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Local sequence and sequencing depth
dependent accuracy of RNA-seq reads
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Abstract

Background: Many biases and spurious effects are inherent in RNA-seq technology, resulting in a non-uniform
distribution of sequencing read counts for each base position in a gene. Therefore, a base-level strategy is required
to model the non-uniformity. Also, the properties of sequencing read counts can be leveraged to achieve a more
precise estimation of the mean and variance of measurement.

Results: In this study, we aimed to unveil the effects on RNA-seq accuracy from multiple factors and develop
accurate modeling of RNA-seq reads in comparison. We found that the overdispersion rate decreased when
sequencing depth increased on the base level. Moreover, the influence of local sequence(s) on the overdispersion
rate was notable but no longer significant after adjusting the effect from sequencing depth. Based on these
findings, we propose a desirable beta-binomial model with a dynamic overdispersion rate on the base-level
proportion of sequencing read counts from two samples.

Conclusions: The current study provides thorough insights into the impact of overdispersion at the position level
and especially into its relationship with sequencing depth, local sequence, and preparation protocol. These
properties of RNA-seq will aid in improvement of the quality control procedure and development of statistical
methods for RNA-seq downstream analyses.

Keywords: RNA-seq, Non-uniformity, Bias, Base-level modeling, Overdispersion, Beta-binomial, Differential
expression analysis

Background
Today, RNA-seq is a common technique for surveying
RNA expression. Because sequencing read counts from
individuals often show dispersion of measurements sig-
nificantly larger than that given by Poisson distribution,
fine modeling on this so-called overdispersion is required
for RNA-seq data analysis [1, 2]. Negative binomial
based distributions have been used by edgeR, DESeq/
DESeq2, baySeq, and other methods to model overdis-
persed RNA-seq data for differential expression (DE)
analysis [1–5]. Alternatively, beta-binomial distribution
based methods have been proposed [6, 7]. However,
these methods are still under development for more
accurate model fitting, due to the elusive properties of

RNA-seq read counts, especially from the aspect of
dispersion. Dispersion of RNA-seq was strongly related
to the sequencing depth [1], which was found to be crit-
ical to the power of detection of all expressed genes and
differentially expressed genes between groups [8–10].
Previously, we investigated the variance of RNA-seq
reads between samples with no biological difference,
such as runs of different library preparations from the
same sample, and found strong dependency between
overdispersion and sequencing depth [7]. In the current
study, we continued to study this scenario that samples
have the identical genetic background, such as identify-
ing differentially expressed genes in the same cell line
with stimulation by a ligand.
RNA-seq data has many biases and effects which make

developing accurate methods challenging [11–17]. Li et al.
demonstrated the non-uniformity of RNA-seq reads by
showing that the number of reads per nucleotide might
vary by 100-fold across the same gene, which was caused
by random hexamer priming bias in the nucleotide
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composition at the beginning of transcriptome sequencing
reads [12, 13]. Therefore, a naive Poisson model, which as-
sumes counts from all base positions are independently
sampled from a Poisson distribution with a single rate
proportional to the expression, is not appropriate. Several
methods have been proposed to model local sequence re-
lated RNA-seq biases for transcript abundance estimation.
Li et al. [13] proposed a method to predict variable rates
based on local sequence and correct the non-uniformity,
alpine [18] used a Poisson generalized linear model to
model RNA-seq fragment sequence bias related to
fragment GC content and GC stretches, and Salmon [19]
provided a fast method with sample-specific bias models
to capture fragment GC content bias and other effects.
However, capturing the fluctuation at each base position
among replicates, which is critical for precise RNA-seq
data modeling and accurate differential expression ana-
lysis, is out of the research scopes of those tools. In this
study, we aim to achieve an accurate modeling of RNA-
seq reads with fluctuation estimation at each base position
for comparison by taking random hexamer primer effect
into consideration.
Given the same influence from the same local se-

quence of one particular gene, it is reasonable to assume
that the mean number of sequencing reads on each base
in one experimental condition is consistently propor-
tional to that in another experimental condition. This
assumption is supported by the observation in the study
of Li et al. that the patterns of sequencing reads mapped
to the same local sequences were highly consistent, even
across different tissue types [13]. Therefore, we modeled
the proportions of base-level coverage comparing two
samples based on beta-binomial distribution, assuming
the proportions have different dispersion but the same
mean. Thus, high variable Poisson rates only enter the
process indirectly through the dispersion which is
advantageous in modeling. We previously observed
decreasing gene-level overdispersion corresponding to
increasing sequencing depth [7], which is expected to be
true on base pair level as well. Therefore, local sequence
composition and sequencing depth might be con-
founders in estimating overdispersion rate, and this re-
mains unstudied. To investigate this confounding effect,
we evaluated and compared three beta-binomial models:
a full model with effects of both local sequence and
sequencing depth and two reduced models with one of
effect each.
Here, we focused on studying the dependency of

overdispersion with sequencing depth and local primer
sequence at base level. Large-scale consortium-based
RNA-seq studies, such as ENCODE [20], MAQC [21],
SEQC [22] and others, provide opportunities to investi-
gate the properties of RNA-seq data and evaluate
proposed methodologies. We estimated the base-level

overdispersion rate of RNA-seq read count from EN-
CODE spike-in dataset which has a large sample size
[23]. Also, we investigated the potential biases intro-
duced by library preparation protocols including frag-
mentation and strand synthesis. We evaluated the fitting
performance of the proposed beta-binomial models with
a dynamic overdispersion rate and compared them to
binomial model and beta-binomial model with a consist-
ent overdispersion rate. In application to DE analysis, we
compared our models with widely used methods including
binomial test, t test, DESeq [1], edgeR [2] and limma-
voom [24]. RNA-seq datasets related to the MAQC
project with real-time PCR measurements were used in
this comparison [25].

Methods
Datasets
Two datasets were used, the ENCODE spike-in dataset
[23] and the MAQC dataset with real-time PCR data
[25] (Table 1).

ENCODE dataset
Long NonPolyA RNAs from whole cells were measured
in the ENCODE dataset. Two replicates from each of 14
human cell lines (Gm12878, Ag04450, Bj, Huvec, A549,
H1hesc, Hepg2, K562, Hsmm, Mcf7, Nhlf, Sknshra,
Nhek, and Helas3) were used in this study. Synthetic
spike-in standards from the External RNA Control
Consortium (ERCC) were sequenced along with human
samples following the dUTP strand-specific sequencing
protocol [23]. Two primers, mate1 and mate2, were used
to distinguish specific strands. The sequencing reads
from the ERCC libraries were mapped to the ERCC
reference using Bowtie version 0.11.3 with parameters –
v2 –m1 [26]. Gene-level abundances were estimated by
counting uniquely mapped reads. We used samples
(underlined in Table 1) with approximately the same
total counts to estimate accurate dispersion between
replicates by avoiding bias from sequencing depth. We
truncated 76 nucleotides from the end of each gene as
no count of 76 base-pair-long read was available in this
region.

MAQC dataset
Bullard et al. measured two distinct MAQC reference
samples, brain and UHR, using RNA-seq [25]. Four
UHR libraries (A, B, C and D) and one brain library
were prepared. RNAs were first fragmented and then
converted into cDNAs using random hexamer priming
approach. We used STAR [27] to align reads to the
UCSC human genome hg19 assembly. Gene-level abun-
dances were estimated by counting uniquely mapped
reads in all exons. Additionally, 997 genes had previously
been assayed by real-time PCR with high detection
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specificity and detection sensitivity, which can be used
for validation of differential expression detection. We
truncated 35 nucleotides from the end of each gene as
no count of 35 base-pair-long read was available in this
region.

Estimation of Overdispersion rate θij per base pair
Let nij and mij be the number of mapped reads starting
at the j-th nucleotide of the i-th gene for the two sam-
ples in comparison, respectively. The probability mass
function for the beta-binomial distribution is

f nijjαij; βij;mij

� �
¼ nij þmij

nij

� �B nij þ αij;mij þ βij

� �

B αij þ βij

� �

ð1Þ

where αij and βij are two parameters of the beta-
binomial distribution. The beta-binomial distribution
can be represented using the following parameters:
pij ¼ αij

αijþβij
and θij ¼ 1

αijþβij
for each i and j. Based on

our assumption that the proportion of counts per
base pair across a gene comparing two samples is a
constant, pij is consistent for all positions on the i-th
gene, as pi. Analytically, for the i-th gene with Ji base
pairs, the true and unknown proportion pi can be

estimated as

PJ i
j¼1

nijPJ i
j¼1

nijþ
PJ i

j¼1
mij

. Assuming most genes do

not change, the neutral proportion of two samples pn
can be estimated from all (J1, J2, … , Ji, … , JG) base

pairs of all G genes as

PG

i¼1

PJ i
j¼1

nijPG

i¼1

PJ i
j¼1

nijþ
PG

i¼1

PJ i
j¼1

mij

: For

any two replicates, the proportion of each gene should be
equal to the neutral proportion, that pi = pn. Based on the
beta-binomial distribution, θij can be estimated from the
variance calculated from replicates as

θ^ij ¼
1
R

PR
r¼1

σpijr
pnr 1−pnrð Þ−

1
nijrþmijr

� �

1− 1
R

PR
r

σpijr
pnr 1−pnrð Þ

ð2Þ

where r denotes the r-th pair among R total combination

pairs of replicates and pnr indicates the neutral propor-
tion comparing the r-th pair. For the j-th nucleotide of
the i-th gene from the r-th pair of replicates, σpijr
indicates the variance of proportion, nijr and mijr indicate
read counts mapped in the current pair of replicates.
We estimated σpijr from base-level read counts per
replicate pair separately and estimated θij according to
formula (2).

Base-level model
After reparametrizing by pi and θij, the log-likelihood of
the beta-binomial (Eq. 1) for the i-th gene with Ji base
pairs was derived as

log ℒ ið Þ ¼
XJ i
j¼1

½
Xnij−1

k¼0

log pi þ kθij
� �

þ
Xmij−1

k¼0

log 1−pi þ kθij
� �

−
Xnijþmij−1

k¼0

log 1þ kθij
� ��

ð3Þ
Previously, we proposed an efficient gene-level beta-

binomial model for DE analysis with

θi ¼ Di

ni þmið Þγ ;

in which γ represents the degree of dependency to
sequencing depth [7]. Di is a gene specific factor. In the
current study, we assumed Di to be consistent for all
genes as D based on our observation. To achieve a
better data fit, we propose a full model here, taking the
local sequence around the first nucleotide of a read into
consideration:

θij ¼ De

PK

k¼1

P
h∈ A; T ; Cf g

βkhI bijk¼hð Þ
n o

nij þmij
� �γ ð4Þ

In this model, K is the length of the surrounding
sequence around the j-th nucleotide of the i-th gene.
We set K = 80 as suggested in the study of Li et al. [13]

Table 1 Summary of the datasets used

ENCODE ERCC GSM758567 GSM758572 GSM758573 GSM758577 GSM765389 GSM765391 GSM765396 GSM765398 GSM767845 GSM767847
GSM767851 GSM767854 GSM767855 GSM767856

MAQC Brain UHR library A UHR library B UHR library C UHR Library D

SRR037455 SRR037466 SRR037470 SRR037473 SRR037479

SRR037456 SRR037467 SRR037471 SRR037474

SRR037457 SRR037468 SRR037472 SRR037475

SRR037458 SRR037469 SRR037476

Training datasets were underlined
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such that the surrounding sequence of 40 nucleotides be-
fore and 40 nucleotides after the j-th nucleotide was con-
sidered. Also, the indictor function I(bijk = h) is 1 when the
k-th base pair is letter h, which is A, T, or C exclusively,
and 0 otherwise. D, βkh, and γ are unknown parameters
which require estimation. It is natural to assume D varies
among sample pairs and thus pair-specific D will be esti-
mated based on the determined βkh and γ.
We took the logarithm of Eq. 4 and obtained the

following formula that facilitates model fitting:

log θij
� � ¼ log Dð Þ þ

XK

k¼1

X
h∈ A;T ;Cf g

βkhI bijk ¼ h
� �

þ γ log nij þmij
� � ð5Þ

Based on the observation of Wu et al. that the distri-
bution of the logarithm of sample dispersion is approxi-
mately Gaussian distributed [28], we assumed log(θij)
follows a Gaussian distribution and efficiently estimated
these parameters using the linear least-squares approach
in this study. In comparison to the sum of all the
positions in all the genes, the parameter size in Eq 5,
240, is very small.
In order to investigate the confounding effect of the

read depth and local primer sequence on the overdis-
persion rate, we further developed two reduced beta-
binomial models: primer-free model (βkh = 0) and depth-
free model (γ = 0) in which the overdispersion rate was for-
mulated as shown in the following Eqs. 6 and
7 respectively:

log θij
� � ¼ log Dð Þ þ γ log nij þmij

� � ð6Þ

log θij
� � ¼ log Dð Þ þ

XK

k¼1

X
h∈ A;T ;Cf g

βkhI bijk ¼ h
� � ð7Þ

We refer to models shown in Eqs. 4, 5, 6, 7 as models
with a dynamic dispersion rate. Alternatively, a beta-
binomial model with a constant overdispersion rate was
obtained when γ = 0 and βkh = 0.

Model fitting
To validate the dependency between local sequence,
sequencing depth, and overdispersion, we set training
datasets and test datasets. Training datasets shown in
Table 1 were used to investigate the dependency of over-
dispersion, sequencing depth, and local sequence and
determine the parameters of γ and βkh. Then, the cap-
tured dependency was borrowed to achieve better data
fit and higher power of differential expression analysis
on the test datasets.

(a)Estimation of γ and βkh

1. Estimate p^n ¼
PG

i¼1

PJ i
j¼1

nijPG

i¼1

PJ i
j¼1

nijþ
PG

i¼1

PJ i
j¼1

mij

on the
training set.

2. Set pn as a known parameter and obtain θ^ij
according to Eq. 2. The least-squares estimation
method is then applied to the full model (Eq. 5),
the primer-free model (Eq. 6) and the depth-free
model (Eq. 7) to estimate γ and βkh.

(b)Modeling test samples
1. Initialize p^i ¼ p^n in the beta-binomial model

(Eq. 3) on the test set.
2. Borrow the estimation of γ and βkh from the

training set for the full model and the primer-free
model separately.

3. Set pi as a known parameter and maximize the
beta-binomial log likelihood (Eq. 3) to estimate
pair-specific D.

4. Set θij according to Eq. 4 as a known parameter
and maximize the beta-binomial log likelihood to
update p^i. This step is skipped when comparing
replicates.

5. Proceed to step 3 unless the deviance decreases
less than 1%. This step is skipped when
comparing replicates.

Likelihood ratio test
According to the likelihood ratio test, −2 lnℒ (pn) + 2 ln
ℒ (pi) follows the χ2 distribution with 1 degree of free-
dom, where pi is the proportion for gene i and pn is the
neutral proportion. Equation 3 models the proportion of
a pair of samples, which can be used to test samples
without replicates by borrowing information from
previously measured replicates. When replicates were
available, we calculated the sum of their pairwise χ2

scores comparing samples from two groups and ob-
tained p-values with a summation of degrees of freedom.

Model comparison
In this study, we evaluated the overall fitting of models.
First, we evaluated the fitting of linear models shown in
Eqs. 5 and 7 to study the confounding effect on overdis-
persion from sequencing depth and local sequence.
Second, we compared models on data fitting in compar-
ing the sequencing read counts from two replicates.
Third, we assessed the performance of models in DE
analysis. The strategies of comparison were shown in
Fig. 1, including dataset usage, model fitting, test
statistic, and evaluation purpose. Detailed methods for
evaluating the models are as follows.

(a)Goodness of fit of the depth-free model (Eq. 7) and
the full model (Eq. 5) on log (θij).
We calculated the coefficient of determination R2.
We utilized the 5-fold cross validation strategy.
Each of the training sets (shown in Table 1) were
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randomly split into five groups of equal size. In
each round, we fit our model using four of these five
groups, and then calculated R2 on the remaining
subset by the regression sum of squares divided by
the total sum of squares. The process was repeated
for 10 times and the overall cross-validation R2 was
determined by the mean.

(b) Goodness of fit of four models in comparing
replicates, including the binomial model (bi) with
θij = 0, the beta-binomial model (bb + D) with
θij =D, the reduced primer-free model (bb + D + g)
with θij as in Equation 6, and the full model
(bb + D + g + coe) with θij as in Eq. 5.
Likelihood value We calculated the maximum
likelihood values of pairwise comparisons of
replicates to evaluate the goodness of fit. Proportion
pi was estimated as p^n and fixed for all four models.
Sequentially, other parameters were determined by
our model fitting strategy (iterative fitting was
skipped as pi was fixed), and likelihood values were
calculated based on estimated parameters. The χ2

test was performed on D = − 2 ln(ℒnested) + 2 ln (ℒ),
where ℒ and ℒnested are likelihoods for a model and
its nested model, respectively.
AIC Akaike information criterion (AIC) is a measure
of the relative goodness of fit of a statistical model.
AIC was calculated by definition as 2k − 2 ln(ℒ),
where k was the number of parameters and ℒ is the
maximum-likelihood value. The overall AICs were
determined by the mean of all AICs from pairwise
replicates.

(c)Performance of DE detection of four models (bi,
bb + D, bb + D + g, bb + D + coe) and widely used
methods including t test, DESeq, edgeR and limma-
voom. Evaluation was performed on MAQC dataset
which has standard data for validation.
AUC The area under the receiver operating
characteristic curve (AUC) was determined by the
method described in our previous study [7].
False housekeeping gene detections To test the false
discovery control ability, we assumed that
housekeeping genes detected as differentially
expressed genes at a given p-value were false
discoveries. We compares the numbers of falsely
discovered housekeeping genes given specific numbers
of significantly differentially expressed genes. A list of
3804 housekeeping genes identified by Eisenberg and
Levanon were used in this study [29].

DE analysis methods in comparison
We compared our models with t test, binomial test,
DESeq, edgeR and limma-voom on DE analysis. A two-
tailed t test was performed on total counts normalized
and logarithm transformed RNA-seq read counts. Four
brain samples (SRR037455, SRR037456, SRR037457 and
SRR037458) were compared to four UHR samples
(SRR037469, SRR037472, SRR037476 and SRR037479)
in the test datasets. The DE analyses in this study were
performed using R version 3.2.5 and we applied packages
“DESeq 1.22.1”, “edgeR 3.12.1” and “limma 3.26.9” to
test the difference of sequencing read counts. “GLM”
approach was used in DESeq and edgeR DE analysis.

a

b

c

Fig. 1 The strategy of model fitting and comparison
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Normalization and model fitting were performed using
the default parameters. When estimating the dispersions
by DESeq, “local” fitType, “maximum” sharingMode and
“pooled” estimation methods were used. All other pa-
rameters were set to the default in all DESeq, edgeR and
limma-voom analyses. Functions of our proposed
methods are available in the github repository (https://
github.com/GuoshuaiCai/BBDG.git).

Result
Base-pair Overdispersion rate decreases with
sequencing depth
We empirically investigated the effect of sequencing
depth on the overdispersion rate of the measurement
per base. Analyzing the ENCODE spike-in dataset, we
calculated the variance of the proportion of the reads
mapped to the j-th base pair of the i-th gene from
replicates and then determined the overdispersion rate
θij (described in Methods). Figure 2 shows that the
overdispersion rate was strongly inversely correlated
with sequencing depth. That is, the overdispersion rate
continually decreased as the sequencing depth increased
without a sign of saturation. The correlation was suffi-
ciently strong, causing the majority of the points to be
concentrated along a line. This supported our assump-
tion that all genes have consistent D and the proposed
linear model shown by Equation 6. Moreover, local se-
quences starting with GGGG were found to have more
sequencing reads and larger overdispersion than those
starting with AAAA, indicating that hexamer priming

might influence the overdispersion rate through affecting
sequencing read counts. Therefore, local sequence and
sequencing depth are not independent from each other
and might be confounders.

Sequencing procedure introduces extra noise
Elements of the sequencing procedure (e.g., fragmenta-
tion methods, random hexamer priming, etc.) can intro-
duce types of bias to RNA-seq measurements [12]. We
compared the overdispersion rates estimated from two
datasets with different RNA-seq protocols (described in
Methods) in Fig. 3. Interestingly, in the ENCODE
dataset, the overdispersion rates were significantly larger
at the tail (less than ~200 base pairs) of the genes. The
same result was obtained in the calculation of the
variance (Additional file 1: Figure S1). This may suggest
a bias in ENCODE dataset. Therefore, we removed the
reads mapped to the last 200 base pairs of each gene in
our analyses to avoid this extra bias. However, no such
difference was observed in MAQC UHR datasets.
This discrepancy might be explained by the different

processes in sequencing library preparation of these two
studies. In the ENCODE study, fragment selection after
cDNA PCR amplification might lead to a loss of many
fragments located at the transcript tails, thereby introdu-
cing an additional error. By contrast, according to the
protocol used in the MAQC study, fragmentation was car-
ried out prior to cDNA PCR amplification, leading to the
same process of selection across the entirety of the gene.

Models of the Overdispersion rate
To reveal the confounding effects of the local primer
sequence and the sequencing depth on the overdisper-
sion rate, we studied two models: the full model with
parameters for both the local primer sequencing and the
sequencing depth and the depth-free model without
parameters for the sequencing depth (described in
Methods). After the linear formula transformation (Eq. 5),
240 coefficients of 80 positions around the primers were
estimated efficiently. Coefficients estimated from MAQC
UHR data were plotted against their corresponding posi-
tions in Fig. 4. From the depth-free model, we observed a
similar pattern to those reported by Hansen et al. and Li
et al. [12, 13] (Fig. 4a, c). However, no such pattern was
observed from the full model (Fig. 4b, d). We observed
similar results from the ENCODE spike-in data as well
(Additional file 1: Figure S2). Both Hansen et al. and Li et
al. demonstrated an association between hexamer primer
and measurement count number. Plus, we observed in
this study that the overdispersion rate on base pair de-
creased with increasing sequencing depth (Fig. 2). These
findings lead to an inference that a hexamer primer might
influence the overdispersion rate by affecting the count
number; consequently, upon adjustment by count

Fig. 2 The relationship of overdispersion and sequencing depth. The
base-level overdispersion rate of proportion θij versus the mean tag
counts in base 10 log scale. The θij values were computed from
replicates from the ENCODE spike-in training dataset. The blue and
red points are for the positions with local sequences starting with
GGGG and AAAA, respectively
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a b

Fig. 3 The pattern of overdispersion on parts of genes. The overdispersion rate was estimated on any position in 10 categories with equal data
points according to the distance to the end of the genes. Part 1 is located on the gene tail and Part 10 is located on gene start. a ENCODE spike-
in dataset. b MAQC UHR dataset. For strand-specific sequencing, only reads generated with mate2 primers on antisense strand were investigated.
x-axis shows categories from the end of the genes

a b

c d

Fig. 4 Coefficients of local sequence from the MAQC UHR dataset. x-axis shows the positions around the 5′ end of mapped reads, which was
labelled as 0. Coefficients were calculated by two models on different strands: a Depth-free model on antisense strand, b Full model on antisense
strand, c Depth-free model on sense strand and d Full model on sense strand
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number, the relationship between the use of a hexamer
primer and the overdispersion rate was no longer signifi-
cant as observed in the full model (Fig. 4a, c). In addition,
we calculated the coefficient of determination R2 using a
5-fold cross-validation strategy (described in Methods). R2

values of 0.481 and 0.488 were obtained for the depth-free
model and the full model, respectively, from the MAQC
UHR data; while values of 0.270 and 0.273, respectively,
were obtained from the ENCODE spike-in data. There-
fore, about half of the variance was explained by our
models for the MAQC UHR dataset. Also, as expected,
the depth-free model achieved a similar R2 with the full
model.
We investigated the influence of primers correspond-

ing to the reads from the antisense and sense strands,
respectively. We observed from the MAQC UHR dataset
that reads mapped to antisense and sense strands
showed quite similar patterns (Fig. 4a, c), which was
consistent with the finding of Hansen et al. [12]. How-
ever, the reads on the sense strand should not be
primer-related because they were synthesized by the
RNase H niche method without hexamer priming.
Hansen et al. [12] explained that the hexamer primer
might not be completely digested. In contrast, this
dependency was not observed on sense strands in the
ENCODE spike-in dataset (Additional file 1: Figure S2).
Its strand-specific protocol might be responsible for the
different patterns on two strands, but further validation
studies are required. In the present study, we estimated
coefficients of local sequence separately for each strand
in the present study.

Comparison of four models
Goodness of fit
Comparing likelihood values is a straightforward way to
select statistical models. We calculated likelihood values
from four models: bi, bb + D, bb + D + g and
bb + D + g + coe (described in Methods). As expected,
the models with additional parameters had higher
maximum likelihood values. Figure 5a shows the increase
of likelihood value of the ENCODE spike-in dataset. The
bb + D model made a huge jump from the bi model (im-
proved by 30% - 90%, Chi-square test p-value <0.001).
And the parameter γ in dynamic θij in bb + D + g model
also improved the fit by roughly 15% (Chi-square test p-
value <0.001). However, the full model had no significant
improvement from the primer-free model (Chi-square test
p-value = 1), and the latter had the lowest AIC (Fig. 5c).
We observed similar results in both training and test data-
sets and from the MAQC dataset as well (Fig. 5b, d; re-
sults for training dataset not shown). However, due to the
small experimental library effect in the MAQC UHR data-
set [7], increase of likelihood was not as significant as that
shown in the ENCODE dataset. As expected, no

difference of data fit was observed on MAQC brain sam-
ples which were from the same library (Fig. 5b).

DE detection
Further, we compared the AUC of DE analysis perform-
ance based on four models (bi, bb + D, bb + D + g,
bb + D + coe) and widely used methods including t test
on logarithm transformed RNA-seq read counts, DESeq,
edgeR and limma-voom (Fig. 6a). As a result of the small
library effect, no significant difference was observed be-
tween these four binomial based models when compar-
ing MAQC brain and UHR samples, which agreed with
our previous gene level study [7]. However, our beta-
binomial based models (bb + D, bb + D + g, bb + D + coe)
had good performances close to DESeq, edgeR, and
limma-voom, which are slightly better than binomial-
test and significantly superior to Student’s t test. Similar
results were observed on the false discovery control, but
DESeq, edgeR and bb + D falsely identified the least
number of housekeeping genes given a certain number
of discoveries (Fig. 6b). Testing the different library
preparations from a same sample, bb + D produced
non-uniformly distributed p-values with insufficient
small ones (Fig. 7b), whereas bi had an overabundance
of small p-values (Fig. 7a). In contrast, the histogram of
the p-values was more flat for the beta-binomial models
with a dynamic overdispersion rate, bb + D + g and
bb + D + g + coe (Fig. 7c, d), indicating that the errors
between samples from different libraries were captured
more accurately by these two models.

Discussion
In this study, we accurately modeled of the non-
uniformity of RNA-seq read counts at the base level. We
investigated the relationship of overdispersion rate with
sequencing depth, local sequence, and library prepar-
ation protocols to study the properties of overdispersion.
Based on these properties, base-level models are pro-
posed to estimate the overdispersion rate accurately.
To the best of our knowledge, this is the first study of

the confounding effects from sequencing depth and local
sequence on overdispersion rate. We found they are
strongly associated with each other. First, the overdisper-
sion rate decreases as the sequencing depth increases on
the base level. Second, random hexamer priming can
notably influence the overdispersion rate. However, with
the count number as a covariate in the modeling, the
local sequence showed little influence on the overdis-
persion rate. Consequently, it is preferable to use the
primer-free model with less parameters for superior
computing efficiency and power.
Together with various systematic errors that have been

identified in differential RNA-seq protocols and
platforms [30, 31], our new findings provide important

Cai et al. BMC Bioinformatics  (2017) 18:364 Page 8 of 12



insights into the development of bias correction strat-
egies in RNA-seq analyses. Based on the observation of
extra noise on the tails of transcripts when fragmenta-
tion was performed before PCR, we concluded that
experimental protocols before sequencing may influence
the overdispersion rate of the RNA-seq reads and that

the order of steps in the protocol matters. Therefore,
we suggest removing the last 200 base pairs if
fragmentation is performed before PCR in RNA-seq
library preparation. Moreover, we suggest further
studies of RNA-seq non-uniformity on sense and anti-
sense strands separately.

a b

Fig. 6 Performance of DE detection. DE genes were detected by comparing MAQC Brain samples to UHR samples. 7 methods (bb + D, bb + D + g,
bb + D + coe, t test on logarithm transformed RNA-seq read counts, DESeq, edgeR and limma-voom) were applied. a ROC and b false housekeeping
gene detections were used to evaluate their performances

a b

c d

Fig. 5 Goodness-of-fit on pairwise comparison of replicates. a, c ENCODE dataset. b, d MAQC dataset. a, b The mean percentages of change in
the likelihood value compared to the nested model. c, d The mean AICs measured for four models
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Compared with models which ignore the overdispersion
rate or use a constant overdispersion rate, bb + D + g
accounting for a dynamic overdispersion rate fits the
RNA-seq counts best with the highest likelihood value
and the lowest AIC. It produced a similar AUC to popular
DE analysis methods including DESeq, edgeR and limma-
voom. bb + D showed the best false discovery control
among proposed models, which may result from its
insufficient power to detect small alterations (Fig. 7b).
Theoretically, our model has two main advantages com-
pared to these widely used DE analysis tools: (1) the
catastrophe-resistant ability. The gene-level read counts
might be susceptible to positions with high counts but
with high fluctuations. Our model addresses this issue by
down-weighting those unreliable read counts with highly
variable dispersion rate and (2) borrowing information
from spike-in measurement. Usually few experimental
replicates are performed due to the cost. Spike-in tran-
scripts, measured along with the samples, can be used a
cost-effective alternative to estimate overdispersion rate.
The current study investigated the dependency be-

tween the overdispersion rate and the sequencing
depth using replicates with no biological variance.
However, the relationship between replicates with bio-
logical variance and systematic effect remains elusive.
SEQC dataset, which was specifically designed to test

the intra- and inter-site reproducibility [22, 32], war-
rants the future studies of that relation in the context
of systematic effects. Also, the current model can be
used to detect any base-level changes including gene
expression alteration and differential exon usage. The
exon level or isoform level differential analysis is thus
required to take different usage of exons between
samples into consideration.

Conclusions
In conclusion, the current study provides thorough
insights into the property of the overdispersion rate on
the position level, especially into its relationship with
sequencing depth, local sequence, and preparation
protocol. These properties of RNA-seq will aid in im-
provement of quality control procedures and the devel-
opment of statistical methods for downstream RNA-seq
data analyses. Based on these properties, we propose a
method to model the non-uniformity measurement in
comparison study. Still, new sequencing strategies and
protocols are emerging rapidly, such as the PCR-free se-
quencing technique [33]. The properties of sequencing
reads as well as the biases and effects vary among differ-
ent platforms. Future studies on investigating these
properties are necessary to improve the methods for
modeling RNA-seq data.

a b

c d

Fig. 7 Histograms of p-values from comparison of replicates. p-values were calculated by a binomial model, b beta-binomial model with constant
θij, c the primer-free beta-binomial model and d the full beta-binomial model. Blue line indicates an estimated uniform distributions; green line
indicates a mixture distribution of beta distribution and uniform distribution
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