the
present study is that we use a non-rigid image registration
approach, which provides very good accuracy with a rea-
sonable computation time and without a loss in spatial
resolution compared to previous methods [12].
Recovering cellular tractions (causes) from matrix

displacements (observable effects) implies solving an ill-
posed inverse problem. Consequently, the solution is
very sensitive to the errors committed in the calculation
of the displacement field.
To constraint the solution and prevent the estimated

tractions from over-fitting the noise present in the matrix
displacements, it is common to regularize the traction re-
construction process, including a penalty term in the
norm of the tractions [13]. Historically, L2-norm
regularization, also known as Tikhonov regularization
[14], is the most widely used scheme in TFM, as it allows
an efficient traction recovery in the frequency domain
[15]. However, recent studies showed that the use of the
Fig. 1 Schematic representation of a Traction Force Microscopy experimen
L1-norm in the imposed penalty term yields improved re-
sults in terms of spatial resolution, estimation of the trac-
tion magnitude and background noise reduction, giving
sparser traction fields as is expected in TFM experiments
[16–18]. For example, L1-regularization was introduced to
study the focal adhesions maturation, which was possible
by the huge improvement obtained in the spatial reso-
lution [16]. Using a similar approach Bohr et al. in [17],
demonstrated that traction fields with high spatial reso-
lution could be computed from displacement fields with
low resolution.
A major issue with L1-regularization is that it requires

solving the problem in the spatial domain instead of the
frequency domain, which greatly increases the computa-
tional demand. Therefore, its application has been
limited to either reduced regions of interest with full-
resolution displacements, or full field of views with low-
resolution displacements.
To overcome this limitation, in this study, we intro-

duce an approximation that reduces the computational
cost of recovering the tractions in the spatial domain,
thus, providing the means to work with both full-field
microscopy images (covering whole cells) and full-
resolution displacements. In addition, we propose the
use of full L1-regularization in TFM, which minimizes
the L1-norm of both the penalty (i.e., recovered trac-
tions) and the data fidelity terms (i.e., difference between
the estimated displacements and the ones obtained from
the given recovered tractions). Here, the performance of
the proposed scheme satisfactorily compares to the clas-
sical approach (regularization minimizing the L2-norm
for both the penalty and the data fidelity terms) and the
simple L1-regularization (constraining the L1-norm of
the penalty term) with synthetic and real data.
In the following sections, we present the foundation of

2D TFM traction recovery in the spatial domain and the
t and the generic blocks of the traction recovery algorithms
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method implemented to compute the traction forces for
full-size microscopy images, followed by the evaluation
of synthetic data and experiments with live cells,
respectively. Results section contains the experimental
results, including a qualitative and quantitative compari-
son between the different regularization schemes,
followed by a discussion on the limitations of the
present approach and future perspectives on the applica-
tion of this technique.
Methods
Regularized Traction Force Microscopy
In this work, we consider a bidimensional (2D) TFM
scenario in which cells are cultured on the top of a con-
trolled thickness hydrogel. One assumption is that cells
only exert in-plane (shear) forces on the surface of the
hydrogel. In this case, hydrogel deformation is obtained
as the solution of the elasticity problem:

uj xð Þ ¼
X

i

Z
gji x; x’ð Þ ti x’ð Þ dx’ ð1Þ

where the j-th component (j ∈ {x, y}) of the displace-
ment field u at spatial location x is related to the
tractions t exerted along the ¡-th Cartesian direction
(¡ ∈ {x, y}) at the location x′ by the Green’s function
of the hydrogel g(x,x′).
The Green’s function models the elastic deformation

of the hydrogel in response to a point force. It is usually
given by the analytical Boussinesq solution in 2D TFM,
where the hydrogel can be approximated by a homoge-
neous, isotropic, elastic and semi-infinite medium.
Under these assumptions, the Green function can be
considered linear shift-invariant [19], which allows trans-
forming Eq. 1 in a summation of convolutions:

uj xð Þ ¼
X

i

Z
gji x−x’ð Þ ti x’ð Þ dx’

¼
X

i
gji xð Þ⨂ti xð Þ ð2Þ

In practice, displacement and traction fields are only
estimated at discrete locations of the space, and Eq. (2)
can be rewritten in matrix form as:

u¼K�t ð3Þ
where u = [ux(x1); … ; ux(xN); uy(x1); … ; uy(xN)] is a
2N × 1 column vector with N being the number of
locations where displacements are measured, t ¼
tx x’1ð Þ;…; xM’

� �
; ty x1’
� �

;…; ty x’M
� �h i

is a 2M × 1 column
vector with M being the number of locations where trac-
tions will be estimated, and K is the 2N × 2M stiffness
matrix given by:
K ¼ Gxx Gxy

Gyx Gyy

� �
ð4Þ

with

Gji ¼
gji 1; 1ð Þ ⋯ gji 1;Mð Þ

⋮ ⋱ ⋮

gji N ; 1ð Þ ⋯ gji N ;Mð Þ

2
64

3
75 ð5Þ

A trivial solution for the traction recovery is obtained
by the direct inversion of Eq. 3. However, it implies the
inversion of the stiffness matrix, which is ill-conditioned,
and thus, it would amplify the errors present in the
computed displacement field leading to unstable results.
For this reason, a regularization scheme is commonly
used to reach a stable solution. Then, the traction field
recovery in the spatial domain is given by the
minimization of the following cost functional:

t̂ ¼ argmin
t

∥Kt−u∥q þ λ∥t∥p
� 	 ð6Þ

where ‖·‖q denotes the Lq-norm, ∥Kt − u∥q is the data
fidelity term, ∥t∥p is the imposed penalty and λ is a
parameter that controls the amount of regularization
applied.

L2-Regularization in the Fourier Domain
Following Parseval’s theorem, L2-regularization has an
efficient, and widely used, implementation in Fourier do-
main [15], where the summation of convolutions in the
spatial domain (Eq. 2) is transformed in a summation of
products:

uej kð Þ ¼
X

i
geji kð Þtei kð Þ ð7Þ

where ue; g ; t are the Fourier transforms of u , g , t in Eq.
2 and k are the frequencies where these variables are
evaluated.
Analogously to the spatial domain, the previous equa-

tion can be written in a matrix form:

ue ¼ Ae�te ð8Þ

where Ae contains all the values of geji in Eq. 7.
Then, the L2-regularization can be formulated as the

minimization of a cost functional, taking the L2-norm
for both penalty and data fidelity terms:

t̂F ;L2 ¼ ℱ−1 argmin
t

∥Ae te−ue∥2 þ λF;L2∥te∥2
� 	)(

ð9Þ

being ℱ−1 the inverse Fourier transform.
The solution for the traction field is, thus, given by:
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t̂F ;L2 ¼ ℱ−1 Ae�Ae þ λF ;L2I
� �−1

Ae�u~g

ð10Þ

where Ae� is the complex conjugate of Ae.
L2-Regularization in the Spatial Domain
Zero order Tikhonov regularization can be also formu-
lated in spatial domain, using the L2-norm for both
terms in Eq. 6 (p = q = 2). Then, the minimization prob-
lem has an analytical solution given by [20]:

t̂L2 ¼ KTKþ λL2I
� �−1

KTu ð11Þ
with KT being the transpose of the stiffness matrix.

L1-Regularization in the Spatial Domain
A better alternative is to use the L1-norm for the penalty
term (q = 2 and p = 1 in Eq. 6), which promotes sparser
traction fields [21], as the ones expected for TFM exper-
iments. Unfortunately, it is not possible to express the
solution in a closed form, thus requiring an optimization
algorithm. Here, the Iterative Reweighted Least Squares
(IRLS) algorithm [22] is used to solve the convex
optimization problem and estimate t̂L1 ; as was used in
[16, 18]. This algorithm approximates the L1-norm by a
weighted L2-norm problem, updating those weights
iteratively until convergence is reached. Then, at each
iteration s:

t̂
s
L1 ¼ KTKþ λL1W

s
� �−1

KTu ð12Þ

where Ws is the weight matrix at the s -th iteration. We
considered that convergence was reached when the abso-
lute value of the difference between the tractions esti-
mated in two consecutive iterations was smaller than 10−6.

Full L1-Regularization in the Spatial Domain
The alternative, we propose in this manuscript, is to
use the L1-norm for both data fidelity and penalty
terms (p = q = 1 in Eq. 6). Analogously to the simple
L1-regularization, there is no a closed form solution
for the convex optimization problem and the IRLS al-
gorithm can be used to estimate the cellular tractions.
Then, the solution at each iteration s is given by:

t̂
s
full−L1 ¼ KTWs

dKþ λfull−L1W
s

� �−1
KTWs

du ð13Þ

where Ws
d is the weight matrix of the data fidelity term

at the s-th iteration.

Stiffness matrix reduction
The main issue when working in the spatial domain with
full-size real images and full-resolution displacements is
the high computational requirements. For instance, for a
typical field of view of 800 ∙ 800 pixels and storing each
element of the stiffness matrix with double precision, its
size in memory would be as large as is 2N ∙ 2M ∙ 8Bytes
~ 13 Terabytes, where N =M = 800 ∙ 800, being N the
positions of the displacements used for the tractions
estimation and M, the positions where the tractions
would be recovered.
Consequently, solving the regularization problem in

the spatial domain is not feasible on a standard desktop
computer. To avoid this limitation and be able to work
with both full-size real images and full-resolution dis-
placements, we perform a reduction of the stiffness
matrix by including a priori information inherent to
TFM experiments (see Fig. 2). In particular, it is known
that adherent cells exert tractions at discrete locations;
namely, the focal adhesions. Thus, it is reasonable to as-
sume that cellular tractions should be only estimated in
certain regions, outside of which they should be zero.
Note that given the conditions of the experiments we
performed, we are not able to detect individual focal ad-
hesions, but clusters of them as determined by cytoskel-
etal fibers. We refer to this approximation as stress
footprints throughout the manuscript.
First, we consider that the regions presenting large dis-

placements correspond to the sites of traction applica-
tion, which is a priori a sufficient approximation, as the
support of the traction field is much reduced than the
one of displacement field. Hence, we can limit the num-
ber of locations where the tractions will be recovered
(M) to the points inside these regions.
Furthermore, the signal-to-noise ratio of the displace-

ments decreases with its magnitude and their informa-
tion content quickly vanishes with the distance to the
locations where tractions are exerted. Therefore, it is
also reasonable to limit the locations of the measured
displacements that will be used in the traction recovery
(N) to those ones inside the segmented regions, as those
outside would mainly contribute with noise in the sys-
tem of equations.
To segment these regions, we apply an Otsu’s thresh-

olding to the magnitude of the estimated displacement
field. On our hands, the segmentation of the displace-
ments extract disconnected regions of reduced size.
Thus, the tractions in each of the disjoint regions can
be recovered using only the information from the dis-
placements located inside it. Consequently, the global
stiffness matrix can be split in as many local stiffness
matrices (with a drastically reduced size) as detected
regions of interest, making the traction estimation feas-
ible on a standard PC. Once all the local TFM problems
have been solved, the contributions of each segmented
region are combined together to maintain the original
field size.
All the methods described in this section have been

implemented in Matlab (MathWorks Inc.) code.



Fig. 2 Main steps in Stiffness Matrix Reduction method. Areas with high displacement magnitude are segmented using an Otsu’s thresholding.
After that, only the segmented displacements are used to estimate the traction field in every disjoint region
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Synthetic data
Simulated data generation
To assess the performance of the different regularization
schemes, we used our TFM simulator [23] to generate
images of relaxed and stressed hydrogel containing em-
bedded fluorescent beads as acquired by an optical
microscope (see Fig. 3). Briefly, a simulated traction field
was used to generate the displacements (Eq. 3) that
move a large number of randomly distributed beads in
the relaxed hydrogel to their new locations in the
stressed hydrogel. Furthermore, the images containing
the beads were generated taking into account the noise
and the point spread function associated blurring that is
introduced by the optical system and thus, represent a
realistic synthetic dataset.
Then, the B-spline based non-rigid registration algo-

rithm [12] was used to calculate a full-resolution dis-
placement field from these images, as done in real TFM
experiments. Lastly, the estimated displacements were
fed to the regularized traction reconstruction algorithms
under evaluation and the recovered tractions were com-
pared to the ground-truth given by the simulated fields.
To create a realistic map of tractions that can be used

with our TFM simulator, we used the tractions recovered
from TFM experiments with real cells. Specifically, real
traction fields computed with full L1-regularization were
segmented using an extension of the classical isodata algo-
rithm [24] that automatically selects five thresholds using
a clustering approach. Then, we perform a binary segmen-
tation based on the most restrictive of them to be used as
the synthetic stress footprints mask.
Then, following the pipeline explained before, ten dif-

ferent realizations have been created for each simulated
case, changing in each realization the position of the
fluorescent beads. The selection of the optimal param-
eter λ for each regularization method has been per-
formed by an exhaustive search. Namely, the inverse
problem has been sequentially solved on a synthetic
image randomly selected using a regularization param-
eter λ on the range [0,1] with a step size Δλ of 0.01. The
regularization parameter λ used on the simulations for
the evaluation of the algorithms was the one minimizing
the cost functional defined on Eq. 6.

Error metrics
We have evaluated the error in the recovered traction
field within a region of interest defined by the corre-
sponding stress footprint. These footprints were ob-
tained by segmenting the magnitude of the recovered
tractions using an Isodata thresholding of two levels.
These metrics are evaluated only in the recovered stress
footprint areas.
Being tgt the simulated ground-truth traction field, t̂

the retrieved traction field, and P and Q the total num-
ber of points within the respective stress footprints, we
have defined the following error metrics:



Fig. 3 Pipeline of the synthetic data generation. From the ideal tractions, using the forward equation, the ideal displacements are computed. The
simulator generates a synthetic relaxed hydrogel volume with fluorescent beads randomly distributed inside. The beads are distorted simulating
the acquisition on a confocal microscope and the volume, contaminated by the characteristic noise. Based on the biomechanic properties selected for
the hydrogel (namely, Young modulus and Poisson ratio), the stressed hydrogel is generated. Finally, using the stressed and relaxed hydrogels the
inverse problem is solved using any of the presented approaches and tractions are recovered and compared with the ideal
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Error in magnitude Absolute error in the recovered
traction magnitude (in percentage) defined as

em ¼ 100∙
Xn̂

n¼1

PPn
i¼1 t̂ i

�� ��− tgti
�� ���� ��PPn

i¼1 tgti
�� ��

 !
ð14Þ

where n̂ is the number of recovered stress footprints,
and Pn the points of the simulated stress footprint asso-
ciated to each recovered footprint.

Error in angle Average angular error (in percentage) in
the recovered stress footprint, weighted at each point by
the traction magnitude. It is normalized by the max-
imum error in degrees (180°) to give the result in per-
centage as given by

ea ¼ 100∙
Xn̂

n¼1

PPn
i¼1

‖t̂ i‖PPn

m¼1
t̂ mk k


 �
cos−1

t̂ i ∙tgti
t̂ ik k∙ tgtik k


 �����
����

180

0
BB@

1
CCA
ð15Þ

Error in area Absolute error of the recovered stress
footprint area (in percentage) as given by

eA ¼ 100∙
Xn̂

n¼1

Â−Agt

Agt

�����
����� ð16Þ

with Â and Agt being the area of the recovered and
ground-truth footprints, respectively.
Loss ratio of stress footprint areas It is the ratio (in
percentage) between stress footprints that the regular-
ized TFM methods cannot recover (the number of false
negatives) and the total number of simulated stress foot-
prints synthetized by cell. It is defined as

LFA ¼ 100∙
ngt−n̂
ngt

ð17Þ

where n̂ and ngt are the number of recovered and
ground-truth stress footprints.

Smallest detectable stress footprint areas It is the
smallest product between the area (in μm2) and the peak
magnitude (in kPa) of the recovered stress footprint
areas. This metric reflects the dependence between the
size and the magnitude of the stress footprints and it is
defined as

SFA ¼ min
i

Ai
gt�timax

� �
nNð Þ ð18Þ

where Ai
gt and timax are the ideal area and maximum

traction amplitude of a recovered stress footprint i.

Statistical analysis The statistical significance among
different realizations and regularization schemes was
evaluated for each error metric using the t-Student test
with signrank Matlab function. A p-value smaller than
0.01 was considered to give statistical significance.
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Real data
We have used the presented algorithms to quantify the
tractions exerted by Chinese Hamster Ovary (CHO-K1,
American Type Culture Collection (ATCC; Rockville,
MD), CCL 61) cells expressing Lifeact-GFP. These cells
were cultured on a ~ 90 μm thick polyacrylamide hydro-
gel with a Young’s modulus of 5 kPa and a Poisson ratio
of 0.45, containing embedded fluorescent polystyrene
beads (0.2 μm in diameter, 647 nm of emission wave-
length, ~1 bead per μm2). Images of the cells were ac-
quired at multiple locations of the hydrogel surface with
a 60× glycerol objective (NA = 1.3) mounted in a Leica
SP5 Laser Scanning Confocal microscope with 0.32 μm
of resolution in each direction of the plane. Time-lapse
images of the stressed hydrogel were taken every 20 s
during 25 min. An image of the relaxed hydrogel was
taken after removing the cells.
Results
Synthetic data
To build a realistic synthetic dataset we used our TFM
simulator with data from ten different real TFM experi-
ments (i.e., cells) as explained in the previous section.
A wide variety of test conditions were considered, spe-
cifically, the number of stress footprints per simulated
case ranged between 10 and 120, their peak magnitude
between 0.6 kPa and 4 kPa and their area between
0.25 μm2 and 20 μm2. The parameters to simulate the
mechanics of the hydrogel and the acquisition of the
bead images were chosen to be the same than those of
the real experiments and are given below. Furthermore,
multiple (10) realizations were simulated for each syn-
thetic case to take into account the variability intro-
duced by the random distribution of the beads inside
the hydrogels. Finally, for the sake of comparison, the
parameters controlling the amount of regularization
were fixed for all the set-ups to λL2 ¼ 0:2, λL1 ¼ 0:08,
λfull−L1 ¼ 0:1 . These values were independently deter-
mined for each regularization scheme after an exhaust-
ive search minimizing the least square error between
recovered and simulated traction fields. Additional file 1
shows an illustration of the changes in the recovered
traction fields with the regularization parameter for each
method.
Figure 4 shows a representative example of simulated

traction field (Fig. 4a) and ideal displacement field (Fig.
4b). The noisy displacements computed from the syn-
thetic images of relaxed and stressed hydrogel are shown
in Fig. 4c. Their corresponding tractions recovered by
each regularization scheme are shown in Fig. 4d-f. The
mask defining the regions were tractions are estimated is
overlaid. As expected, a visual inspection of Fig. 4 re-
veals that L1-regularizations give sparser traction fields
with less background signal and better estimation of
traction magnitudes than the classical L2-norm based
Tikhonov regularization. Furthermore, full L1-regularization
is able to recover more stress footprints than the other
methods.
Those results are quantitatively confirmed in Fig. 5 and

Additional file 2. We observe how L1-regularization pre-
sents smaller errors in magnitude and angle of the recov-
ered stress footprint areas than Tikhonov regularization
and full L1-regularization, giving around three times
smaller magnitude error (12%) than the other methods.
Regarding the area error of the recovered stress footprints,
full L1-regularization shows the best performance with an
average error less than 4%, while L1-regularization has
about 7% of error and Tikhonov present the worst
performance with an average area error about 16%. Look-
ing at the ratio of the lost stress footprints, full L1-
regularization is able to recover more than the double of
stress footprint areas (around 75%) than the other
regularization methods (around 30% of them). In addition,
in Fig. 6, it can be seen how full L1-regularization has the
smallest detectable stress footprint area values. Namely,
this method detects smaller stress footprint areas with re-
duced traction magnitude than the other methods. In par-
ticular, the smallest stress footprint areas detected in all
experiments for each method are (Peak Magnitude (kPa),
Area (μm2), mFA(nN)): L2-regularization (0.89, 0.38, 0.33);
L1-regularization (0.94, 0.31, 0.29); full L1-regularization
(0.68, 0.25, 0.17).
Moreover, most of the differences between the error

measures given for the different regularization schemes
are statistically significant (p < 0.001). The exceptions
are: The error in magnitude between Tikhonov and full
L1-regularization and the smallest footprint detected be-
tween Tikhonov and L1-regularization.
Real data
In Fig. 7, an example of traction recovery on one
frame of a real cell is shown. In Additional file 3, ten
samples frames are presented. It can be seen how the
results are qualitatively similar to those obtained for
synthetic data.
Image of the cell (Fig. 7a), images of the stressed and

relaxed polyacrylamide hydrogels (Fig. 7b) and the dis-
placement estimation (Fig. 7c) are shown with the mask
used for the tractions calculation, overlaid. In Fig. 7d-f,
the recovered traction fields for each of the
regularization schemes are shown. The Tikhonov
regularization clearly smoothens the solution and intro-
duces more background noise than L1-regularizations.
Moreover, full-L1-regularization enables to distinguish
between closer stress footprints as smaller stress foot-
prints are recovered.



Fig. 4 Example of traction recovery on a simulated cell. a Magnitude (in Pa) and direction (arrows) of simulated traction map; Magnitude (in μm)
and direction (arrows) of ideal displacements b and noisy displacements c; recovered traction magnitude (in Pa) and direction (arrows) using: d
Tikhonov regularization; e L1-norm regularization; f full L1-norm regularization and a zoom of the region of interest marked with a yellow box for
g Tikhonov regularization; h L1-norm regularization; i full L1-norm regularization. The stress footprints recovered by the Tikhonov regularization
are shown in red; These stress footprints when recovered with L1-norm and full L1-norm regularization are also shown in red; The additional stress
footprint recovered by the L1-norm regularization is shown in green; Note that the rightmost top stress footprint detected by the Tikhonov
regularization has disappeared; Lastly, the additional footprints recovered by the full L1-norm regularization are shown in white. The outline of the
mask used for traction recovery is shown in white. The scale bar represents 30 μm
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Discussion
The use of the full L1-norm was previously introduced
[25] and has been applied in different research areas, in-
cluding biomedical applications [26–28], image process-
ing [29, 30] and computer vision [31]. Whereas L2-data
fidelity is useful for fields contaminated with Gaussian
noise, microscopy images often contain more complex
noise (mixed Poisson and Gaussian noise) as well as out-
liers. In these cases, applying the L1-norm data fidelity
constraint is more appropriate.
Moreover, there has been previous theoretical work ex-

ploring the consequences of the use of the L1 norm in the



Fig. 5 Quantitative comparison between different regularization schemes. Ten different traction maps have been considered and ten realizations
for each have been computed. The Student’s t-test was used to compare the error measures computed by the different regularization techniques.
All the differences were statistically significant (p < 0.001), except Angle Error between Tikhonov and full L1-regularization (p = 0.5)
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data fidelity for image reconstruction [30]. In particular, it
has been shown that some undesirable characteristics de-
rived from the minimization of the absolute error instead
of the least-squares error such as the lack of uniqueness of
solutions, and the lack of continuous dependence on data,
can be real assets. A major advantage of the L1 fidelity
based model over the standard one is that the
regularization imposed on solutions is more geometric, in
the sense that the regularization process has less depend-
ence on the contrast of image features than on their
shapes; As distinct from the standard model, small fea-
tures in the images maintain their contrast. In addition, L1
data fidelity works better reducing some artifacts like ring-
ing and the presence of outliers [25, 29].
Fig. 6 Comparison of the smallest detectable stress footprint areas (nN) for
been considered and ten realizations have been computed for each of the
p < 0.005), except between Tikhonov and L1-regularization (p = 0.5)
In Additional file 1, a comparison between the data fi-
delity and penalty term recovered by the regularization
methods for a range of lambda values (from 0 to 0.22
with a step of 0.02) is shown. It is clear that full L1-
regularization reduces the data fidelity term. This means
that the matching between the estimated displacements
and the inferred ones (the product of the stiffness matrix
and calculated traction field) is greatly improved with re-
spect to the other regularization schemes. This could be
responsible for the strong decrease in the loss stress
footprints ratio and it is the source of differences be-
tween the L1-regularizations.
Our results reveal that L1-regularizations give an

improved spatial resolution (more important for full
different regularization schemes. Ten different traction maps have
m. All the differences are statistically significant (Student’s t-test,



Fig. 7 Example of traction recovery on a real cell. a CHO cell expressing Lifeact-GFP; b Pseudo-color image showing the fluorescent beads at the
hydrogel surface. The beads of the unstressed and stressed hydrogels have been superposed and pseudo-colored in red and green, respectively;
therefore, beads are colored yellow when not displaced. The contrast of the pseudo-color image has been modified to highlight the areas with
bead displacements; c Magnitude (in μm) and direction (arrows) of in-plane displacements estimated from the bead images. Recovered traction
magnitude (in Pa) and direction (arrows) using: d Tikhonov regularization; e L1-norm regularization; f full L1-norm regularization. The outline of
the mask used for traction recovery is shown in red (a) and white (c-f). The scale bar represents 30 μm
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L1-regularization) in terms of sensitivity to detect smaller
stress footprints in both synthetic and real data with re-
spect to the classical zero-order Tikhonov regularization.
In our hands, L1-regularization of the penalty term pre-

sents smaller errors in magnitude and angle of the recov-
ered stress footprint areas than the other regularization
methods. It was expected that L1-regularization of the
penalty term over-performed the results obtained by
Tikhonov regularization as was already demonstrated in
previous publications [16, 18]. Nevertheless, it was a sur-
prising result for full L1-regularization and it is maybe due
to our error metric evaluation procedure. Namely, we
compute the error metrics over all the recovered stress
footprints being the number recovered by full L1-
regularization much larger. Even more, the ones recovered
only by full L1-regularization tend to be the smaller in
magnitude and area. Those risk to be the ones over which
the reconstruction errors could be larger penalizing the
computation of the error metrics.
As detailed in the previous sections, working in the

spatial domain implies a high computational demand in
terms of RAM and CPU usage due to the size of the



Suñé-Auñón et al. BMC Bioinformatics  (2017) 18:365 Page 11 of 14
stiffness matrix and the need to use an iterative
optimization algorithm to recover the tractions, respect-
ively. To overcome this severe problem, we have pre-
sented a method to reduce the size of the stiffness
matrix that allows working with full-field microscopy
images and full resolution displacement fields in the
spatial domain. It is based on the calculation of forces in
a few confined regions of interest defined with an Otsu
thresholding over the magnitude of the estimated dis-
placements. This approach results in a generous seg-
mentation of the regions, guaranteeing no loss of
information. Namely, more than 85% of the estimated
displacements magnitudes are kept in all cases. This can
be qualitatively observed in Fig. 8 for one of the syn-
thetic cases. The stress footprints recovered using L2-
regularization in the Fourier domain (using all data from
the estimated displacement field) and in the spatial do-
main (using just the data covered by the mask) are visu-
ally similar, and no loss of information is apparent as
shown in Fig. 8 (top) and (middle). Indeed, this approxi-
mation reduces the background signal but it does not
cause loss of information of the recovered stress foot-
prints (see Fig. 8 (bottom)). Moreover, there are not sta-
tistically significant differences between the quantitative
error measures for both methods (t-test, p < 0.001) when
computed on our synthetic dataset. As this solution is
largely conservative, we believe that further refinements
could reduce the computational demand even further.
Finally, there exists an alternative TFM strategy called
Traction Reconstruction with Point Forces (TRPF) [32]
that also restricts the reconstruction of cellular tractions
in the space to the focal adhesion sites at the cost of label-
ing them. Furthermore, in contrast to the method pre-
sented in this work, it would miss the tractions generated
under the cellular nucleus in TFM setups considering
transversal forces (known as 2.5D TFM setups) [33].
Recent publications have implemented novel methods

incorporating relevant biomechanical constraints (i.e.,
the imposition of no forces outside the cell area and the
assumption that if the cell is in equilibrium the sum of
forces over the whole cell should be zero) [34, 35]. In
our work, we have not imposed those constraints in the
recovery of the tractions due, mainly, to two reasons:
The first one is that in our real data, due to experimental
limitations, the cell membrane might not be completely
labeled. Consequently, it is not possible to accurately de-
lineate the cell contour and, therefore, to impose that no
forces are applied outside the cell. Regarding to the con-
straint of having the distribution of forces over the
whole cell to sum up to zero, it has not been imposed in
our experiments because in the stiffness matrix reduc-
tion approach the whole image is split in subregions to
solve the traction recovery problem in small areas and,
then, reduce the computational demand. This reduction
implies solving the problem not in the whole cell and
thus, it is not possible to add the force balance con-
straint. Nevertheless, for our real data, it has been veri-
fied that this sum is close to zero (less than 0.1% of the
recovered maximum traction magnitude for all cases,
see Additional file 4) (mean (Pa), standard deviation
(Pa)): L2-regularization in Fourier Domain (−0.06, 0.24);
L2-regularization in spatial domain (−1.26, 18.07); L1-
regularization in spatial domain (−2.98, 18.59); full L1-
regularization in spatial domain (−2.04, 17.88).
To reduce the computation time of the L1-regularization

methods (full L1-regularization is about five times slower
than L1-regularization and 20 times slower than L2-
regularization in spatial domain), a more efficient implemen-
tation could be performed in a more suitable platform (i.e.,
using CUDA running over the FPGA), which would take
advantage of every available resource of a desktop computer.
It is worth noting that we have simulated very small

stress footprints in some of the synthetic traction maps.
Those are very difficult to recover due to a variety of ex-
perimental constraints, namely, the random position of
the beads, the limited microscope resolution and the
possible proximity of other stress footprints with higher
size or magnitude. A limitation of our experimental set-
up is the fact that we use relatively large beads (200 nm)
restraining the density of fiducial markers embedded in
the hydrogel to avoid clustering. This issue could be
partly solved by using smaller beads (~40 nm) that could
be packed with a higher density and closely to the sur-
face [16]. A recently proposed and elegant alternative is
to use a polydimethylsiloxane (PDMS) silicone hydrogel
with printed static quantum dots of 200 nm of diameter
distributed regularly (with 1,5 μm of separation) [36].
As per the experiments with real data we have only

performed a qualitative comparison of the different
regularization methods. Our current work focuses on de-
signing experiments in which the cellular focal adhesions
will be stained in vivo. For this purpose, we are construct-
ing cells stably expressing bona fide markers of focal adhe-
sion coupled to fluorescent markers (e.g. EGFP), which
are commonly used in these types of experiments [6]. Our
motivation is to build ground truth data in which would
be possible to establish quantitatively the resolution
reached by the different regularization schemes.
We believe this improvement in sensitivity and spatial

resolution could be relevant when combined with ad-
vanced microscopy methods, for cell biomechanics stud-
ies willing to drive the focus toward the characterization
of individual focal adhesions instead of clusters of them
as historically performed.

Conclusion
In this manuscript, we have implemented full L1-
regularization to recover cellular tractions in TFM



Fig. 8 Comparison between spatial and Fourier Domain. Traction
field magnitude (in Pa) and direction (arrows) from a real cell using
L2-regularization: a Spatial domain; b Fourier domain. The outline of
the mask used for traction recovery in the spatial domain is shown
in white. c Absolute value of the difference between recovered
tractions in (a) and (b). The scale bar represents 30 μm
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experiments, showing its good performance compared
with classical Tikhonov regularization and simple L1-
regularization both in simulated and real data.
The main characteristic of full L1-regularization is the

huge improvement in the sensitivity and the spatial
resolution, which allows recovering smaller stress foot-
prints compared with the state-of-the-art regularization
methods. In addition, we have demonstrated the improved
performance of L1-regularizations, giving smaller errors in
the recovered traction field and resulting in less back-
ground noise than Tikhonov regularization.
In this work, we have also presented a method to

make feasible the recovery of the tractions exerted by
whole cells on full-field microscope images when
working in the spatial domain. We have further
demonstrated the suitability of the approach for the
analysis of both realistic simulations and real data
experiments.
Additional files

Additional file 1: Comparison of the different terms involved in the
cost functional for the different regularization methods and a swept of
the regularization parameter (λ) values. The first row is for Tikhonov
regularization, the second one for L1-regularization and the third row is
for full L1-regularization. The columns from left to right show: traction
field (in Pa), displacement field (in μm), K ∙ t in Eq. 6 (in μm) and data
fidelity term (||Kt − u||q in Eq. 6) (in μm). The outline of the mask used for
traction recovery is shown in white. The scale bar represents 30 μm. (GIF
18689 kb)

Additional file 2: Quantitative results from synthetic data. Table with
the different error metrics (mean±standard deviation) obtained by the
different regularization methods on the synthetic data. Ten different
traction maps have been considered and ten realizations for each one of
them. The best results for each metric are highlighted in red. For all
cases, the differences between the realizations are statistically significant
(p < 0.001) as computed by a Student’s test. (TIFF 431 kb)

Additional file 3: Ten samples frames illustrating the whole TFM
experiment and comparing the traction recovery with the different
regularization methods. For each frame: (Top row, left) CHO cell expressing
Lifeact-GFP; (Top row, center) Pseudo-color image showing the fluorescent
beads at the hydrogel surface. The beads of the unstressed and stressed
hydrogels have been superposed and pseudo-colored in red and green,
respectively; therefore, beads are colored in yellow when not displaced. The
contrast of the pseudo-color images has been modified to highlight the
areas with bead displacements; (Top row, right) Magnitude (in μm) and
direction (arrows) of in-plane displacements estimated from the bead images.
(Bottom row) Recovered traction magnitude (in Pa) and direction (arrows)
using: (Left) Tikhonov regularization; (Center) L1-norm regularization; (Right) full
L1-norm regularization. The outline of the mask used for traction recovery is
shown in red (Top row, right) and white (for the rest). The scale bar represents
30 μm. Frame #5 corresponds to Fig. 7 in the main manuscript. (GIF 10461 kb)

dx.doi.org/10.1186/s12859-017-1771-0
dx.doi.org/10.1186/s12859-017-1771-0
dx.doi.org/10.1186/s12859-017-1771-0


Suñé-Auñón et al. BMC Bioinformatics  (2017) 18:365 Page 13 of 14
Additional file 4: Force balance over real cells. Table with the mean (in Pa
and in percentage of the maximum traction magnitude) and the standard
deviation (in Pa) of the sum of forces over the whole cell for each
regularization scheme and for all real dataset. (TIFF 110 kb)
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