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Abstract

Background: One approach to improving the personalized treatment of cancer is to understand the cellular
signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used
unsupervised deep learning to learn the hierarchical structure within cancer gene expression data. Deep learning
is a group of machine learning algorithms that use multiple layers of hidden units to capture hierarchically related,
alternative representations of the input data. We hypothesize that this hierarchical structure learned by deep
learning will be related to the cellular signaling system.

Results: Robust deep learning model selection identified a network architecture that is biologically plausible. Our
model selection results indicated that the 1st hidden layer of our deep learning model should contain about 1300
hidden units to most effectively capture the covariance structure of the input data. This agrees with the estimated
number of human transcription factors, which is approximately 1400. This result lends support to our hypothesis that
the 1st hidden layer of a deep learning model trained on gene expression data may represent signals related to
transcription factor activation. Using the 3rd hidden layer representation of each tumor as learned by our unsupervised
deep learning model, we performed consensus clustering on all tumor samples—leading to the discovery of clusters
of glioblastoma multiforme with differential survival. One of these clusters contained all of the glioblastoma samples
with G-CIMP, a known methylation phenotype driven by the IDH1 mutation and associated with favorable prognosis,
suggesting that the hidden units in the 3rd hidden layer representations captured a methylation signal without
explicitly using methylation data as input. We also found differentially expressed genes and well-known mutations
(NF1, IDH1, EGFR) that were uniquely correlated with each of these clusters. Exploring these unique genes and
mutations will allow us to further investigate the disease mechanisms underlying each of these clusters.

Conclusions: In summary, we show that a deep learning model can be trained to represent biologically and clinically
meaningful abstractions of cancer gene expression data. Understanding what additional relationships these hidden
layer abstractions have with the cancer cellular signaling system could have a significant impact on the understanding
and treatment of cancer.
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Background
Understanding the cellular signal transduction pathways
that drive cells to become cancerous is fundamental to
developing personalized cancer therapies that decrease
the morbidity and mortality of cancer. Most research
studying cellular signaling pathways has concentrated on
a handful of signaling proteins in a hypothesis-driven
framework. This study uses a deep learning approach to
study cancer signaling systems in a large-scale data-
driven fashion, with an overall goal of understanding the
cellular signaling pathways that drive or cause cancer.
Towards this goal, we used unsupervised deep learning
to find meaningful structure and relationships in cancer
gene expression data.
Deep learning models (DLMs) originated from artifi-

cial neural networks (ANN) and learn alternate repre-
sentations of the original input data. A DLM is
composed of multiple layers of latent variables (hidden
nodes or units, in the ANN jargon) [1–5], which learn
to represent the complex statistical structures embedded
in the data, such that different hidden layers capture
statistical structure of different degrees of complexity. In
other words, DLMs learn novel representations of the
statistical structure of the input data through hierarch-
ical decomposition. For example, if one trains a convolu-
tional neural network (a type of DLM) with three hidden
layers on a dataset of face images (in order to learn how
to recognize specific people in images), the units in these
three layers capture abstract representations at different
levels. The model may use the 1st hidden layer units

(the layer that is closest to input data) of the trained net-
work to capture edges of different orientations present
in the original image [6, 7]. The 2nd hidden layer units
may learn representations of different parts of a face [7]
(e.g., nose, mouth, eye, ear), by combining edges of dif-
ferent orientations (represented by the units in the 1st
hidden layer). Finally, units in the 3rd hidden layer may
represent generic faces [4, 7], which can be thought of,
or represented as, combinations of parts of a face. In this
way, deep learning finds hierarchical structure in data by
finding alternate representations (often of lower dimen-
sion) that best encode the information in the original
image. Once a DLM is trained, it can be used to detect a
specific person in an image or, depending on the type of
model, it can be used to generate new face images that
mimic the distribution of the input images. In this study,
we aim to use DLMs to find the hidden layer representa-
tions of cancer gene expression data that likely represent
the state of the signaling systems in cancer cells.
More specifically, we hypothesize that the activation

states of signaling pathways regulating transcriptomic
activities in cancer cells can be learned using DLMs
(Fig. 1). Cancer is a multi-process disease, in that a can-
cer cell usually has multiple aberrant pathways—each
pathway consists of a set of hierarchically organized
signaling molecules (Fig. 1a)—driving differentially
expressed genes (DEGs) that are involved in multiple
oncogenic processes. A transcriptomic profile of a
tumor is a convoluted mixture of expressed genes regu-
lated by active pathways in tumor cells, but the

a b c

Fig. 1 Inferring the activation states of signaling pathways with deep learning. (a) Example EGFR signaling cascade. (b) A microarray representing
gene expression values. (c) Representation of a DBN (fine-tuning encoder network only) trained on gene expression values. Hypothesized
biological entities whose activation states may be represented by units in the 1st, 2nd, and 3rd hidden layers are displayed on the right
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information related to the hierarchical organization of
pathways is “collapsed” and distinct signals from differ-
ent pathways become inseparable (Fig. 1b). Discovering
aberrant signals in cancer cells requires de-convolution
(decomposition) of such signals, and DLMs are particu-
larly well suited for such a task due to their ability to
perform hierarchical decomposition. For example, the
hierarchical structure of a signaling pathway (Fig. 1a)
could be simulated by the hierarchical structure in a
DLM trained on gene expression data (Fig. 1c). Since
transcription factor (TF) activation dictates the finest
covariance structure of gene expression, which is at the
bottom of the signaling pathway in Fig. 1a, the 1st-
hidden layer in our DLM (Fig. 1c) may capture the sig-
nals encoded by TFs. And just as there are different
pathways being activated that regulate transcription fac-
tor activation in the middle of Fig. 1a, the 2nd hidden
layer of our DLM may represent the activation states of
different biological pathways. Continuing with this
analogy, units in the 3rd hidden layer could represent
biological processes (e.g., inflammation or metastasis) or
combinations of pathways. In this way, we aim to learn
the hierarchical representation of the signals underlying
cancer gene expression data with deep learning.
Recently, we demonstrated that DLMs could be

used to learn and represent the cellular signaling sys-
tem [8, 9]. In one study, we showed that a DLM,
more specifically a multi-modal deep belief network
(DBN) and a semi-restricted multi-modal DBN can
learn representations of the cellular signaling system
shared by rat and human cells [9]. In the same study,
we also demonstrated that a trans-species DLM could
accurately predict human cell responses to a set of
unknown stimuli based on data from rat cells treated
with the same stimuli. In a more recent study, we
showed that DLMs can learn representations of the
yeast transcriptomic system, and that the hidden units
of these DLMs can be mapped to real biological en-
tities, such as transcription factors and well-known
yeast signaling pathways [8]. Another group, Liang et
al., integrated multiple types of genomic cancer data
with a multi-modal DLM trained to regenerate the
observed data (the entire omics profile), but their goal
was not to infer aberrant signals, i.e., the differences
in signaling between normal and cancer cells [10], as
we did in this study.
In this study, we investigated the optimal architectures

of DBN-based models to learn accurate representations
of the signals underlying cancer transcriptomic changes
across 17 cancer types. We show that a DLM can pro-
vide novel abstract representations, enabling us to reveal
molecular subtypes of cancers, e.g., subtypes of glioblast-
oma multiforme (GBM), that exhibit significant differ-
ences in outcomes. Our analysis revealed different

potential disease mechanisms (major driver genes)
underlying these molecular subtypes.

Methods
Data
The data used in this study were obtained from The
Cancer Genome Atlas (TCGA) Data Portal [11], and in-
cluded transcriptomic data for 17 different cancer types
and non-cancer organ-specific tissue controls, all down-
loaded from the TCGA Data Portal (Table 1). The total
size of the dataset was 7528 samples by 15,404 genes.
We discretized the expression value of a gene in a

tumor to 1 or 0 based on whether or not the expression
value significantly deviated from the expression observed
in normal tissue. To achieve this, we fit the expression
values of each gene in each cancer type to a Gaussian
distribution based on the non-cancer control samples
only from the same tissue of origin. We then set the ex-
pression status of a gene in a tumor to 1 (aberrant) if it
was outside the 0.001 percentile of distribution of con-
trol samples (on either side), otherwise we set it to 0.
For genes with low expression variance in normal cells,
i.e., standard deviation of expression smaller than 0.2,
we used 3-fold change to determine whether the genes
were differentially expressed in tumor cells. Through
this discretization process, we identified genes that were
potentially relevant to the cancer process (aberrantly
expressed in cancer only) rather than just using the
whole gene expression profile of a cell, which includes
both physiological and pathological signals. The gene

Table 1 Number of samples for each cancer type in our dataset

Tissue Type Number of Samples

Bladder urothelial carcinoma (BLCA) 403

Breast invasive carcinoma (BRCA) 1073

Esophageal carcinoma (ESCA) 183

Colon adenocarcinoma (COAD) 283

Glioblastoma multiforme (GBM) 481

Head and neck squamous cell carcinoma (HNSC) 508

Kidney renal clear cell carcinoma (KIRC) 525

Kidney renal papillary cell carcinoma (KIRP) 288

Liver hepatocellular carcinoma (LIHC) 364

Lung adenocarcinoma (LUAD) 509

Lung squamous cell carcinoma (LUSC) 498

Ovarian serous cystadenocarcinoma (OV) 559

Prostate adenocarcinoma (PRAD) 491

Rectum adenocarcinoma (READ) 93

Stomach adenocarcinoma (STAD) 236

Thyroid carcinoma (THCA) 499

Uterine corpus endometrial carcinoma (UCEC) 535

Total 7528
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expression changes due to copy number alteration were
also masked; as such changes are not regulated by the
cellular signaling system, but are due to genomic alter-
ations. In each tumor, we identified the genes that had
expression changes and the genes that had copy number
alterations, i.e., GISTIC2.0 [12] score equal to +1
(amplification) and GISTIC2.0 score equal to −1
(deletion). When we discovered gene expression up-
regulation co-occurring with a corresponding copy num-
ber amplification, or a gene expression down-regulation
co-occurring with a corresponding copy number
deletion, we masked the gene expression change—as this
co-occurrence suggested that the expression changes
were caused by the DNA copy number alteration.

Preprocessing
Feature selection was performed to remove genes with
low Bernoulli variance because of their general lack of
information. We created datasets with different numbers
of features by using different variance thresholds for
feature selection. We identified genes that had an
expression status of 1 (or 0) in 90% (Bernoulli success
probability) of tumors and removed them from further
analysis due to their low variance. This resulted in a
dataset with 7160 features. We repeated this process
using a Bernoulli success probability of 0.95 to create a
dataset with 9476 features. We also removed any genes

that were highly correlated with a specific cancer type or
tissue type, by removing all genes with a Pearson correl-
ation coefficient, with respect to cancer or tissue type
labels, greater than 0.85.

Model specification
The specific deep learning strategy used for this study is
called a DBN (layer-by-layer pre-training followed by
“up-down” fine-tuning) [1, 13–15]. Although it may be
clearer and more explicit to refer to the strategy used in
this study as a stacked restricted Boltzmann machines–
deep autoencoder (SRBM–DA), we will use the more
traditional DBN terminology [1, 13–15] for the sake of
being consistent with the literature. Learning of a DBN
consists of two major phases: a pre-training phase and a
fine-tuning phase (Fig. 2).
In the pre-training phase, the hierarchical DBN model

is treated as multiple restricted Boltzmann machines
(RBMs) stacked on top of each other, such that the top
layer of an RBM is used as the bottom layer of another
RBM above it. Learning of the parameters (often referred
to as weights W) of the pre-training phase, starts with
the learning of the weights of each of the stacked RBMs
in a layer-by-layer fashion.
In more detail, the pre-training phase is a deep genera-

tive model consisting of a stack of RBMs. An RBM is a
2-layered undirected probabilistic network that seeks to

Fig. 2 Deep belief network (DBN) with two phases: pre-training and fine-tuning. Each RBM in the pre-training phase iteratively learns lower
dimensional representations of the input (gene expression microarray) one RBM at a time. These lower dimensional representations are then used
as input to the next RBM. The pre-training phase learns a set of weights (W = w1, w2, and w3) that is used to initialize the fine-tuning phase. The
fine-tuning phase optimizes the weights by minimizing the cross-entropy error
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learn a latent representation (often of lower dimension)
of the input data by optimizing the instantiation of the
latent variables (latent representation) and the weights
of the network in order to best allow the latent represen-
tation to regenerate the input data [14]. The objective of
an RBM is to find the parameters θ (including a weight
matrix W and offset vectors (biases) b, c) that maximize
the probability of the input data (visible layer, v) [1].

argmax
θ

P vð Þ ¼
X

h

P v; hð Þ ð1Þ

P v; hð Þ ¼ 1
Z
e−E v;hð Þ ð2Þ

E v; hð Þ ¼ −hTWv−cTv−bTh ð3Þ
The joint probability P(v, h) of the hidden h and visible

v layers is a function of the energy function E(.) [1]. Z is
a normalization factor or partition function.
In the fine-tuning phase, the DBN model is “unfolded”

(leading to a network often referred to as a deep autoen-
coder, DA) in order to learn to reconstruct the input
data using the weights learned during the pre-training
phase. The fine-tuning phase performs a global
optimization of all weights using stochastic gradient des-
cent and the backpropagation algorithm, with the goal
of minimizing the difference between the distribution of
the data and the distribution formed by the model’s re-
constructions of the data (cross-entropy error) [13, 14].
Deep networks can be somewhat difficult to train [16,
17]. Using the weights learned during pre-training to
initialize a DA, as opposed to random initialization,
seems to improve the generalization of the completely
trained DBN by minimizing the variance of all possible
solutions to the DBN [13, 18].
In more detail, a DA is a multi-layered network com-

posed of an encoder and decoder network [14]. The
encoder network learns multiple encodings (hidden layer
representations) of the input by propagating the input
forward through the network (as one would in a neural
network using a linear transformation and a nonlinear-
ity/squashing function), learning alternate representa-
tions of the input at each hidden layer [1, 14]. Once the
final hidden layer is computed, the decoder network
propagates in reverse [1, 14]. When propagating in re-
verse, the DA uses the final hidden layer of the network
to attempt to regenerate the original input data. The
output of fine-tuning (DA) is a reconstruction of the in-
put data based on decoder propagation through the net-
work. Cross-entropy error can be used to determine
how close these reconstructions are to the original input,
and the weights can be updated in the appropriate direc-
tion (trained using backpropagation of error derivatives
and stochastic gradient descent) [1, 14] in order to

minimize the cross-entropy error. Reconstruction error
(mean squared error between the data and the reconstruc-
tions of the data) is often used to monitor learning pro-
gress. More detailed descriptions of training DBNs can be
found in [8, 14, 15].
We implemented a DBN [14] using the Python pro-

gramming language and the Theano library (a symbolic
numerical computation python library) [19]. This
implementation is compatible with Mac OS or Linux
computing environments and is capable of utilizing
GPUs if available.

Model selection
In order to investigate the impact of the hyperpara-
meters (network architecture, learning rate, training dur-
ation) on modeling the cancer transcriptomic data, we
performed a series of model selection experiments.
Model selection was performed using a modified 8-fold
cross-validation. In order to speed up our model selec-
tion (allowing us to explore more sets of hyperpara-
meters), while still training on a large percentage of our
dataset (considering our dataset had a somewhat small
number of samples relative to the number of features),
we only performed four folds of an 8-fold split of the
data. Our strategies for deep learning model selection
were guided by articles from Bengio [20] and Hinton
[21]. A combined random and grid search approach [20]
were used with a goal of finding the set of hyperpara-
meters that minimized the average test set reconstruc-
tion error and prevented overfitting, while also
significantly reducing the dimensionality of the data (i.e.,
final (top) hidden layer with around 100 units). Please
see the Results and discussion section for more informa-
tion on model selection.

Consensus clustering
After model selection, we trained the deep learning
model and then computed and collected the top hidden
layer (the most abstract) representations for each sam-
ple. We performed consensus clustering on the top hid-
den layer representations (i.e., 3rd hidden layer
representations, meaning the final 100–200 dimensional
projections of the input data) of each tumor as calcu-
lated by our trained DBN models; as well as, on the
high-dimensional input data alone. Consensus clustering
was performed using the ‘ConsensusClusterPlus’ [22]
package from the R statistical programming language
[23], using agglomerative hierarchical clustering with
Euclidean distance and average linkage. Consensus
clustering performs multiple trials (in this case 100) of
clustering based on randomly sampling a subset of the
data (in this case 80%). Each sample is given a final
cluster assignment at the end of each trial. A consensus
matrix is created after all trials have completed. A
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consensus value is a number between 1 and 0 that repre-
sents how often two samples did or did not cluster
together, respectively.
The output of the consensus clustering was a dendro-

gram and an associated consensus matrix heatmap
(dimensions = number of samples by number of
samples), representing how often samples clustered to-
gether in repeated clustering trials. The DBN models
with the lowest percentage of ambiguous clustering
(PAC) [24] values and most visually informative heat-
maps were selected for further analysis. The PAC repre-
sents the proportion of data points in the consensus
matrix with intermediate (between 0.8 and 0.2) consen-
sus values, meaning that the two samples clustered
together in some runs of clustering, but not in others.

Kaplan-Meier survival analysis
A Kaplan-Meier plot was created using the clustering as-
signments from the consensus of consensus clustering
for GBM samples. Kaplan-Meier plots were created
using the ‘survival’ package in the R statistical comput-
ing language [23]. P-values were calculated using the
log-rank test.

Correlation between genes and clusters
Correlation studies were performed to find the differen-
tially expressed genes or mutations that correlated with
each GBM cluster. The Pearson correlation between
each differentially expressed gene (input features) and
GBM cluster was measured using the ‘cor’ function in R.
The Pearson correlation between each mutation (TCGA
GBM somatic mutation data version “2015-01-27”) and
GBM cluster was also measured using the ‘cor’ function
in R. Functions of example genes were obtained from
www.genecards.org and the Gene Ontology Consortium
(http://geneontology.org/).

Results and discussion
Model selection
This study concentrated on finding the network archi-
tecture of a DBN model that was capable of learning
“optimal” representations of cancer expression data,
which is a model selection task. We performed a series
of model selection experiments to find the best set of
hyperparameters (e.g., number of hidden layers, number
of units in each hidden layer, learning rates, training
epochs, batch size, etc.). Approximately 1500 different
sets of hyperparameters, including models with up to
five hidden layers, were evaluated by cross-validation,
representing approximately 1.5 months of computation
time on a single Tesla k40 GPU.
We started model selection by performing a random

search over all hyperparameters, in which hyperpara-
meters were randomly sampled from a range of values.

We performed this search subject to some constraints,
such as decreasing hidden layer size (e.g., hidden layer 1
always larger than hidden layer 2, etc.) and pre-defined
maximum unit thresholds for hidden layer sizes. Based
on these results, we selected a partial set of hyperpara-
meters (including pre-training and fine-tuning learning
rates, batch size, and pre-training and fine-tuning epochs
of training duration) that appeared to perform well over
a broad range of hidden layer architectures. Using this
partial set of hyperparameters, we performed an exten-
sive grid search over hidden layer architectures (from 1
to 5 hidden layers with varying number of hidden units
in each layer) and evaluated the resulting reconstruction
errors (Fig. 3). For all experiments in Fig. 3, only the
number of hidden layers and number of units in each
hidden layer varied. The other hyperparameters (i.e.,
learning rates, number of pre-training and training
epochs, and batch size) were fixed.
Figure 3a shows how reconstruction error changes

with respect to the size of the 1st hidden layer and train-
ing epochs for networks with only a single hidden layer,
i.e., a single RBM that is then fine-tuned. As expected,
the reconstruction error for a single hidden layer net-
work decreases as the size of the hidden layer increases,
and does not provide much insight into choosing the
size of the 1st hidden layer. A single hidden layer DBN
cannot learn the hierarchical relationships that we are
interested in discovering. Therefore, we explored DBNs
with multiple hidden layers.
Figure 3b shows the model selection results for differ-

ent two hidden layer architectures, where the number of
hidden units in the 1st hidden layer range from 100 to
3500 (across x-axis), and the number of units in the 2nd
hidden layer range from 50 to 3300 (indicated by color
code). Each circle in this graph (and Fig. 3c, d) repre-
sents the reconstruction error for a network architec-
ture. Figure 3b shows that, with a small number of
hidden units (50 – 100 units) in the top (2nd) hidden
layer, increasing the size of the 1st hidden layer beyond
1100 does not lead to a significant reduction in recon-
struction error. Indeed, as the size of the 1st hidden
layer increases beyond 1100 units, the reconstruction er-
rors remain flat and show a tendency to increase slightly.
In contrast, when the size of 2nd (top) hidden layer is
relatively large (> 500), the reconstruction errors con-
tinue to decrease as the size of the 1st hidden layer
increases.
We hypothesized that, since a DBN is an encoding

machine, an optimal model should be able to encode the
input data and pass it through an information bottle-
neck—a model with a very small number of hidden units
in the top layer of the network. Such a model would re-
quire each of the layers below this bottleneck to capture
as much information as possible in order to efficiently
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pass the bottleneck (i.e., maintaining a low reconstruc-
tion error). As such, one can search for an optimal
architecture by starting with a very small number of hid-
den units in the top layer and selecting the optimal
number of hidden units layer-by-layer starting from the
1st hidden layer (closest to input data).
Figure 3c shows how reconstruction error changes as

the sizes of the 1st, 2nd, and 3rd hidden layers change
(units in 2nd hidden layer ranged from 100 to 2300).
What really stands out in this graph is that overfitting
is observed when the 1st hidden layer is greater than
1300 and the number of hidden units in the top hidden
layer is set to 10 (overfitting indicated by a blue rect-
angle in the figure). Figure 3d shows how reconstruc-
tion error for four-hidden-layer DBNs changes as the
sizes of the 1st, 2nd, 3rd, and 4th hidden layers change
(2nd hidden layer ranged from 100 to 2100 and 3rd
hidden layer from 50 to 500). Similar to Fig. 3c, d also
shows overfitting when the top hidden layer size is set
to 10 and the 1st hidden layer is large. We also exam-
ined five-hidden-layer networks, which showed results
similar to Fig. 3d (results not shown).

In total, these results suggest that the DBN begins to
capture noise in the data when the 1st hidden layer size
is greater than 1300 units. Accordingly, a 1st hidden
layer size around 1300 units should provide the optimal
encoding of the data when the number of hidden units
in the top hidden layer (the information bottleneck) is
small. We hypothesized that the 1st hidden layer cap-
tures the signals encoded by TFs in human cells, and
our results suggest that 1300 hidden units most effect-
ively captures the covariance structure (hypothesized to
be signals of TFs) within the data at the level of abstrac-
tion of the 1st hidden layer. Interestingly, our hypothesis
agrees surprisingly well with the current consensus on
the number of human TFs (~1400) estimated through
analyzing the human genome [25]. These results also
correlate with Chen et al. [8], who found nearly a one-
to-one mapping between hidden units in the first hidden
layer and yeast transcription factors.
As previously mentioned, we searched for optimal hid-

den layer sizes by finding ‘elbows’ in the plot of recon-
struction error vs. hidden layer size, where the
reconstruction error decreases less rapidly (as can be

a b

c d

Fig. 3 Model selection cross-validation reconstruction error. For all plots in this figure, the y-axes represent reconstruction error. (a) Reconstruction error
for multiple sizes of a one hidden layer network. The size of the 1st hidden layer increases by 200 units for each consecutive curve. (b) Reconstruction
error for two hidden layer networks. (c) Reconstruction error for three hidden layer networks. The blue rectangle represents network architectures that
overfit the data. (d) Reconstruction error for four hidden layer networks
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seen in Fig. 3b, c, and d). We then set the top hidden
layer size to be 100 – 200 units to provide a relatively
rich representation, while avoiding unnecessary com-
plexity. We found that DBNs with four hidden layers
(Fig. 3d) or 5-hidden layer networks (not shown) didn’t
offer much, if any, improvement over a 3-layer network.
We selected four 3-hidden-layer network architectures
([1100-500-100], [1300-700-100], [1300-700-150],
[1400-1000-200]) with different combinations of hidden
units in the “optimal” range. Next, we performed a ran-
dom search over the learning rates for the four network
architectures selected above and evaluated the recon-
struction errors. Finally, we decided to use six different
sets of hyperparameters (including network architec-
ture) to test their ability to capture statistical structures
in cancer gene expression data (Table 2).

Clustering tumors based on DBN-derived representations
The purpose of training a DBN model with a large num-
ber of tumors of multiple cancer types was to use a large
amount of data to enhance our learning of statistical
structures—to potentially reveal different disease mecha-
nisms. Based on the assumption that the learned repre-
sentations reflect the state of cellular signaling systems,
it would be interesting to learn if these representations
can be used to reveal cancer subtypes that share a com-
mon pattern of pathway perturbation. To this end, we
represented each tumor using the states of the hidden
units in the top (3rd) layer and performed consensus
clustering. Figure 4 shows that the 3rd hidden layer rep-
resentations from a trained DBN (Fig. 4a) clustered dras-
tically better than the high-dimension raw gene
expression profiles (Fig. 4c, d). When tumors were
represented by the 9476 input gene features, consensus
clustering failed to find any meaningful clusters (i.e.,
multiple clusters consisting of a large number of
samples).
While it is tempting to use a clustering approach to

find common cancer subtypes across multiple cancer
types, this approach is complicated by the fact that
certain pathways exhibit tissue-specific expression, and

clustering will be dominated by these tissue-specific fea-
tures. This will eventually lead to the clustering of all
tumor samples according to tissue type, as demonstrated
in the study by Hoadley et al. [26]. Indeed, we also found
that virtually all of our tumor samples clustered accord-
ing to tissue type (Fig. 4a). For example, the top right
cluster in the heatmap in Fig. 4a (cluster 4, colored light
blue) consisted of all lung tissue samples (lung adenocar-
cinoma and lung squamous cell carcinoma) except for
two outliers.
This tissue-specific clustering occurred despite our

best attempts to remove all tissue-specific genes by
representing a tumor using only genes with extremely
high variance (Bernoulli success probability, 0.70) to
train DBNs, and then perform consensus clustering
(results not shown). Using these high variance genes
reduced our number of features (genes) to 2674, with
each of these genes being differentially expressed in
more than 2250 tumor samples. The genes in this 2674
set cannot be tissue-specific because most cancer/tissue
types in our data set have only ~500 tumor samples or
less (except breast cancer and lung tissue, which have
~1000 tumors). These results indicate that there are
tissue-specific pathway perturbation patterns that lead to
a tissue-specific covariance structure of DEGs, which
were captured by the DBN, and in turn recognized by
consensus clustering. These results illustrate the limita-
tions of using gene-expression-related features (e.g., gene
expression, copy number alteration, and DNA methyla-
tion) to study disease mechanisms shared by tumors
across different tissue types [26]. Therefore, different
approaches to studying disease mechanisms should be
explored.

Within tissue type clustering revealed clinically relevant
subtypes
Although it is difficult to search for common disease
mechanisms across multiple cancer types due to the
aforementioned limitations, we hypothesized that, within
a given tissue type, clustering using DBN-learned repre-
sentations may reveal distinct disease mechanisms. Since
the survival data for glioblastoma multiforme (GBM) pa-
tients from TCGA was relatively more complete than
other cancer types in our data set (allowing us to per-
form more robust survival analysis), we studied GBM in
more detail. Previously, Verhaak et al. [27] selected a set
of genes as features and performed clustering of GBM
tumors from TCGA based on their expression values.
However, manually selecting features may introduce
bias, and therefore we set out to investigate if an un-
biased representation of the data would lead to different
results. We first used the raw input gene expression data
as features and performed consensus clustering, but
failed to find any clusters (data not shown). These

Table 2 Model selection results. Six different hyperparameter
sets for final training of DBN

Set ID Hidden Layer Sizes Learning Rates Epochs Input
Size1st 2nd 3rd pretrain train pretrain train

1 1100 500 100 7.75E-05 2.41E-03 14 101 9476

2 1300 700 100 7.75E-05 2.41E-03 14 91 9476

3 1300 700 150 7.75E-05 2.41E-03 14 88 9476

4 1300 700 150 7.75E-05 2.41E-03 14 62 9476

5 1400 1000 200 3.03E-03 3.26E-03 14 40 7160

6 1300 700 150 7.75E-05 2.41E-03 14 97 7160
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results underscore the motivation for the feature-
selection approach adopted by Verhaak et al. [27].
We then set out to investigate whether an unbiased

representation learned by a DBN would reveal subtypes
(clusters) of GBM. We trained six DBN models with dif-
ferent architectures and hyperparameters (see Table 2),
performed consensus clustering using the results from
each model (top layer representations), and we pooled
the results to build a ‘consensus of consensus clustering’.
The heatmap in Fig. 5a shows the general agreement
across GBM cluster assignments as derived from the six

DBN models. This is a type of ensemble learning where
each of the six models gets to ‘vote’ for which samples
should be clustered together. Using PAC scores (see
Methods) as a selection criterion, we identified six major
clusters (Fig. 5a). We explored this six major cluster sep-
aration further to see if the learned clusters were clinic-
ally relevant.
Figure 5b shows the Kaplan-Meier plot for the samples

in the six major GBM clusters (Fig. 5a). There is a differ-
ence in survival between the patient clusters and in par-
ticular the red curve/cluster seems to have better

a

b

c

d

Fig. 4 Consensus clustering of all samples. (a) Consensus clustering of the 3rd hidden layer representations from our DBN model (model 5 in Table 2)
captured tissue-specific clustering. The cancer types within each cluster are shown on top. (b) Composition of each of the clusters learned in part a,
including the number of samples of each cancer type in each cluster. (c) Consensus clustering results when simply using the high-dimensional (9476
features/genes) raw data without any dimensionality reduction. (d) Consensus clustering results for high-dimensional (7160 features/genes) raw data
without any dimensionality reduction. All heatmaps evaluated at k = 14 (number of clusters). Dark blue corresponds to samples that always cluster
together (consensus value = 1). White corresponds to samples that never cluster together (consensus value = 0). Lighter shades of blue are intermediate
between 1 and 0
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survival or prognosis relative to the other clusters. The
p-value for Kaplan-Meier plot using the log-rank test
was p = 0.00197.
GBM is a highly aggressive malignant brain tumor.

Previous molecular analysis of GBM tissue samples by
Verhaak et al. identified four molecular subtypes: mes-
enchymal, proneural, neural, and classical [27]. The
analysis of the four subtypes identified by Verhaak et al.
did not reveal significant differences in survival
between the four clusters, but the tumors did exhibit
different responses to treatments. More recently,
Brennan et al. further divided tumors within the

proneural subtype into G-C island methylation pheno-
type (G-CIMP) and non G-CIMP subtypes [28] based
on DNA methylation data. Here, our DBN-derived rep-
resentations separated GBM tumors into six clusters
(Fig. 5a), and our subtyping revealed significant differ-
ences in patient survival (Fig. 5b), indicating that our
novel representations provide more information than
using individual gene expression values as features. We
compared our subtyping (learned using deep learning
and consensus clustering) with the known subtyping of
our TCGA GBM samples (Fig. 6) as published by
Brennan et al. [28].

a b

Fig. 5 GBM consensus clustering ensemble results and corresponding Kaplan-Meier plot. (a) Heatmap and dendrogram for GBM consensus of
consensus clustering results for six major clusters (k = 11). Dark green corresponds to samples that always clustered together (consensus value = 1).
White corresponds to samples that never clustered together (consensus value = 0). Lighter shades of green are intermediate between 1 and 0. (b)
Kaplan-Meier plot for six largest clusters in part a. Each GBM cluster is represented by a colored curve in the plot. Top right of figure shows the
number of samples in each cluster

Fig. 6 GBM subtypes in each cluster from Fig. 5b based on molecular subtyping from Brennan et al. [28]
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Figure 6 shows the contents of our six GBM clusters
based on the subtype published by Brennan et al. [28].
Most of our GBM clusters included tumor samples be-
longing to multiple different known subtypes. Exceptions
to this were our black and red clusters (see Fig. 5b for
cluster colors). The black cluster consisted of mostly
mesenchymal subtype. The red cluster (cluster with best
prognosis) in the Kaplan-Meier plot consisted of almost
entirely proneural subtype samples. Interestingly, this
red cluster captured all of the samples with the G-CIMP
phenotype and the majority of the non G-CIMP pro-
neural tumors, but assigned the rest of non G-CIMP tu-
mors to the purple cluster. The G-CIMP phenotype
(samples with hypermethylation at CpG islands) sub-
group of GBM has been shown in previous studies to
have better survival [28–30]. These results indicate that
without utilizing DNA methylation data, DBN learned
representations accurately captured the impact of DNA

methylation on expression—an indication that our novel
representations may reflect disease mechanisms at the
pathway level.

Novel clusters provide information regarding disease
mechanisms
We investigated the six GBM clusters further using cor-
relation analysis to find DEGs and mutations that were
associated with each cluster. Figure 7 (left panel) shows
word clouds for the top 10 DEGs with the largest posi-
tive correlations with each GBM cluster. Each word
cloud of genes is colored according to their correspond-
ing cluster color in the Kaplan-Meier plot. For example,
the red colored genes represent the DEGs or mutations
with the largest correlations with the red cluster (cluster
with the best prognosis). We found genes in each of
these groups with functions relevant to cancer. For
example, CHD7 is highly correlated with the red cluster

Fig. 7 Word clouds for the top 10 DEGs or mutations with the largest correlations with each GBM cluster. Each GBM cluster is represented by a
word cloud of genes, colored according to the corresponding curve in the Kaplan-Meier plot (Fig. 5b). The size and color of each gene in each
word cloud correspond to the relative strength of the correlation for that gene. The largest and darkest words in the word clouds correspond to the
strongest correlations. Each cluster’s word cloud was created independently. Therefore, the differential sizes of each gene (representing correlations) is
only relevant when compared to other genes in that cluster. Gene sizes should not be compared across different clusters
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and is involved in DNA packaging and chromatin bind-
ing. CSPG5 and MPPED2 (highly correlated with the
black cluster) are involved in nervous system develop-
ment. BLM (blue cluster) is involved in DNA binding
and regulation of cell proliferation. VAV3 (light blue
cluster) is involved in GTPase activator activity. SPAG1
(green cluster) is known to be involved in epilepsy and
pancreatic cancer. PLVAP (purple cluster) may function
in microvascular permeability.
Figure 7 (right panel) shows word clouds for the top

10 mutations with the largest positive correlations with
each GBM cluster. This correlation analysis yielded
many well-known mutations involved in cancer and
GBM. IDH1 is the mutation with the strongest correl-
ation with the red cluster, which includes all tumors
belonging to G-CIMP subtype of GBM [28]. This finding
is biologically sensible in that it is known that mutations
in IDH1 lead to significant changes in DNA methylation,
which underlie the G-CIMP. Similarly, NF1 mutations
are strongly associated with the black cluster
(corresponding to the mesenchymal subtype) and are
known to be frequently mutated in the mesenchymal
subtype [27].
The above results reveal connections between genomic

alterations and DEGs specifically associated with each
subtype, which provide information about the disease
mechanisms for each subtype. It is reasonable to assume
that the genomic alterations associated with a cluster
likely perturb pathways underlying the subtype, and hid-
den units in our DBN models could potentially represent
the states of these pathways. Any aberration in these
pathways causes a change in the expression of the DEGs
associate with that cluster. Studying the potential causal
relationships between mutation events and the changing
states of hidden units may provide information about
how mutations affect signaling pathways in cancer cells.

Conclusions
In this study, we showed that an unsupervised DBN can
be used to find meaningful low-dimensional representa-
tions of cancer gene expression data. More specifically,
first, we designed a rigorous model selection scheme,
which enabled us to determine the optimal number of
hidden units in the 1st and 3rd hidden layers of our
model. We hypothesized that the 1st hidden layer likely
represented the TFs utilized by cancer cells and our re-
sults correlate with current knowledge of the number of
TFs. Second, we showed that consensus hierarchical
clustering of GBM tumors using the unbiased represen-
tations (the top (final) hidden layer units) revealed more
robust clustering results than clustering based on the
raw gene expression data. Third, we showed that clinic-
ally relevant information was encoded in the representa-
tions learned by our DBN. This was demonstrated

through the discovery of a subtyping of GBM with dif-
ferential prognosis, which previously was not discovered
by TCGA. Our methods identified a subtype of GBM
enriched with the G-CIMP phenotype without using
DNA methylation data, and our analysis can partially at-
tribute this subtype to the mutation of IDH1. This also
agrees with current knowledge. Further investigation
may reveal disease mechanisms underlying the different
GBM clusters. What role do these genes/mutations have
in GBM? What role do they play in survival?
This study represents a novel application of the deep

learning algorithm developed by Hinton and Salakhutdi-
nov [14] in the cancer bioinformatics domain. To our
knowledge, unsupervised deep learning has not been
used to find hidden structure within cancer gene expres-
sion data for the purposes of providing insight into dis-
ease mechanisms of tumors and patient survival. As for
the possible future enhancement of the model, we con-
jecture that a sparse version of our DBN may more
readily encode cellular pathways. A trained model needs
to be able to represent all cancer pathways in order to fit
the data from the thousands of tumors studied here,
however a given tumor likely only hosts a small number
of aberrant pathways. A sparse DLM can limit the num-
ber of active hidden units in a given layer representing a
tumor, thus it theoretically could perform better. This
will be investigated in future studies.
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