The Author(s) BMC Bioinformatics 2017, 18(Suppl 11):384

DOI 10.1186/512859-017-1803-9 B M C BiOinfO rmatiCS

XBSeq2: a fast and accurate quantification ® e
of differential expression and differential
polyadenylation

Yuanhang Liu'?, Ping Wu?, Jinggi Zhou'?, Teresa L. Johnson-Pais®, Zhao Lai', Wasim H. Chowdhury?,
Ronald Rodriguez® and Yidong Chen'”"

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2016
Houston, TX, USA. 08-10 December 2016

Abstract

Background: RNA sequencing (RNA-seq) is a high throughput technology that profiles gene expression in a genome-
wide manner. RNA-seq has been mainly used for testing differential expression (DE) of transcripts between two
conditions and has recently been used for testing differential alternative polyadenylation (APA). In the past, many
algorithms have been developed for detecting differentially expressed genes (DEGs) from RNA-seq experiments,
including the one we developed, XBSeq, which paid special attention to the context-specific background noise
that is ignored in conventional gene expression quantification and DE analysis of RNA-seq data.

Results: We present several major updates in XBSeq2, including alternative statistical testing and parameter estimation
method for detecting DEGs, capacity to directly process alignment files and methods for testing differential APA usage.
We evaluated the performance of XBSeq2 against several other methods by using simulated datasets in terms of
area under the receiver operating characteristic (ROC) curve (AUC), number of false discoveries and statistical
power. We also benchmarked different methods concerning execution time and computational memory consumed.
Finally, we demonstrated the functionality of XBSeq?2 by using a set of in-house generated clear cell renal carcinoma
(ccRCC) samples.

Conclusions: We present several major updates to XBSeq. By using simulated datasets, we demonstrated that, overall,
XBSeq?2 performs equally well as XBSeq in terms of several statistical metrics and both perform better than DESeq?2 and
edgeR. In addition, XBSeq? is faster in speed and consumes much less computational memory compared to XBSeq,
allowing users to evaluate differential expression and APA events in parallel. XBSeq? is available from Bioconductor:
http://bioconductor.org/packages/XBSeq/
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Background

Next generation sequencing (NGS) technologies have
revolutionized biomedical research. RNA sequencing,
different from microarray technology, offers high reso-
lution and has been widely used for transcriptome
studies, such as, alternative splicing forms detection,
allele-specific expression profiling, alternative polyade-
nylation site identification and most commonly, dif-
ferential expression (DE) of transcripts between two
conditions (e.g. tumor vs normal).

The abundance level of a transcript is expected to be
directly correlated with the number of sequenced frag-
ments that map to that transcript as measured by
RNA-seq. Because of this unique characteristic, DE
testing methods developed for microarray technology
may not be appropriate if directly adopted for RNA-
seq. In recent years, various efforts have been made to
develop statistical methods for identifying DEGs be-
tween two conditions. Poisson and negative binomial
models are two most commonly used statistical models
among all the statistical methods developed for DE ana-
lysis [1-3]. The main differences of different DE algo-
rithms lie in the way they estimate dispersions and
particular statistic used for inference. For instance,
DESeq2 [4], the latest version of DESeq [2], uses a
shrinkage based method for estimation of dispersion
which improves stability. Then Wald test or likelihood
ratio test is applied to assess significance. edgeR-robust
[5], the latest version of edgeR [3], moderates disper-
sion estimates toward a trended-by-mean estimate. Then
likelihood ratio test is also used to assess statistical sig-
nificance. Recent comparative studies have shown that
no single method dominates broad spectrum of scenar-
ios [6, 7]. However, It is worthy of noting that none of
the abovementioned methods take into consideration of
reads that align to non-exonic regions of the genome as
proposed in our earlier study [8].

Alternative polyadenylation (APA) is a widespread
mechanism, where alternative poly(A) sites are used by a
gene to encode multiple mRNA transcripts of different
3’ untranslated region (UTR) lengths [9]. Approximately
70% of known human genes have been identified with
multiple Poly(A) sites in their 3'UTR regions [10], which
significantly contributes to transcriptome diversity. APA
events affect the fate of mRNA in several ways, for in-
stance, by altering the binding sites of RNA binding pro-
teins and miRNAs. Experimental methods utilizing
sequencing technology to quantify relative usage of APA
are still under development [11, 12], while it was not
known whether RNA-seq, a routine method used for
gene expression quantification, could be applied directly
to infer APA usage in the past. Recently, several compu-
tational methods have been developed for analyzing
APA usage using RNA-seq datasets [13, 14], which
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demonstrates the potential of using RNA-seq for identi-
fication of APA events.

Previously we developed an algorithm XBSeq for test-
ing differential expression of RNA-seq, where non-
exonic mapped reads are used to model background
noise for RNA-seq. To significantly increase the process-
ing speed and functionality, here we provide an updated
version: XBSeq2, which include: 1) Updated background
annotation file; 2) Functionality to directly process align-
ment files (.bam files) using featureCounts [15]; 3) Alter-
native parameter estimation by using Maximum
likelihood estimation (MLE); 4) Alternative statistical
test for differential expression by using beta distribution
approximation; and 5) Incorporation of roar [14] for
testing differential APA usage.

Methods
Direct processing of bam files using featureCounts
One of the essential step after genome alignment for
RNA-seq is the read summarization, or in other words,
expression quantification. One of the read summarization
algorithm, HTSeq [16], a python package and probably
the most widely used program for read summarization,
are commonly performed separately in the LINUX en-
vironment. To consolidate expression quantification
and DE analysis into R environment, we utilize a fast
implementation of featureCounts as described below.
Similar to featureCounts, summarizeOverlaps, a func-
tion from GenomicRanges package [17], also enables
user to directly carry out read summarization proced-
ure within R environment.

featureCounts is a read summarization program that
can be used for reads generated from RNA or DNA
sequencing technologies and it implements highly effi-
cient chromosome hashing and feature blocking tech-
niques that make it considerably faster in speed and
consume less computational memory [15]. Previous
study has shown that, compared to some other read
summarization programs, featureCounts has a similar
summarization accuracy but is proven to be much faster
and more memory efficient. Currently, featureCounts is
available within Subread program [18] and Rsubread
package from Bioconductor. In our implementation, we
used the default options for feautreCounts, such that,
for example, the reads across overlapping genes will not
be counted.

Poisson-negative binomial model

The read count that align to the exonic regions of gene i
is made up of two components, underneath true signal
S;, which is directly related to real expression intensity of
gene i, and background noise B,, which is largely due to
sequencing error or misalignment. Previously, we have
developed an algorithm, XBSeq [8], which provides more
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accurate detection of differential expression for RNA-
seq experiments based on Poisson-negative binomial
convolution model. A similar statistical model has also
been successfully applied to MBDcap-seq [19]. Basically,
we assumed that the true signal S; (what we want to esti-
mate) follows a negative binomial distribution and back-
ground noise B; (sequencing errors or misalignment,
etc.) possesses a Poisson distribution. Then the observed
signal (what we typically measured) X; is a convolution
of S; and B;, which is governed by a Delaporte distribu-
tion [20].

Xi = Si + Bl'
SiNNB(rivpi) (1)
Bi~Poisson(;)

Estimation of parameters

The assumption is that background noise B; and true
signal S; are independent. By default, a non-parametric
method was used for parameter estimation. Details re-
garding non-parametric parameter estimation can be
found in our previous publication of XBSeq [8].

When sample size is relatively large (> 10, Additional
file 1: Table S2), we provide a new way for estimation of
parameters by using the maximum likelihood estimation
(MLE). The likelihood function is given by:

m

H (Xijlai, B Ai)- Hp(BﬁMi)
j=1

=1
i [(a; + k)BT e
U; T(a)k! (14 8,) ™ (xy-k)!

B _
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1173

j=1 l'

L(6;) =

which has no closed form. We applied Broyden—Fletcher—
Goldfarb—Shanno (BFGS) algorithm to estimate the pa-
rameters by iterative updating. a; and f3; are parameters
for gamma portion of Delaporte distribution which are re-
lated to negative binomial parameters by:

ri = a; (3)

b= 1/(/31‘ + 1) (4)

Differential expression testing

After all parameters have been successfully estimated,
differential expression testing between two groups (with
read count x and y) will be carried out using a moder-
ated Fisher’s exact test:
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where a and b are constrained by a + b =x + y. This step
requires heavy computation when a and b are relatively
large.

(5)

Here we also provide one updated way for differential
expression testing by using beta distribution approxima-
tion when the counts are relatively large. For gene i with
read count x and y in two groups, we have:

z=x+y (6)
u=z/(m+n) (7)

Where n; and 7, are number of samples in each con-
dition. The two parameters for beta distribution can
then be estimated:

a=mu/(1+m/p) (8)
B=nyu/(1+n/p) )
Then center point is defined as:

med = gbeta (0.5, a, ) (10)
Where gbeta is the quantile function of beta distribu-
tion. Then p value is calculated by:
p =2k (1-k)"! /B(a, B) (11)
Where B(a,f5) is the beta function: B(a, ) = [(a)I(5)/
I(a+p) and k= (x + 0.5)/z if 22 < med and k = (x - 0.5)/z
if 02 > med.

Prediction of APA sites

APA sites are predicted by using POLYAR program [21],
which applies an Expectation Maximization (EM) ap-
proach by using 12 different previously mapped poly(A)
signal (PAS) hexamer [22]. The predicted APA sites by
POLYAR are classified into three classes, PAS-strong,
PAS-medium and PAS-weak. Only APA sites in PAS-
strong class are selected to construct final APA anno-
tation. APA annotations for human and mouse genome
of different versions have been built and are available to
download from github: https://github.com/Liuy12/
XBSeq_files

Testing for differential APA usage

Differential APA usage test is carried out using roar
package [14]. Basically, the ratio of expression between
the short and longer isoform of the transcript, m/M ra-
tio, is firstly estimated by:


https://github.com/Liuy12/XBSeq_files
https://github.com/Liuy12/XBSeq_files

The Author(s) BMC Bioinformatics 2017, 18(Suppl 11):384

m lpost Tpre 1

M lprerpost (12)
Where 1,,. is the length of the shorter isoform, [, is
the extra length of the longer isoform, r,, and r,, are
the number of reads map to shorter isoform and the
portion only to the longer isoform respectively. Then
differential APA usage between the two groups will be
carried out using Fisher’s exact test. For groups with
multiple samples, every combination of comparisons will
be examined and significance will be inferred based on a
combined p value using Fisher’s method.

Simulation

In order to evaluate the performance of our updated
statistical method using beta approximation, we gener-
ated a set of simulated datasets where we can control
the differential expression status of each gene. In this
study, we simulated true signal S from a negative bino-
mial distribution and background noise B from a Pois-
son distribution with parameters estimated from a real
RNA-seq dataset. We compared XBSeq2 with XBSeq
along with DESeq2 [4] and edgeR [3], two most widely
used R packages for testing for differential expression
for RNA-seq datasets.

We followed a similar simulation procedure described
in our previous paper XBSeq [8]. Simply speaking, 5000
genes were randomly selected with replacement after
discarding genes with relatively low mapped reads or lar-
ger dispersion (top 10%). The true signal S was simulated
from a negative binomial distribution with parameters es-
timated from the 5000 selected genes. 10% of the genes
were randomly selected to be differentially expressed with
1.5-fold change. We simulated experiments with 3 sam-
ples per group. Background noise B was generated in
three different scenarios, with different level of dispersion,
to examine the performance of different methods in nor-
mal and noisy conditions. Background noise with different
dispersion levels were simulated from a hybrid model:

Bip~M*Norm(u, o) (13)
where p is from a Poisson distribution y ~ Poisson(A +
NF). In our simulation, we set M = 100, ¢ = 3. The noise
factor NF can be chosen from 0, 7, 20, each represents
experiments with low background noise, intermediate
background noise and high background noise. Simula-
tions were repeated 100 times and statistical metrics
were evaluated based on the average performance.

We evaluated XBSeq2 against several other algorithms
for their ability to discriminate between differentially
expressed and non-differentially expressed genes in
terms of the area under the ROC curve, number of false
discoveries, and statistical power. The performance of
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different methods for genes expressed at high and low
levels were also examined to see whether the algorithm
is affected by expression intensity of the gene.

RNA-seq dataset for testing

Tumor and adjacent normal tissues from six clear cell
renal cell carcinoma (ccRCC) patients. Were obtained
from the UTHSCSA Genitourinary Tissue Bank. Total
RNA was used for stranded mRNA-Seq library prepa-
ration by following the KAPA Stranded RNA-Seq Kit
with RiboErase (HMR) sample preparation guide. RNA-
Seq libraries were sequenced with 100 bp paired end se-
quencing run with Illumina HiSeq 2000 platform. After
sequencing procedure, alignment was carried out using
BWA and differential expression and differential APA
usage testing were carried out using XBSeq2.

Compare with other algorithms

We compared XBSeq2 (1.3.2) with some other methods
including XBSeq (1.2.2), DESeq2 (1.8.2), edgeR (3.10.5).
All the analysis and evaluation were carried out using R
version 3.2.0 and Bioconductor version 1.20.3.

Results

Updates of XBSeq algorithm

Previously, we have developed an algorithm, XBSeq, for
detecting differentially expressed genes for RNA-seq
datasets by taking background noise into consideration.
Here we present several major updates for XBSeq.
Firstly, we update the background annotation files (util-
izing the same procedures as given in [8]) needed for
measuring background noise for human and mouse or-
ganism of various genome builds. Secondly, we incorp-
orate functionalities of Rsubread and GenomicRanges
packages to enable direct processing of alignment files
(.bam) within R environment. Thirdly, besides the non-
parametric method for estimation of parameters pro-
posed by the original paper, we provide one additional
method for estimating parameters by using maximum
likelihood estimation (Eq. 2). Fourthly, we provide a beta
distribution approximation method for testing DEGs,
which is much faster in speed and more memory efficient
compared to the original statistical method (Eq. 11).
Fifthly, XBSeq2 now supports APA differential usage in-
ference by using the functionalities provided by roar
package. The background annotation file as well as the
APA annotation file for various genome builds are
available to download from github: https://github.com/
Liuy12/XBSeq_files.

Discrimination between DE and non-DE genes

In order to compare XBSeq2 with edgeR, DESeq2 and
XBSeq, we generated synthetic datasets where we can
control the differential expression status of each gene by
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following the procedure described in the methods sec-
tion. Basically, 5000 genes and their corresponding back-
ground noise were firstly simulated from negative
binomial and Poisson distribution respectively with pa-
rameters estimated from a real RNA-seq dataset after
discarding genes with relatively low mapped reads or lar-
ger dispersion (top 10%). We showed that by discarding
genes with high dispersions, we did not introduce bias
towards to a certain method (Additional file 1: Table S4).
500 genes were randomly selected to be differentially
expressed with 1.5-fold change. Background noise with
different dispersion levels was simulated. All statistical
metrics were calculated based on the average of 100
simulations.

We compared different methods for their ability to
discriminate between differentially expressed genes and
non-differentially expressed genes by examining area
under the ROC curve. As shown in Fig. 1 & Additional
file 1: Table S1, in general, XBSeq2 and XBSeq perform
better than the other two methods with larger AUCs. To
be specific, when background noise is at a low level,
XBSeq2 achieved an AUC of 0.84 which is very close to
XBSeq (AUC: 0.85), while AUCs for DESeq2 and edgeR
are both 0.73. When we increased the dispersion level of
background noise, all four methods have decreased
AUCs. XBSeq2 and XBSeq are still the best methods
with AUCs 0.75 under high background noise compared
to DESeq2 and edgeR (AUC: 0.68 for DESeq2, 0.67 for
edgeR). We also investigated the performance of differ-
ent methods separately for genes with either high (> 75%
quantile) or low (<25% quantile) expression level. As
shown in Fig. 1b and ¢, for genes with relatively high ex-
pression intensity, XBSeq and XBSeq2 still perform
equally well (AUC =0.88 for both under low background
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noise) and only slightly better than DESeq2 and edgeR
(AUCs, 0.84 for both under low background noise). On
the other hand, for genes with relatively low expression in-
tensity, XBSeq and XBSeq2 perform much better than
DESeq2 and edgeR under low background noise (AUCs,
0.78 for XBSeq and XBSeq2, 0.58 for DESeq2 and edgeR).
However, all methods show poor performance for genes
with relatively low expression under high background
noise (AUCs, 0,58 for XBSeq and XBSeq2, 0.52 for
DESeq2 and edgeR). Also, we evaluated the MLE-based
method for parameter estimation compared to the original
non-parametric based method. As shown in Additional
file 1: Table S2, both non-parametric (NP) based estima-
tion and maximum likelihood estimation (MLE) based
estimation showed better performance than DESeq2 with
larger area under the ROC curve (AUC). NP-based esti-
mation has slightly better performance than MLE-based
estimation when samples number is smaller than 10.
When sample number is big enough, there seems to be no
difference in terms of performance. Last but not least, we
evaluated the parameter big _count, which defines the cut-
off for genes with large counts. As shown in Additional
file 1: Table S3, the parameter only has a slight influence
on the performance of XBSeq2, which indicates that beta
distribution approximation test has similar performance
compared to the original statistical test. Overall, XBSeq2
performs equally with XBSeq in terms of AUC under vari-
ous conditions and both methods perform better than
DESeq?2 and edgeR, especially for genes with relatively low
expression intensity.

Control of false discoveries
We also compared the different methods in terms of the
number of false discoveries encountered among top
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Fig. 1 ROC curves of different methods under various levels of background noise. ROC curves of DESeq_2, edgeR, XBSeq, XBSeq2 under low, intermediate
or high level of background noise (a); ROC curves of different methods but only with highly expressed genes (genes above 75% quantile of
expression intensity) (b); ROC curves of different methods but only with genes expressed at low levels (genes below 25% quantile of expression
intensity) (c); Simulations were carried out 100 times and average AUC were used. Dataset with 3 number of replicates per condition, 10% DEGs with
1.5-fold change was used
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ranked differentially expressed genes based on p value.
As shown in Fig. 2 & Additional file 1: Table S1, overall,
XBSeq2 and XBSeq perform better than DESeq2 and
edgeR. To be specific, under low background noise,
XBSeq2 identified 243 number of false discoveries out of
500, which is comparably well to XBSeq (# of FDs, 240).
Both methods perform better than DESeq2 and edgeR (#
of FDs, 313 and 312 respectively). With increased back-
ground noise, all four methods detect an increased num-
ber of false discoveries. We then compared the
performance of different methods separately for genes
expressed at high and low levels as we did earlier. For
genes with relatively high expression, XBSeq and
XBSeq2 only perform slightly better than DESeq2 and
edgeR (# of FDs, 53 for XBSeq and XBSeq2, 58 for
DESeq2 and edgeR). However, for genes expressed at
low levels, XBSeq and XBSeq2 performed much better
than DESeq2 and edgeR under low background noise (#
of FDs, 72 for XBSeq, 73 for XBSeq2, 102 for DESeq2,
101 for edgeR). Overall, XBSeq2 performs equally with
XBSeq in terms of number of false discoveries under
various conditions and both methods perform better
than DESeq2 and edgeR, especially for genes expressed
at low levels.

Statistical power

We compared the different methods in terms of statis-
tical power achieved at a pre-selected p value cutoff (p
value = 0.05). As shown in Fig. 3 & Additional file 1:
Table S1, overall, all four methods have similar statis-
tical power with edgeR slightly better than other
methods (Power, 0.35 for XBSeq, 0.36 for XBSeq, 0.35
for DESeq2, 0.37 for edgeR under low background
noise). And all methods have decreased statistical
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power when the dispersion of background noise is in-
creased. We also compared different methods separately
for genes expressed at high and low levels as we did earl-
ier. As shown in Fig. 3b and ¢, all four methods achieved
similar statistical power for highly expressed genes. For
genes expressed at low levels, DESeq2 and edgeR perform
better than XBSeq and XBSeq2 (Power, 0.16 for DESeq2,
0.14 for edgeR, 0.08 for XBSeq and XBSeq2 under low
background noise). However, when background noise is
increased, all methods exhibit poor performance with
similar statistical power for genes expressed at low levels.
Overall, XBSeq2 perform comparably well with other
methods regarding statistical power.

Identify APA events from RNA-seq dataset derived from
ccRCC tumors and adjacent normal tissues

By utilizing XBSeq2 algorithm, we carried out differen-
tial APA usage analysis and differential expression ana-
lysis with RNA-seq samples derived from ccRCC tumors
and adjacent normal tissues (see Methods Section). APA
annotation was generated by using POLYA program as
described in methods section. In total, we identified 179
number of genes with differential APA usage with roar
value (ratio of ratios), fold change, larger than 1.5, aver-
age expression intensity above second quantile of total
genes and adjusted p value smaller than 0.1. MYH9, one
of the top-ranked genes with differential APA usage, has
been previously demonstrated to be associated with end-
stage renal disease in African Americans [23]. Then we
proceeded to identify DEGs between the two groups
using XBSeq2. In total, we identified 417 number of
genes that are differentially expressed between tumor
and adjacent normal samples with a fold change larger
than 1.5, average expression intensity above second
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Fig. 2 False discovery curves different methods under various levels of background noise. False discovery curves of DESeq2, edgeR, XBSeq,
XBSeq2 under low, intermediate or high level of background noise (a); False discovery curves of different methods but only with highly expressed
genes (genes above 75% quantile of expression intensity) (b); False discovery curves of different methods but only with genes expressed at low levels
(genes below 25% quantile of expression intensity) (c); Simulations were carried out 100 times and average number of false discoveries were used.
Dataset with 3 number of replicates per condition, 10% DEGs with 1.5-fold change was used
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quantile of total genes and adjusted p value smaller than
0.1. We also compared the DEGs identified by XBSeq2,
DESeq2 and edgeR (Additional file 1: Figure S1). 399
out of 417 DEGs identified by XBSeq2 are also identi-
fied by DESeq2 and edgeR. Intriguingly, only two of the
genes we identified earlier with differential APA usage
were found to be differentially expressed, PAG1 and
FAM171A1, which might indicate that regulation
through APA wusage is independent of regulation
through gene expression level.

Discussion

In this paper, we present several major updates to
XBSeq, a method we previously developed for testing
differential expression for RNA-seq. In order to com-
pare different statistical methods for their ability to cor-
rectly identify DEGs, we carried out simulation studies
to generate synthetic RNA-seq datasets with different
levels of background noise. While Flux Simulator al-
gorithm [24] provides a simulation path starting from
the very beginning, in this report, we directly simulate
the expression level with Negative Binomial and Pois-
son distribution for signal and noise expression levels,
allowing us to efficiently estimate the accuracy of our
proposed algorithm. Sequencing Quality Control
(SEQC) project provide unique resources for compre-
hensive evaluating RNA-seq accuracy, reproducibility
and information content [25]. However, the background
noise for SEQC data cannot be simply quantified, which
makes it difficult for evaluating algorithms under differ-
ent background noise. Taking all these into consider-
ation, we decided to apply similar simulation procedure
as XBSeq [8]. As shown in the results section, XBSeq2
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performed equally well with XBSeq and both performed
better than DESeq2 and edgeR in terms of AUC (Fig. 1)
and number of FD (Fig. 2). For statistical power (Fig.
3), all four methods have similar performance with
edgeR being slightly better. Finally, we benchmarked all
the methods with regard to time and memory con-
sumption. As shown in Fig. 4, XBSeq2 consumes the
least amount of time compared to other three methods
and also has a significant increase in efficiency com-
pared to XBSeq. Taken together, XBSeq2 and XBSeq
are robust against background noise and provide more
accurate detection of DEGs. In addition, XBSeq2 are
faster and more memory efficient than XBSeq.

We incorporated functionalities for testing differen-
tial APA usage from roar package. As we mentioned
earlier, DaPars is one novel algorithm for de novo
identification and quantification of dynamic APA
events between tumor and matched normal tissues, re-
gardless of any prior APA annotation. To the contrary,
roar do need user to provide APA annotation and lacks
the ability to identify novel APA sites. The only reason
we incorporate roar instead of DaPars, is for program-
ming language compatibility. We demonstrated the
functionality of XBSeq2 for testing differential APA
usage by using our in-house CCRCC dataset. We
found 179 genes with differential APA usage. Interest-
ingly, only 2 out of the 179 genes were found to be dif-
ferentially expressed between tumor and normal
samples. It could be that the APA annotation we gen-
erated is far from complete and some novel APA sites
might be overlooked. Another possible explanation is
that APA usage regulate transcriptomic activity
through a different mechanism without affecting gene
expression intensity.
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Conclusions

We presented the latest updates of XBSeq in this report.
The updated XBSeq2 package provide a much fast exe-
cution time and implemented in a computer memory ef-
ficlent manner to allow user to process data directly
from BAM files, much fast for testing differential expres-
sion for RNA-seq datasets, as well as a new functions,
within one XBSeq2 package to identify differential APA
usage. XBSeq2 is available from Bioconductor: http://
bioconductor.org/packages/XBSeq/.
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(PDF 310 kb)
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