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Abstract

Background: Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple
data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle
gene activity patterns across studies. Study heterogeneity needs to be addressed carefully for this goal.

Results: This paper proposes a regulation probability model-based meta-analysis, jGRP, for identifying differentially
expressed genes (DEGs). The method integrates multiple transcriptomics data sets in a gene regulatory space
instead of in a gene expression space, which makes it easy to capture and manage data heterogeneity across
studies from different laboratories or platforms. Specifically, we transform gene expression profiles into a united gene
regulation profile across studies by mathematically defining two gene regulation events between two conditions and
estimating their occurring probabilities in a sample. Finally, a novel differential expression statistic is established based
on the gene regulation profiles, realizing accurate and flexible identification of DEGs in gene regulation space. We
evaluated the proposed method on simulation data and real-world cancer datasets and showed the effectiveness and
efficiency of jGRP in identifying DEGs identification in the context of meta-analysis.

Conclusions: Data heterogeneity largely influences the performance of meta-analysis of DEGs identification. Existing
different meta-analysis methods were revealed to exhibit very different degrees of sensitivity to study heterogeneity.
The proposed method, jGRP, can be a standalone tool due to its united framework and controllable way to deal with
study heterogeneity.

Keywords: Cancer, Transcriptomics data, Meta-analysis, Differential expression, Regulation probability

Background
High throughput biotechnology has become a routine tool
in biological and biomedical research [1, 2]. Its extensive
applications have been generating and accumulating a
flood of omics data that bring unprecedented opportunity
for elucidating cancer or other diseases at a molecular
level [3–6]. For example, various types of omics data for
nearly 10,000 tumor or normal samples have been re-
leased from the cancer genome atlas (TCGA) project. In
the two famous public databases, Gene Expression Omni-
bus (GEO) and ArrayExpress, there are millions of assays
generated in more than 30,000 studies world-wide avail-
able online [7, 8]. To reduce sample bias and increase

statistical power, one needs to reuse the flood of omics
data in a meta-analysis way, gaining deeper insights into
the molecular pathology of cancer or other diseases [9].
How to implement efficient meta-analysis of these data
sets poses a pressing challenge for computational biolo-
gists and bioinformaticans.
Meta-analysis of transcriptomic data needs to interrogate

consistent but subtle gene activity patterns across studies.
Currently, there exist three categories of meta-analysis
methods used for DEGs identification: p-value-based, effect
size-based and rank-based. These methods deal with non-
specific variations at different levels of data. For example,
in statistics, p-value methods are most intuitive and allow
for standardization of topic-related associations from stud-
ies to the common scale of significance. However, the per-
formance of the p-value methods is stringently conditional
on the estimation model of p-values used in individual
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analysis [10, 11]. To improve the situation, Li and Tseng
[10] proposed an adaptively weighted strategy (AW) for p-
value combination. Recently, Li et al. [12] introduced mul-
tiple test procedure and established assumption-weighting
statistics, including I2, I2&direction, and mean cor, pooled
cor, which are expected to settle down the heterogeneity
and capture the concordance between different studies.
Unlike the p-value methods, the effect size methods rely
on a t-statistic-like model and can directly model the effect
sizes across different studies. There are two commonly
used effect size models in meta-analysis of transcriptomics
data: fixed-effect model (FEM) and random effect
model (REM), whose difference mainly lies in whether
ignoring between-study variations or not. Compared
with the p-value methods, the effect size methods are
more sensitive to data distribution and noise inherent
in microarray data, leading to unreliable effect size
estimates [13].
As a non-parametric method, rank-based methods rely

on combining the fold-change ranks, rather than combin-
ing p-values as in the p-value methods or expression levels
as in the effect size methods. Compared with the effect
size models, the rank-based methods make fewer or no as-
sumptions about data structures in modeling differential
expression of genes and thus runs more robust and
outlier-free in performing meta-analysis for screening
DEGs [14, 15]. A representative rank-based method is the
Rankprod method proposed by Hong et al. [13]. In Rank-
prod, multiple fold changes are computed from all pos-
sible pair-wise comparisons of samples in each data set,
and the rank product for each gene is then carried out by
ranking the resulting fold changes within each compari-
son. For significance analysis, Rankprod assesses the null
distributions of the rank product in each data set by
Permutation tests. Unfortunately, Rankprod only work
well for data sets where two categories of differential
genes with two opposite directions are involved, and is less
sensitive to inconsistent patterns of differential expression
across studies [12, 16]. Additionally, Wang et al. proposed
a matrix decomposition-based strategy for meta-analysis
of transcriptomics data, which improves meta-analysis by
mining differential physiological signals hidden behind
multiple data sets [17].
A main issue in gene expression meta-analysis is how to

deal with the study heterogeneity across data sets. The
heterogeneity possibly comes from three sources: 1) Ex-
perimental environments. Gene expression datasets were
often produced using different platforms and different
processing facilities. Such kind of heterogeneity is often
referred to as cross-lab/platform heterogeneity or batch
effect [18]; 2) Incorrect gene annotations as technique
mistakes, which occur when aligning target sequences or
probes [19]; 3) Biological variability including various
sub-subtypes of cancer or minor biological differences

(e.g. age, gender or ethnicity). These heterogeneities
could deteriorate identifying DEGs in meta-analysis if
they are not addressed properly. Dealing with these
heterogeneities should be simultaneously removing the
non-specific heterogeneity and accommodating the minor
biological ones properly. We previously proposed a regu-
lation probability-based statistic for identifying DEGs in a
single experiment, referred to as GRP [20]. The GRP
model estimates the probabilities of two regulation events
occurring between sample groups and allows to capture
and control data noise or the intra-class heterogeneity.
We here extend the model to deal with study heterogen-
eity in the context of meta-analysis of multiple data sets.
Briefly speaking, the proposed method, joint GRP (jGRP),
maps gene expression data across studies to a regulatory
space and then measures expression difference in the
regulatory space. In the resulted gene regulation profile,
study heterogeneity can be efficiently captured and con-
trolled by a regulation confidence parameter. We evalu-
ated the proposed methods on both simulation data and
real-world transcriptomic data sets, and experimental
results demonstrate the superior performance of jGRP in
gene expression meta-analysis for DEGs identification.

Methods
The main idea of the proposed method is to integrate
multiple expression data sets at the level of regulation
rather than at the level of expression. More specifically,
we produce a united gene regulation profile across studies
from independent gene expression profiles and measure
differential expression by characterizing the regulation
property of genes between two conditions. Biologically,
two opposite regulation events possibly occur in tumor
relative to normal tissue for a given gene: up-regulation
(U) and down-regulation (D). The former means that a
gene expresses higher in tumor than does in normal tis-
sue, while the latter means that a gene expresses lower in
tumor than does in normal tissue. Let P(U) and P(D) rep-
resent the estimates of the two events’ probabilities, a
regulation-based differential expression statistic can be
defined as

jGRP ¼ P Uð Þ−P Dð Þ ð1Þ

The statistic jGRP∈[−1,1] reflects how likely the gene is
regulated, whose positive value implies an up-regulation
event occurring while whose negative value implies a
down-regulation event occurring. A gene with a positive
jGRP is potentially an onco-gene while the one with a
negative jGRP is potentially a tumor suppressor. P(U) and
P(D) need to be estimated in a gene regulation space. So,
we first map gene expression profiles from microarrays or
RNA-seq technology into a regulatory space, and the
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resulting gene regulation profiles can be used to estimate
the two regulation probabilities, statistically.

Mapping gene expression data to gene regulatory space
Suppose T studies each with two sample classes: tumor
and normal tissue. For all the studies, we divide the total
sample space into two subspaces: tumor subspace S1 and
normal tissue subspace S2. For a given gene, we assume
three regulation statuses in a sample: up-regulated one
denoted by 1, down-regulated one denoted by −1, and
non-regulated one denoted by 0. Considering a study s
consisting of n tumor samples and m normal samples
and a gene g whose expression levels in the tumor
and normal tissue samples are Y1 = {a11, a12,…, a1n}
and Y2 = {a21, a22,…, a2m} respectively, we can map
the expression levels of gene g into a regulatory space
as follows:
1) For the ith tumor sample with expression level a1i,

its regulatory status can be determined as

r1i ¼
1 li≥τ

−1 1−li > τ

0 others

8<
: ð2Þ

where li ¼
P
k¼1

m
I a1i≥a2kð Þ=m represents the proportion of

normal samples with an expression value not lower than

a1i, and 0.5 ≤ τ ≤ 1 is a constant, referred to as regulation

confidence cutoff, which controls the reliability of the in-

ferred status. I(·) is an indicator whose value is one if the

condition is true and zero else.
2) For the ith normal sample with expression level a2i,

its regulatory status can be determined as

r2i ¼
1 ri≥τ

−1 1−ri > τ

0 others

8<
: ð3Þ

where ri ¼
P
k¼1

n
I a2i≤ a1kð Þ=n represents the proportion of

tumor samples with expression values not lower than a2i.
Combining Eqs.(2) and (3), the regulation profile of

gene g in study s can be formulated as

Rs ¼ −1; 0; 1½ �mþn ð4Þ
and then the united regulation profile across the T
studies as

R ¼ R1;R2;⋯;RT½ � ð5Þ

Statistical estimation of jGRP statistic
Given the two sample subspaces S1 and S2, we estimate
the two regulation events’ probabilities based on the

regulatory statuses using the total probability theorem as
follows:

P Uð Þ ¼ P Y 1ð ÞP U jY 1ð Þ þ P Y 2ð ÞP U jY 2ð Þ ð6Þ
and

P Dð Þ ¼ P Y 1ð ÞP DjY 1ð Þ þ P Y 2ð ÞP DjY 2ð Þ ð7Þ
where the prior probabilities of cancer and normal sam-
ples, P(Y1) and P(Y2), can be assessed as the proportions
of cancer and normal samples in all the T studies respect-
ively, and the rest four conditional probabilities can be
assessed as the proportions of samples with up/down-reg-
ulated statuses in the corresponding subspace. Then, the
statistic jGRP can be derived as

jGRP ¼ su−sd
nþm

ð8Þ

where su and sd are the numbers of samples in which
gene g is in up-regulated and down-regulated statues,
respectively. Note that the summation (S) of P(U) and
P(D) could vary around 1 depending on τ: S will be
larger than one if τ ≤ 0.5 and be smaller than one else.

Significance analysis of jGRP
We design a permutation test procedure for the signifi-
cance analysis of jGRP. In the procedure, the labels of all
samples across studies are randomly permuted B = 1000
times, and thus B permuted jGRPs can be obtained by
running the jGRP procedure on the permutated data.
The B permuted jGRPs provide an approximate to the
null distribution of jGRP statistic, and so the significance
level of an observed jGRP can be estimated as

p‐value ¼
P
i¼1

B
I jGRPi

�� ��≥ jGRPj j� �
B

ð9Þ

where jGRPi, i = 1,2,…,B represents the ith permuted
jGRP from the permutation experiment.

Results
Evaluation on simulation data
Simulation data generation
Generally, study heterogeneity could come from: (i) Differ-
ence in the fraction of studies that show significantly dif-
ferential expression in all the studies; (ii) Difference in
different expression directions across studies. Accordingly,
we generated two types of simulation data, simulation-I
and II, which focus on the two aspects of heterogeneity
respectively, by revising the procedure in [21].
Assume T = 10 studies each consisting of tumor and

normal tissue groups of sizes randomly sampling from 4
to 15 and totally G = 10,000 genes to be considered. For
simulation-I where DEGs are homogeneously differentially
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expressed, we simulated five categories of DEGs: differen-
tially expressed in ten, eight, six, four and two studies,
respectively. All the categories each were supposed to con-
tain 500 genes, and the rest genes (7500) were assumed to
be non-differential in any of the studies. For simulation-II,
we assumed DEGs to be differentially expressed in differ-
ent directions in different studies and considered two
groups of categories of differential expression: The first
group has differential expression in all ten studies, which
consists of three categories: 1) differentially expressed in
the same direction in all ten studies; 2) differentially
expressed in seven of ten studies in one direction but in
the rest (three) in the other direction; 3) differentially
expressed in five of ten studies in one direction but in the
rest (five) in the other direction. The second group have
differential expression in six out of ten studies and consists
of three categories: 1) differentially expressed in all six
studies in the same direction; 2) differentially expressed in
four of six studies in one direction, but in the rest (two) in
the other direction; 3) differentially expressed in half stud-
ies in one direction, but in another half (three) in the other
direction. Each of the six categories was assumed to con-
tain 500 genes, and the rest genes (7000) were assumed to
be non-differential in any of the studies. Tables 1 and 2
summarizes the details of the configuration of these simu-
lation data.
To synthesize the expression level of genes, we assume

that the expression of each gene follows a normal distri-
bution in each group and each study, i.e., the expression
level xgsic of a gene g in sample i of group c in study s

was randomly sampled from N μgsc; σ
2
study

� �
. Specifically,

for the normal tissue group, the mean of expression was
designed as μgs0 = μ + αg + βs + (αβ)gs, where μ represents

a constant background expression,αg eN 0; σ2gene
� �

repre-

sents the gene bias, βseN 0; σ2study

� �
represents the study

bias, and αβð ÞgseN 0; σ2int
� �

represents the gene-study

interaction. For the tumor group, the mean of expres-
sion was μgs1 = μgs0for non-differential genes and μgs1 = μgs0
+ δ + υg + εgsfor differential genes, where δ is the pooled

mean expression difference,υg eN 0; σ2
diff

� �
is the gene bias

of the expression difference, and εgseN 0; σ2derr
� �

is
the gene-study interaction of the expression differ-
ence. We used two sets of the parameters

μ; σ2
gene; σ

2
study; σ

2
int; σ

2
err ; δ; σ

2
diff ; σ

2
derr

� �
: A) (5,1.25, 0.49,

0.25,0.16,0.8,0.0016,0.256) and B) (5,6.25,0.49,0.25,0.16,0.8,
0.0016,0.256). Compared with A, B increases only the gene
effect but retain other effects for investigating the influ-
ence of gene effect. In summary, four data scenarios were
synthesized: Simulation I with parameter setting A
(Simulation-IA) or parameter setting B (Simulation-IB),
Simulation II with parameter setting A (Simulation-
IIA) or parameter setting B (Simulation-IIB). For each
data scenario, twenty data sets were randomly gener-
ated in the experiment and average results over them
were used for algorithm evaluation.

Simulation data analysis
Considering the importance of the regulation confi-
dence cutoff parameter τ to the performance of jGRP,
we varied τ = 0.5,0.6,0.7,0.8,0.9,1 and repeatedly ap-
plied jGRP to analyze the simulation data. To control

Table 1 Differential expression settings of Simulation data-I/
Simulation data-II

Category No. Number of differential
expression studies

Differential expression
direction

1 10/10 Same/Same

2 8/10 Same/7:3

3 6/10 Same/5:5

4 4/6 Same/Same

5 2/6 Same/4:2

6 0/6 Same/3:3

Table 2 Top 20 KEGG pathways enriched in the DEG list of
jGRP(τ = 0.7)

Term P-value BH-adjusted
p-value

hsa04610:Complement and coagulation
cascades

1.55E-07 4.61E-05

hsa04110:Cell cycle 4.60E-07 6.85E-05

hsa05150:Staphylococcus aureus infection 4.69E-07 4.66E-05

hsa05200:Pathways in cancer 7.69E-07 5.73E-05

hsa01130:Biosynthesis of antibiotics 1.28E-05 7.62E-04

hsa05222:Small cell lung cancer 4.42E-05 0.002192532

hsa05166:HTLV-I infection 4.90E-05 0.002081948

hsa04512:ECM-receptor interaction 8.49E-05 0.003157108

hsa04510:Focal adhesion 1.53E-04 0.005064416

hsa04640:Hematopoietic cell lineage 2.60E-04 0.007713087

hsa04514:Cell adhesion molecules (CAMs) 3.22E-04 0.008693226

hsa05133:Pertussis 3.93E-04 0.009705856

hsa04115:p53 signaling pathway 4.52E-04 0.01031831

hsa04668:TNF signaling pathway 6.53E-04 0.013813372

hsa05416:Viral myocarditis 6.59E-04 0.01300695

hsa05144:Malaria 7.11E-04 0.013154554

hsa05202:Transcriptional misregulation in
cancer

7.72E-04 0.013454985

hsa05323:Rheumatoid arthritis 0.00129 0.021136644

hsa00051:Fructose and mannose metabolism 0.001356 0.021051205

hsa00480:Glutathione metabolism 0.00145 0.021393467
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false positive rates (FPR), the resulted p-values were
corrected using the Benjamini-Hochberg (BH) proced-
ure [22, 23]. Figure 1 summarizes the proportions of
errors (acceptance) in each category of genes at an ad
hoc BH-adjusted-p-value cutoff of 0.05 in the four
data scenarios. From this figure, it can be found that,
generally, too large or too small values of τ led to
large errors, irrespective of any of the four data scenarios,
as expected. The parameter τ directly controls the regula-
tion confidence and captures the variation of differential
expression across studies. Theoretically, too small τ can
not filter out noise or non-specific heterogeneity such that
DEGs will be recognized in a low confidence, leading to
spurious DEGs, while too large τ means a too stringent
control of study heterogeneity such that intra-class bio-
logical heterogeneity per se is excluded, missing true
DEGs with complex patterns of differential expression.
Relative to Simulation-IA, Simulation-IB have an in-
creased gene effect, which led to slightly larger τ (around
0.8), at which the errors reach to the lowest, than that for
simulation-IB (around 0.7) as shown in Fig. 1a-b. Similar
results were observed between the two scenarios of
Simulation-II, as shown in Fig. 1c-d.
Results also revealed that the error proportion gradually

increases from Category 1 to 5 in both data scenarios of

Simulation-I, as shown in Fig. 1a-b. This is consistent with
the increasing heterogeneity of differential expression
from Category 1 to 5. Similar phenomena were observed
for Simulation-II (Fig. 1c-d). In Simulation-II, genes could
be differentially expressed in different directions across
studies, which produces additional heterogeneity for
DEGs identification. Specifically, the heterogeneity in-
creases from Category 1 to 3 and from Category 4 to 6.
From Fig. 1c-d, we can clearly see that the error propor-
tion gradually increases in a corresponding way across
these categories, irrespective of Simulation-IIA or
Simulation-IB. In summary, these results show that the
proposed method can deal with various types of data het-
erogeneity across studies in a controllable way.
For comparison evaluation, we also applied previous

methods, Fisher’s [24], AW [10], RankProd (RP) [25]
and pooled cor [21], to analyze the simulation data. Two
R packages, MetaDE and RankProd, were called to im-
plement the two previous methods, AW and RP, respect-
ively. For AW, the modt model was set (as default) to
calculate the p-values for individual study and the fudge
parameter to be the median variability estimator. Figure
2 compares the proportions of rejection (DEGs called)
by jGRP at a BH-adjusted-p-value cutoff of 0.05 with
those by the four previous method in the four data

Fig. 1 Proportions of errors (acceptance) of jGRPs in different categories of DEGs on four simulation data sets, simulation-IA (a), simulation-IB (b),
and simulation-IIA (c), simulation-IIB (d)
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scenarios. As described above, study heterogeneity grad-
ually increases from Categories 1 to 5 in the two scenar-
ios of Simulation-I and from Categories 1(4) to 3(6) in
the two scenarios of Simulation-II. It is expected that a
reasonable method should be sensitive to the change of
heterogeneity and have the proportions of rejection
gradually drop as the heterogeneity increases across the
categories in all the four data scenarios accordingly.
From Fig. 2, we can clearly see that although jGRPs as
well as the previous methods all are sensitive to the
change of heterogeneity, they have different degrees of
sensitivity in different simulation scenarios. Generally, the
p-value-based methods led to the two extremes among
these methods: Fisher’s and AW are least sensitive, while
pooled cor is most sensitive. Especially, pooled cor seems
too stringent to miss some DEGs that are even consist-
ently differentially expressed across all the ten studies
(Category 1) in all the four data scenarios. Lying in be-
tween the two extremes, jGRPs seems to be reasonably
sensitive with a mild result in all the four data scenarios,
and the sensitivity changes with the regulation confidence
parameter in a controllable way: the larger or smaller the
parameter the more sensitive jGRP. Results also reveals

that RP is less sensitive to inconsistent expression patterns
(Fig. 2c-d), which is consistent with the observations in
[12]. In summary, jGRP shows a superior power of dealing
with various types of study heterogeneity.

Application to real microarray expression data
Considering that lung cancer is one of the most malignant
tumors worldwide, we collected three real microarray lung
adenocarcinoma (LUAD) cancer datasets from the GEO
database: Landi’s data (GSE10072) [26], Selamat’s data
(GSE32863) [27], and Su’s data (GSE7670) [28], in which
all samples were divided into lung adenocarcinoma and
normal (NTL). The Landi’s data consist of the expression
levels of ~13,000 probes in total107 (58 LUAD and 49
NTL) samples; The Selamat’s data consist of the expres-
sion levels of ~25,000 probes in total 117 (58 LUAD and
59 NTL) samples; The Su’s data consist of the expression
levels of ~13,000 probes in 54 (27 paired LUAD/NTL)
samples. During generating these datasets, different
microarray platforms were used to measure gene expres-
sion levels in parallel: Illumina Human WG-6 v3.0 Expres-
sion BeadChips for Landi’s data, HG-U133A Affymetrix
chips for Selamat’s data, and Affymetrix Human Genome

Fig. 2 Comparison of the rejection proportions of jGRPs with those of previous methods on four simulation data sets, simulation-IA (a), simulation-IB (b),
and simulation-IIA (c), simulation-IIB (d)
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U133A array for Su’s data, which complicated data hetero-
geneity across these studies. We preprocessed the three
datasets according to the following procedure: Averaging
the intensities of multiple probes matching a same Entrez
ID as the expression levels of the corresponding gene, and
filtering out non-specific or noise genes by a CV filter (set-
ting the CV cutoff as 0.05) [29]. As a result, the expression
levels of 4728 common genes were used for meta-analysis
for detecting LUAD-related DEGs.
We applied jGRPs with varying τ = 05,0.6,0.7,0.8,0.9

and 1 to analyze the three data sets simultaneously. To
control false positive rates (FPRs), the resulting p-values
for each gene were corrected using Benjamini-Hochberg
(BH) procedure [22, 23]. For comparison, four previous
methods, Fisher’s [24], AW [10], RP [25] and Pooled cor
[21], were also applied to re-analyze these data sets.
Figure 3a shows the numbers of DEGs by jGRP and the
previous methods at three BH-corrected p-value cutoffs
of 0.001,0.01 and 0.05. From this figure, it can be clearly
seen that our jGRP methods obtained a moderate result
between the two previous methods, which is consistent
with those on the simulation data above. Furthermore,
for jGRPs, varying τ resulted in a similar changing pat-
tern of the number of identified DEGs to those for the
simulation data above, and τ = 0.7 obtained the largest
and seemly more reasonable number of DEGs.
Results show that 3281 genes were called significantly

differentially expressed between normal and LUAD tis-
sues by jGRP (τ = 0.7) at an ad hoc BH-adjusted p-value
cutoff of 0.001. Literature survey shows that many of
these DEGs were previously reported to be related to
lung cancer. For example, the gene with the largest value
of jGRP (1), EPAS1, plays important roles in cancer pro-
gression and has been widely reported to be over-
expressed in non-small cell lung cancer (NSCLC) tissues

as a significant marker for poor prognosis [30, 31].
Other researchers have evidenced that in murine models
of lung cancer, high expression levels of EPAS1 relate to
tumor of large size, invasion and angiogenesis [32, 33].
One unique feature of jGRP is to automatically label

DEGs with up-regulation or down-regulation in cancer.
As a result, the 3281 DEGs were further divided by jGRP
into two categories with different regulatory directions:
1655 (Additional file 1: Table S1) were with a negative
jGRP statistic meaning a down-regulation in LUAD tissues
relative to normal tissues, and 1626 (Additional file 1:
Table S2) with a positive jGRP statistic meaning an up-
regulation in LUAD. Among the 1655 down-regulated
genes, many have been previously reported to be lowly
expressed in lung tumor. For example, gene MTRR, which
was missed by all the four previous method, Fisher’s, AW,
RP and Pooled.cor, at an ad hoc BH-adjusted p-value cutoff
of 0.001, was found with jGRP = −0.36 (p-value < 3 × 10−5,
BH-corrected p-value < 5 × 10−5) to significantly down-
regulated in LUAD. For this gene, Aksoy-Sagirli et al. [34]
recently reported that its single-nucreotide polymorph-
ism, MTRR 66 A > G, is significantly associated with
lung cancer risk. Another gene, FAM107A with a large
value of jGRP = −0.99 (p-value < 10–16, BH-corrected
p-value < 10−16), also named DRR1 and TU3A, is the
member A of the family with sequence similarity 107,
localized in chromosomal region 3p21.1 and ~10 kb
long. Biologically, the protein that FAM107A encodes is
involved in cell cycle regulation via apoptosis induction.
It has been evidenced that FAM107A is frequently lost
in various types of cancer, including ovarian cancer, cell car-
cinoma (RCC), prostate cancer and lung cancer cell lines
[35, 36]. Recently, Pastuszak-Lewandoska et al. [37] ob-
served that FAM107A was dramatically down-regulated in
NSCLC samples relative to in tumor adjacent normal

Fig. 3 Comparison of numbers of DEGs identified by jGRPs and four previous methods, Fisher’s, AW, RP and pooled cor methods at BH-adjusted
p-value cutoffs of 0.001, 0.01 and 0.05 for the three LUAD microarray data sets (a) and the two hepatocellular carcinoma RNA-seq data sets (b)
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tissues. GeneTCF21 with a large value of jGRP (jGRP = −0.99,
p-value < 10−16, BH-corrected p-value < 10−16), which en-
codes a transcription factor of the basic helix-loop-helix
family, was extensively observed as tumor suppressor
to under-express in human malignancies. Especially,
Wang et al. [17] reported that the underrepresentation
of TCF21 in LUAD tissues may be driven by its
hypermethylation. The epigenetic inactivation in lung
cancer was experimentally observed by Smith et al. [38]
using restriction landmark genomic scanning. Recently,
Shivapurkar et al. [39] adopted DNA sequencing tech-
nique to narrow down the sequence of TCF21 and pin-
pointed a short CpG-rich segment in the CpG island
within exon 1 that is predominantly methylated in lung
cancer cell lines but unmethylated in normal epithelial
cells of lung. The short segment may account for the
TCF21 expression abnormality in lung cancer. A more
evidence reported by Richards et al. is that the associ-
ation between hypermethylation and under-expression
of TCF21 is specific to tumor tissues and occurs very
frequently in various types of non-small cell lung can-
cer (NSCLC), even in the early-stage of NSCLC [40].
Taken together, these evidences confirm the down-
regulation pattern of TCF21 in LUAD and suggest
that it may be driven by its hypermethylation.
Among the 1626 up-regulated genes, many have also

been previously reported to be under-expressed in lung
cancer. For example, gene STRN3, which was missed by
RP and Pooled.cor at an ad hoc BH-adjusted p-value
cutoff of 0.001, was found to be up-regulated in LUAD
with jGRP = 0.32 (p-value < 5 × 10−4, BH-corrected
p-value < 7 × 10−4). As a single marker, STRN3 effi-
ciently distinguished 100 NSCLC patients from 147 control
subjects with a sensitivity of 84% and a specifity of 81%, and
was included into a membrane array-based assay for
non-invasive diagnosis of patients with NSCLC [41].
Another gene COL11A1 with a large value of jGRP
(jGRP = 0.97, p-value < 10−16, BH-corrected p-value < 10−16)
has been previously reported to take part as a minor fibrillar
collagen in cell proliferation, migration and the tumorigen-
esis of many human malignancies. For example, Shen et al.
[42] experimentally observed that the gene was significantly
up-regulated in recurrent NSCLC tissues and in
NSCLC with lymph node metastasis. It has been re-
vealed that Smad signaling functionally mediates the
overexpression of COL11A1 in NSCLC cells during the
cell proliferation, migration and invasion of NSCLC cell
lines in vitro. COL11A1 can act as a biomarker for clin-
ical diagnosis of metastatic NSCLC [42]. For gene
HMGA1 (jGRP = 0.97, p-value < 10−16, BH-corrected
p-value < 10−16), the two previous methods, pooled cor
and Fisher’s, ranked it at 183th and after 1000, respect-
ively. Biologically, HMGA1 encodes a protein that is func-
tionally associated with chromatin, which is involved in

the metastatic progression of cancer cells. Previous studies
reported that HMGA1 is widely over-expressed in a var-
iety of aggressive tumors, suggesting that HMGA1 may
act as a convictive biomarker for NSCLC prognostic pre-
diction [43]. Especially, using immunohistochemistry,
Zhang et al. [44] found that increased protein levels of
HMGA1 are positively correlated with the status of clin-
ical stage, classification of T, N and M, and differentiated
degree in NSCLC.
To further assess the DEGs identified by different

methods, we also perfomed pathway enrichment ana-
lysis using the commonly used online DAVID tool (http://
david.abcc.ncifcrf.gov/home.jsp). As a result, DAVID re-
ported 42, 57, 53, 40, 20 KEGG pathways (Additional file 1:
Table S3-S7) significantly enriched in the DEG lists of
jGRP (τ = 0.7) and four previous methods, Fisher’s, AW,
RP and Pooled cor, at an ad hoc p-value cutoff of 0.05, re-
spectively. Compared with the previous methods, jGRP
gave higher ranks to pathways that are related to cancer
progression, including cell cycle (Rank 2) comprised of a
series of cellular events that leads to the division and dupli-
cation of DNA (DNA replication) of a cell, and small cell
lung cancer (Rank 6), as shown in Table 2. Especially, the
Complement and coagulation cascades pathway ranked
at 1 was recently reported to dysfunction in lung cancer
[45, 46]. jGRP also called another two lung cancer-
related pathways, NF-kappa B signaling pathway and
PI3K-Akt signaling pathway, but pooled cor did not. In
NF-kappa B signaling pathway, nuclear factor-κB (NFκB)
is a family of transcription factors that regulate the expres-
sion of genes that are involved in cell proliferation, differ-
entiation and inflammatory responses. It has been widely
evidenced that activating FκB can induce tumorigenesis of
normal cells [47–49].

Application to RNA-seq expression data
We also evaluated the performance of the proposed
method on RNA-seq expression data. Hepatocellular
carcinoma (HCC) is the third leading cause of cancer-
related deaths. Two HCC RNA-seq data sets were col-
lected from the GEO database: Liu’s data (GSE77314)
[50] and Dong’s data (GSE77509) [51], both of which
were measured using Illumina Hiseq 2000, and jointly
analyzed them for identifying HCC biomarkers. The
former consists of mRNA profiles of 50 paired normal
and HCC samples, and the latter consists of mRNA pro-
files of 40 matched HCC patients and adjacent normal
tissues. For quality control, we preprocessed the two
datasets by averaging the FPKM values with a same
Entrez ID as the expression levels of the corresponding
gene and filtering out non-specific or noise genes based
on a CV filter [29]. As a result, two HCC expression data
sets containing 4945 common genes were jointly
analyzed for identifying HCC-related DEGs.
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Similar to the three LUAD microarray data sets, we
applied jGRPs with varying τ = 05,0.6,0.7,0.8,0.9, 1 and
the four previous methods, Fisher’s [24], AW [10], RP
[25] and Pooled cor [21], to jointly analyze the two
RNA-seq data sets, respectively, and corrected p-values
using Benjamini-Hochberg (BH) procedure [22, 23] for
controlling false positive rates. Figure 3b shows the
numbers of DEGs called by jGRPs and the previous
methods at three BH-corrected p-value cutoffs of
0.001,0.01 and 0.05. Similar to Fig. 3a, b reveals that
most of jGRPs obtained an intermediate result between
those by the previous methods, Fisher’s, AW and Pooled
cor, for the HCC RNA-seq data. Among the jGRPs, the
one with τ = 0.6, which is smaller than 0.7 for the LUAD
data sets above, led to a more reasonable result, imply-
ing that it is more heterogeneous across the two HCC
data sets than that across the three LUAD data sets. The
high heterogeneity may be the reason for the unusually
large numbers of DEGs by RP which is less sensitive to
inconsistent patterns of expression [12].
Totally, there were 1724 genes called significantly differ-

ential expressed between normal and HCC tissues by
jGRP (τ = 0.6) at a BH-adjusted p-value cutoff of 0.001.
Among them, 1206 (Additional file 1: Table S8) were with
a negative jGRP statistic, i.e., a down-regulation in HCC
tissues relative to normal tissue, and 518 (Additional file 1:
Table S9) with a positive jGRP statistic, i.e., an up-
regulation in HCC. The imbalance of up- and down-
regulated genes informed a higher degree of heterogeneity
across the two HCC data sets compared with that across
the three LUAD data sets (1655 down-regulated DEGs
and 1626 up-regulated DEGs), which is in concordance
with the unusually larger numbers of DEGs by RP. Then,
we examined the biological functions of the two sets of
DEGs. Literature survey shows that many of them
have been previously reported to relate to HCC or
cancer. For example, one of down-regulated DEGs,
Nat2, with jGRP = −1, p-value < 10–16 and BH-corrected
p-value < 10–16, can both activate and deactivate aryla-
mine and hydrazine drugs and carcinogens. Some poly-
morphisms in Nat2 have been previously reported to
increase the risk of HCC and drug toxicity [52, 53].
Recently, it has been widely observed that Nat2 are con-
sistently and stably down-regulated in more than three
hundred HCC patients [54]. One of up-regulated DEGs,
CDC20, with jGRP = 1, p-value < 10–16, and BH-
corrected p-value < 10–16, biologically acts as a regulatory
unit in cell cycle that interacts with several proteins at
multiple points of cell cycle. Li et al. [55] reported that
high expression of CDC20 is associated with development
and progression of hepatocellular carcinoma. Recently,
CDC20 has been suggested to be a potential novel cancer
therapeutic target [56]. We also conducted pathway ana-
lysis using the DAVID tool on the 1724 DEGs. As a result,

39 KEGG pathways (Additional file 1: Table S10) were
called to be significantly enriched in the DEG list at an ad
hoc p-value cutoff of 0.05, many of which were previously
found to be involved in tumorigenesis, e.g., cell cycle and
p53 signaling pathway. Especially, a new pathway, i.e., Bile
secretion pathway, was found to be significantly enriched
and relate to HCC (p-value = 2.5 × 10–8), which though
needs to be further investigated by pathologists. Biologic-
ally, Bile is a vital secretion, which is essential in digesting
and absorbing fats and fat-soluble vitamins in the small
intestine. There are two mechanisms that influence Bile
secretion: membrane transport systems in hepatocytes
and cholangiocytes and the structural and functional in-
tegrity of the biliary tree. The dysfunction of the two
mechanisms may cause the signaling abnormality of the
Bile secretion pathway in HCC.

Discussion
The central problem in transcriptomics data meta-
analysis is how to deal with study heterogeneity. The
heterogeneity complicates the distribution of gene ex-
pression and thus hinders accurately pinpointing the
concordance of differential expression across studies.
Two intuitive alternative approaches for data integration
could be 1) Directly use the information contained in
several data-sets; and 2) Cluster higher/lower expressed
genes in each data-set and then zoom in on the interest-
ing genes. However, they both ignore or inappropriately
deal with the gene expression heterogeneity problem
between studies. Currently, most methods for meta-
analysis of differential expression directly operate in gene
expression space, which are based on either p-values, ranks,
or hierarchical t-statistic models. The proposed method,
jGRP, at the first time establishes a universal and flexible in-
tegrative framework that operates in gene regulation space
instead of in gene expression space, in which individual
samples from different sources are more compatible. The
regulation profile for a sample is derived from its expres-
sion profile based on probabilistic theory, where biological
variability and noise inherent in gene expression data are
modeled efficiently in combination with an adjustable par-
ameter. It is also intuitive and simple to implement and
easy to use in practice. We expect that this work can pro-
mote a research interest in borrowing gene regulation
knowledge for integrative identification of DEGs.
The regulation confidence cutoff parameter τ reflects a

tradeoff between regulation confidence and noise accom-
modation and is of importance to the performance of
jGRP. How to properly choose the parameter is still an
open question. The choice should be conditional on the
study heterogeneity at hand. Here, we would like to rec-
ommend 0.7 as default for the parameter for simplicity or
to try different values among 0.5 and 1 and then choose a
proper value, depending on a particular data condition.
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Conclusions
We have presented a novel transcriptomic data meta-
analysis method, jGRP, for identifying differentially
expressed genes. The method integrates multiple gene
expression data sets in a gene regulatory space instead
of in the original gene expression space, which makes it
easy to relieve the data heterogeneity between cross-lab
or cross-platform studies. To produce the regulatory
space, two gene regulation events between two condi-
tions were mathematically defined, whose occurring
probabilities were estimated using the total probabilistic
theorem. Based on the resulting gene regulation profiles,
a novel statistic, jGRP, was established to measure the
differential expression of a gene in the regulatory space.
jGRP introduces a parameter (τ) for users to conveni-
ently adjust to fit into various levels of study heterogen-
eity in practice. Compared with existing methods, jGRP
provides a united and flexible framework for DEGs iden-
tification in a meta-analysis context and is intuitive and
simple to implement in practice, which can be a standa-
lone tool due to the superior power of dealing with
study heterogeneity. We evaluated the proposed method
on simulation data and real-world microarray and RNA-
seq gene expression data sets, and experimental results
demonstrate the effectiveness and efficiency of jGRP for
DEGs identification in gene expression data meta-
analysis. Future work will be focused on guidelines for
the choice of the regulation confidence cutoff parameter
and biological verification of the new DEGs identified in
the real applications.
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on the three LUAD data sets. Table S2. List of 1626 genes with a positive
jGRP statistic meaning a up-regulation in LUAD tissues relative to normal
tissues on the three LUAD data sets. Table S3. List of 42 KEGG pathways
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List of 57 KEGG pathways significantly enriched in the DEG lists of Fisher’s by
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