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Abstract

Background: Dominant markers in an F2 population or a hybrid population have much less linkage information in
repulsion phase than in coupling phase. Linkage analysis produces two separate complementary marker linkage
maps that have little use in disease association analysis and breeding. There is a need to develop efficient statistical
methods and computational algorithms to construct or merge a complete linkage dominant marker maps. The key
for doing so is to efficiently estimate recombination fractions between dominant markers in repulsion phases.

Result: We proposed an expectation least square (ELS) algorithm and binomial analysis of three-point gametes (BAT)
for estimating gamete frequencies from F2 dominant and codominant marker data, respectively. The results obtained
from simulated and real genotype datasets showed that the ELS algorithm was able to accurately estimate frequencies
of gametes and outperformed the EM algorithm in estimating recombination fractions between dominant loci and
recovering true linkage maps of 6 dominant loci in coupling and unknown linkage phases. Our BAT method also had
smaller variances in estimation of two-point recombination fractions than the EM algorithm.

Conclusion: ELS is a powerful method for accurate estimation of gamete frequencies in dominant three-locus
system in an F2 population and BAT is a computationally efficient and fast method for estimating frequencies
of three-point codominant gametes.

Keywords: Dominant marker, Codominant marker, Gamete frequency, EM algorithm, ELS algorithm

Background
A great advance has been made in building genetic maps
of various species due to the development of large-scale
molecular marker technologies [1–7] and statistical
methods [4, 8–18]. However, mapping of numerous
molecular markers has been complicated by linkage
phases of dominance [14–16, 19]. In two-point analysis,
markers in repulsion phase provide quite less linkage in-
formation than in coupling phase [14, 15, 20, 21]. This is
especially true for dominant markers in F2 population
[14]. In practical mapping experiments, although the
linkage phase for each dominant marker is random, a
half of markers are derived from one of two coupling
phases. The phase between couplings is repulsion [14, 15].
This situation results in two separate partner linkage

maps for dominant markers: high linkage information
content of markers in the coupling phase and low link-
age information content of markers in the repulsion
phase. Thus one has to build two complementary link-
age maps [14, 15, 21, 22]. To date, there has not yet
been an effective way to integrate both into a complete
map. Mester et al. [15] attempted to use pairs of co-
dominant and dominant (CD) markers to merge such
two complementary maps because pairs of the CD
markers in repulsion phase have much higher linkage in-
formation content than pairs of dominant-only markers in
repulsion phase. However, this strategy demands that all
dominant markers be paired with codominant markers,
which is not a general case in mapping practice, otherwise,
local and global disturbance will then violently affect the
reliability of the integrated map.
The two-point analysis implemented by the expect-

ation maximization (EM) algorithm [11–13, 23–25] is a
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highly powerful approach to estimate recombination
fractions between codominant loci and between domin-
ant loci in coupling phase, but the EM algorithm has
very low power in estimation of recombination fractions
between dominant loci in repulsion phase. This is be-
cause it is difficult for the EM algorithm to distinguish
genotypes in coupling phase from those in repulsion
phase for dominant markers.
Therefore, the key of developing a powerful method for

mapping dominant loci in an intersection population is to
overcome the difficulty of distinguishing coupling phase
from repulsion phase. Since two-point analysis, as pointed
out above, performs very poorly in the estimation of recom-
bination fractions between dominant loci, three-point ana-
lysis is alternatively taken into account. However, few three-
point EM algorithms can be applied to dominant markers
because dominant markers are less informative for max-
imum likelihood estimation [26]. One effective way to carry
out three-point analysis is to dissect three-point genotypes
into various gamete components that are informative for
distinction between coupling and repulsion phases, and
then, to estimate their frequencies. With these estimated
gamete frequencies, one can immediately estimate recom-
bination fractions between dominant loci in couple and re-
pulsion phases. A key to this strategy is to obtain estimate
of gamete frequencies. On the basis of dissection of geno-
types, Tan and Fu proposed a binomial analysis of three-
point (BAT) to estimate frequencies of dominant gametes
[19]. However, this binomial approach is limited to the fre-
quency of the three-point recessive gamete abc. The accur-
acy of estimation is completely dependent on the observed
frequency of its phenotype (aabbcc). We have developed a
new method called “expectation least square” (ELS) to ad-
dress this problem. ELS estimation, similarly to expectation
maximum algorithm, is realized on the basis of Tan and
Fu’s BAT method [19]. That is, the expectation of pheno-
type frequencies can be given by using Eqs. (1-9) in the
BAT of Tan and Fu [19], and the difference between esti-
mated and expected values of phenotype frequencies is
given using least square. The expectation and least square
steps are iterated so that the difference between estimated
and expected values is less than tolerant value. In addition,
we have also developed a fast binomial approach to esti-
mate frequencies of codominant gametes.

Methods
Real data collection
Mouse genotype data: A RFLP dataset of 333 F2 mice was
obtained from MAPMAKER/EXP (version 3.0b) [13].

Simulation
For dominant loci, we just took unknown phase into ac-
count in simulation and followed a point process model

[27] and scheme of Tan and Fu [19] to perform simula-
tions. In N F1 meioses, recombination events occurred at
random between two adjacent loci. Here for the simplicity,
we allowed for only independent crossovers during proced-
ure of recombination occurrence between nonsister chro-
matides. We generated N F2 individuals with ratio =
phenotype A: phenotype a = 3:1 at each dominant locus or
A(homozygote): H(heterozygote): B(homozygote) = 1:2:1
at each codominant locus. We set three levels for sam-
ple size: N = 100, 200, and 300 F2 individuals and 100
iterations and used variance (equivalent to mean square
error, MSE) that quantifies deviation of estimated re-
combination fraction between two adjacent loci from
its true value to evaluate these estimators. Since the
ELS and BAT estimators work in three-point system,
three-point recombination fractions were incorporated
to two-point recombination fractions by using Tan and
Fu [19] method. Simulation of codominant and domin-
ant F2 populations and the ELS and BAT estimations of
gamete frequencies in F2population were implemented
by our R functions (Additional file 1, source code).

Results
Estimation of the frequencies of three-locus gametes in
an F2 population
Since our ELS method for accurate estimation of the fre-
quencies of three-locus gametes in a population with
random union of gametes is based on dissection of
phenotypes, for convenience, we start by presenting the
BAT method of Tan and Fu [19].

ELS estimation of frequencies of dominant marker
gametes
Our study here is restricted to three biallelic dominant
markers. We use A and a, B and b, C and c to represent
two alleles at three loci where upper letters (A, B and C)
stand for dominant alleles and lower letters (a, b and c)
for recessive alleles. A triple-heterozygote individual via
meiosis produces eight types of gametes at the three loci:
ABC, ABc, Abc, AbC, aBC, abC, aBc and abc. Gametes
ABC and abc are a pair of sister gametes on which two
alleles at the all three loci are different and come from
two different parents. Similarly, Abc and aBC, abC and
ABc, AbC and aBc are also pairs of sister gametes. Two
sister gametes theoretically have equal frequency in
an F2population because no mutation, no migration,
no gene conversion and no selection occur in such a
random mating population. From the expectation that
sister-gametes have equal frequencies, we have in an F2
population f(ABC) = f(abc) = q1, f(ABC) = f(aBC) = q2,
f(ABc) = f(aBC) = q3, f(AbC) = f(aBc) = q4. These gamete
frequencies are constrained by 2q1 + 2q2 + 2q3 + 2q4 = 1.
The individuals in the population can be classified into
four categories: category 0 in which all individuals possess
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0 dominant locus, that is, all individuals have three reces-
sive loci; categories 1, 2 and 3 in which all individuals have
respectively only one, two and three homozygous or hete-
rozygous dominant loci. To accurately estimate gamete
frequencies, we dissect a phenotype into different zygote
types (genotypes) in each category using sister gametes. In
category 1, for example, aabbC_ has only locus c with one
or two dominant alleles. Therefore it can be dissected into
three zygote types:

aabbC�→

aabbCC→ðabCÞ2 : ðf ðabCÞÞ2 ¼ q23

aabbCc→ðabCÞðabcÞ : f ðabCÞf ðabcÞ ¼ q3q1

aabbcC→ðabcÞðabCÞ : f ðabcÞf ðabCÞ ¼ q1q3

:

8>><
>>:

ð1aÞ

Phenotypes aaB_cc and A_bbcc are dissected in a simi-
lar fashion. Category 2 also has three phenotypes and
each of them can be dissected into four zygote types that
are comprised of five pairs of sister gametes. For in-
stance, phenotype type A_B_cc can be dissected into

A�B�cc→

AABBcc→ðABcÞðABcÞ : f ðABcÞf ðABcÞ ¼ q23

AaBbcc→ðABcÞðabcÞ : f ðABcÞf ðabcÞ ¼ 2q3q1

AABbcc→ðABcÞðAbcÞ : f ðABcÞf ðAbcÞ ¼ 2q3q2

AaBBcc→ðABcÞðaBcÞ : f ðABcÞf ðaBcÞ ¼ 2q3q4

AaBbcc→ðAbcÞðaBcÞ : f ðAbcÞf ðaBcÞ ¼ 2q2q4

:

8>>>>>>>><
>>>>>>>>:

ð1bÞ

Category 3 has only one phenotype. The phenotype is
comprised of 8 zygote types (genotypes) and therefore it
is not useful for estimate of gamete frequencies. We use
Q1, Q2, Q3, Q4, Q5, Q6, and Q7 to respectively represent
the frequency expectations of phenotypes aabbcc,
aabbC_, aaB_cc, A_bbcc, A_B_cc, A_bbC_, and aaB_C_
in a population. The frequency of phenotype aabbcc is

f aabbccð Þ ¼ Q1 ¼ q21 ð2Þ

The other 6 phenotypes have their frequencies:

f ðaabbC�Þ ¼ Q2 ¼ q23 þ 2q1q3

f ðaaB�ccÞ ¼ Q3 ¼ q24 þ 2q1q4

f ðA�bbccÞ ¼ Q4 ¼ q22 þ 2q1q2

:

8>><
>>: ð3Þ

f ðA�B�ccÞ ¼ Q5 ¼ q23 þ 2q1q3 þ 2ðq3q2 þ q3q4 þ q2q4Þ
f ðA�bbC�Þ ¼ Q6 ¼ q24 þ 2q1q4 þ 2ðq3q2 þ q3q4 þ q2q4Þ
f ðaaB�C�Þ ¼ Q7 ¼ q22 þ 2q1q2 þ 2ðq3q2 þ q3q4 þ q2q4Þ

:

8>><
>>:

ð4Þ

Using Q = 2 (q2q3 + q2q4 + q3q4), Eq. (4) is simplified as

Q5 ¼ Q2 þ Q

Q6 ¼ Q3 þ Q

Q7 ¼ Q4 þ Q

:

8><
>: ð5Þ

Estimates of q1 , … , q4 can be obtained from the
above sets of equations by replacing Qk with their ob-
served frequencies where k = 1, 2,…,7 for 7 phenotypes.
Theoretically, eqs. (1) and (3) are sufficient to make so-
lutions for the frequencies of four types of gametes.
However, Eq. (5) can be used to further minimize noise
in the observed frequencies. That is, Q2, Q3,and Q4 can
be alternatively estimated as

Q̂2
# ¼ Q̂5−Q̂ ¼ 0:25− Q̂1 þ Q̂6 þ Q̂7

� �
Q̂3

# ¼ Q̂6−Q̂ ¼ 0:25− Q̂1 þ Q̂5 þ Q̂7

� �
Q̂4

# ¼ Q̂7−Q̂ ¼ 0:25− Q̂1 þ Q̂5 þ Q̂6

� �
8><
>:

ð6Þ
where Q =Q5 +Q6 +Q7 +Q1 − 0.25 [19]. It implicates
that Q2, Q3, and Q4 can also be estimated from the esti-
mated frequencies of Q1, Q5, Q6, and Q7. Thus, we can
combine the two sets of estimates of Q2, Q3, and Q4 into
one set:

Q̂
�
2 ¼

1
a2 þ b2

a2Q̂2 þ b2Q̂2
#

� �
Q̂

�
3 ¼

1
a3 þ b3

a3Q̂3 þ b3Q̂3
#

� �
Q̂

�
4 ¼

1
a4 þ b4

a4Q̂4 þ b4Q̂4
#

� �

8>>>>>>>><
>>>>>>>>:

ð7Þ

where ak and bk are weights of Q̂k and Q̂k
#, respectively,

where k = 2, 3, and 4. Q̂k and Q̂k
# are respectively

estimates of Qk and Qk
# . In general case, ak = bk (see

Additional file 3: Appendix B). An alternative method
for weighting is ak ¼ Q̂k= Q̂k þ Q̂k

#
� �

and bk = 1 − ak.
When the sample is small, it is likely that Q̂k

#≤ 0 or Q̂k ¼ 0.
In such a case, one can set ak = 1 and bk = 0 for Q̂k

#≤ 0, or
ak = 0 and bk = 1 for Q̂k

#
> 0 and Q̂k = 0. Since Q2 ¼ q23

þ2q1q3 þ q21−q
2
1 ¼ q3 þ q1ð Þ2−q21, q3 can be given by

q3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ Q1

p
−

ffiffiffiffiffiffi
Q1

p
: ð8aÞ

Similarly,

q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ Q1

p
−

ffiffiffiffiffiffi
Q1

p
; ð8bÞ

q4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ Q1

p
−

ffiffiffiffiffiffi
Q1

p
: ð8cÞ

Q1, Q2, Q3, and Q4 are respectively estimated by Q̂1,

Q̂2
� , Q̂3

� , Q̂4
� , therefore q3, q2, q4, and q1 are respectively

estimated by

q̂3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂2 þ Q̂1

q
−

ffiffiffiffiffiffi
Q̂1

q
; ð9aÞ
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q̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂4 þ Q̂1

q
−

ffiffiffiffiffiffi
Q̂1

q
; ð9bÞ

q̂4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q̂

�
3 þ Q̂1

q
−

ffiffiffiffiffiffiffi
Q̂1;

q
ð9cÞ

q̂1 ¼
ffiffiffiffiffiffiffi
Q̂1:

q
ð9dÞ

In Eq. (9), accurate estimation of q1 is a key contribu-
tion to accurate estimations of q2, q3, and q4. Equations
(3) and (4) show that Q2 ~ Q7 can also provide informa-
tion of solution to q1. But it is impossible to directly ob-
tain a solution for q1 from Q2 ~ Q7. To estimate q1 from
Q1 ~ Q7, we here proposed a seeking method, named
“expectation least square” (ELS) method.
Similar to the EM method [11, 25, 28, 29], the ELS

method also consists of two steps. The first step is the
expectation step, denoted by E-step, and the second step
is the least-square step, denoted by LS-step. q1 is initial-

ized to be q̂0
1 ¼

ffiffiffiffiffiffi
Q̂1

q
. We use q̂0

1 to estimate q2, q3, and

q4 and get q̂0
2 , q̂

0
3, and q̂0

4 from Eqs. (9). Then, we calcu-
late the expected values of Q2 ~ Q7 from Eqs. (3) ~ (4)
with q̂0

2, q̂
0
3, and q̂0

4 . At iteration j, we realize E-step and

LS-step to get q̂ j
2, q̂

j
3, and q̂ j

4:

E-step:

Calculate the expected values E Qj
2

� �
~ E Qj

7

� �
of Q2 ~

Q7 by replacing q̂ j
1 , q̂

j
2 , q̂

j
3 , and q̂ j

4 into Eqs. (3) ~ (4)

where q̂ j
2, q̂

j
3, and q̂ j

4 are obtained by

q̂j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q�j

4 þ ðq̂j1Þ
2

q
− q̂j1;

q̂j3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q�j

2 þ ðq̂j1Þ
2

q
− q̂j1;

q̂ j
4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q�j

3 þ q̂ j
1

� �2
r

− q̂ j
1

where

Qi�j ¼
1

aþ b
aQ̂i þ bQ#j

i

� �

where i = 2 , …, 4 and Q#j
i ¼ Q̂iþ3 − E Qj−1

� �
where E

Qj−1
� � ¼ 2 q̂ j−1

2 q̂ j−1
3 þ q̂ j−1

2 q̂ j−1
4 þ q̂ j−1

3 q̂ j−1
4

� �
.

LS-step:
Calculate square value using

S2j ¼
X7
i¼2

Q̂i − E
�
Qj

i

�� �2
:

ð10Þ

Note that q̂ j
1 is a value we want to seek for, therefore,

Eq. (10) does not contain Q̂1−EQ
j
1

� �2
. As it is very diffi-

cult to directly get solutions for these four q-values from
the derivative approach, we use an iteration approach to
minimize square value:

q̂1
j−1 ¼ argminðS2j−1; S2j Þ: ð11Þ

Use q̂ j
1 ¼ q̂1j−1 � Δ to calculate q̂ j

2, q̂
j
3, and q̂ j

4 where j is
the jth iteration, j = 1 , …, and Δ is specified with a very
small value. Here our algorithm to realize LS-step is
If S2j > S2j−1, then

if q̂ j
1 > q̂1j−1 , then q̂ j

1 ¼ q̂1
j−1−Δ,

otherwise, q̂ j
1 ¼ q̂1j−1 þ Δ

else if S2j < S2j−1, then

if q̂ j
1 > q̂1j−1 , then q̂ j

1 ¼ q̂1j−1 þ Δ,

otherwise, q̂ j
1 ¼ q̂1j−1−Δ.

Note that there are not S2j ¼ S2j−1 and q̂ j
1 ¼ q̂1j−1 in this

algorithm. The iteration will stop at S2j ≤t where t is a

given tolerant value. Once the final estimate (q̂ f
1) of q1 is

found at a given tolerant value where j = f, the final esti-

mates of q2, q3, and q4 are obtained. Then we let q̂1

¼ q̂ f
1, q̂2 ¼ q̂ f

2, q̂3 ¼ q̂ f
3, and q̂4 ¼ q̂ f

4 .

BAT for estimation of the frequencies of codominant
marker gametes in F2 population
To avoid confusing notations in codominant loci with
those in dominant loci, we let 0 and 1 code for homozy-
gote from two parents, respectively, and 2 code for hetero-
zygote at a locus. Since homozygote and heterozygote at
three loci can be recognized, most of zygotes are in-
formative for estimation of the frequencies of four
pairs of sister gametes. We still assume that the
sister-gametes have equal frequencies, that is, q1 =
f(111) = f(000), q2 = f(100) = f(011), q3 = f(110) = f(001),
q4 = f(101) =f(010) in F2 population. Here these com-
plementary zygote type pairs are listed as follows:

Zygote gamete frequency expected Zygote gamete frequency expected

111;000→
111ð Þ 111ð Þ : q21
000ð Þ 000ð Þ : q21

(
; 100;011→

100ð Þ 100ð Þ : q22
011ð Þ 011ð Þ : q22

(
;

110; 001→
110ð Þ 110ð Þ : q23
001ð Þ 001ð Þ : q23

(
; 101; 010→

101ð Þ 101ð Þ : q24
010ð Þ 010ð Þ : q24

(
;
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200; 211→
000ð Þ 100ð Þ : 2q1q2
111ð Þ 011ð Þ : 2q1q2

�
; 112;002→

000ð Þ 001ð Þ : 2q1q3
111ð Þ 110ð Þ : 2q1q3

�
;

121;020→
000ð Þ 010ð Þ : 2q1q4
111ð Þ 101ð Þ : 2q1q4

�
; 021;120→

011ð Þ 001ð Þ : 2q2q3
110ð Þ 100ð Þ : 2q2q3

�
;

102; 012→
100ð Þ 101ð Þ : 2q2q4
011ð Þ 010ð Þ : 2q2q4

�
; 201; 210→

001ð Þ 101ð Þ : 2q3q4
110ð Þ 010ð Þ : 2q3q4

�
;

122 →
111ð Þ 100ð Þ : 2q1q2
110ð Þ 101ð Þ : 2q3q4

�
;

022→
000ð Þ 011ð Þ : 2q1q2
001ð Þ 010ð Þ : 2q3q4

�
;

221→
111ð Þ 001ð Þ : 2q1q3
011ð Þ 101ð Þ : 2q2q4

�
;

220→
000ð Þ 110ð Þ : 2q1q3
100ð Þ 010ð Þ : 2q2q4

�
;

212→
111ð Þ 010ð Þ : 2q1q4
110ð Þ 011ð Þ : 2q2q3

�
; 202→

000ð Þ 101ð Þ : 2q1q4
100ð Þ 001ð Þ : 2q2q3

�
:

Let P1, P2, P3 and P4 represent the frequencies of com-
plementary homozygote types (111/000), (100/011),
(110/001), and (101/010) in each of which all three loci
are homozygous; let P12, P13, P14, P23, P24, and P34 be
the frequencies of complementary two-locus homozy-
gote types (200/211), (002/112), (121/020), (021/120),
(102/012), and (201/210) in each of which only one
locus are heterozygous and let P1234, P1324, P1423 be the
frequencies of complementary one-locus homozygote
types (122/022), (221/220) and (212/202) in each of
which two loci are heterozygous. Then, P1 ¼ 2q21, P2 ¼ 2
q22 , P3 ¼ 2q23 , P4 ¼ 2q24 , P12 = 4q1q2, P13 = 4q1q3, P14 =
4q1q4, P23 = 4q2q3, P24 = 4q2q4, P34 = 4q3q4, P1234 = 4q1q2
+ 4q3q4, P1324 = 4q1q3 + 4q2q4, P1423 = 4q1q4 + 4q2q3.
From the zygote type pair list above, we find that the fre-
quencies of these 12 pairs of zygote types can constitute
two sets of 6 binomial equations:

Q1
12 ¼

1
2

P1 þ P12 þ P2ð Þ ¼ q21 þ 2q1q2 þ q22

¼ q1 þ q2ð Þ2; ð12aÞ

Q1
13 ¼

1
2

P1 þ P13 þ P3ð Þ ¼ q21 þ 2q1q3 þ q23

¼ q1 þ q3ð Þ2; ð12bÞ

Q1
14 ¼

1
2

P1 þ P14 þ P4ð Þ ¼ q21 þ 2q1q4 þ q24

¼ q1 þ q4ð Þ2; ð12cÞ

Q1
23 ¼

1
2

P2 þ P23 þ P3ð Þ ¼ q22 þ 2q2q3 þ q23

¼ q2 þ q3ð Þ2; ð12dÞ

Q1
24 ¼

1
2

P2 þ P24 þ P4ð Þ ¼ q22 þ 2q2q4 þ q24

¼ q2 þ q4ð Þ2; ð12eÞ

Q1
34 ¼

1
2

P3 þ P34 þ P4ð Þ ¼ q23 þ 2q3q4 þ q24

¼ q3 þ q4ð Þ2 ð12fÞ

Q2
12 ¼

1
2

P1 þ P1234 − P34 þ P2ð Þ
¼ q21 þ 2q1q2 þ q22 ¼ q1 þ q2ð Þ2; ð13aÞ

Q2
13 ¼

1
2

P1 þ P1324 − P24 þ P3ð Þ
¼ q21 þ 2q1q3 þ q23 ¼ q1 þ q3ð Þ2; ð13bÞ

Q2
14 ¼

1
2

P1 þ P1423 − P23 þ P4ð Þ
¼ q21 þ 2q1q4 þ q24 ¼ q1 þ q4ð Þ2; ð13cÞ

Q2
23 ¼

1
2

P2 þ P1423 − P14 þ P3ð Þ
¼ q22 þ 2q2q3 þ q23 ¼ q2 þ q3ð Þ2; ð13dÞ

Q2
24 ¼

1
2

P2 þ P1324 − P13 þ P4ð Þ
¼ q22 þ 2q2q4 þ q24 ¼ q2 þ q4ð Þ2; ð13eÞ

Q2
34 ¼

1
2

P3 þ P1234 − P12 þ P4ð Þ
¼ q23 þ 2q3q4 þ q24 ¼ q3 þ q4ð Þ2: ð13fÞ

We use arithmetic mean to get frequencies of these
zygote types in F2 population:

Qij ¼ aijQ
1
ij þ bijQ

2
ij

� �
¼ qi þ qj

� �2
; ð14Þ

where aij ¼ Q̂
1
ij= Q̂

1
ij þ Q̂

2
ij

� �
and bij = 1 − aij.

aijQ1
ij þ bijQ2

ij

� �
¼ aij qi þ qj

� �
2 +bij(qi + qj)

2= (aij + bij)

(qi + qj)
2 = (qi + qj)

2 where i and j are gamete types i and

j (i = 1, 2, 3 and j = 2, 3, 4 and i ≠ j). Thus, the frequencies
of four types of non-sister gametes in a codominant three-

locus system in an F2 population are easily and fast esti-

mated by
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q̂4 ¼
1
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where Q̂ij and P̂k are respective estimates of Qij and Pk in F2

population where k = 1,…,4 denote gamete types 1,…, 4.
A modified BAT method (BAT II) for estimating the

frequencies of eight gamete types without assumption
that the sister gametes have equal frequencies in any
generation population is given in Additional file 2,
Appendix A.

Estimation of recombination fractions
Since these four qs are estimated separately, sum of
them does not always satisfy a constraint of q̂1 þ q̂2

þq̂3 þ q̂4 ¼ 0:5. For this reason, we normalize our esti-
mates as

p1 ¼
q̂1

2q̂
; p3 ¼

q̂3

2q̂

p2 ¼
q̂2

2q̂
; p4 ¼

q̂4

2q̂

8>>><
>>>:

: ð16Þ

For three linked loci, the frequencies of the four gam-
ete pairs can be used to find the double crossover types
by distinguishing coupling phase from repulsion phase
between loci. For example, for an order a-b-c of the
three loci a, b and c, p4 is determined to be the fre-
quency of double crossover types if its value is the smal-
lest and/or p1 is the largest, which are produced at three
coupling loci or p1 is found to be the frequency of
double crossover types if its value is the smallest and/or
p4 is the largest, which are formed at loci a and c in
coupling phase and locus b in repulsion phase. In a simi-
lar way, we can also define p3 or p2 as the frequency of
double crossover types.
If p4 is frequency of double crossover types, then the re-

combination fractions between loci a and b, between loci
b and c, and between loci a and c can be estimated by

rab ¼ 2 p3 þ p4ð Þ
rbc ¼ 2 p2 þ p4ð Þ
rac ¼ 2 p2 þ p3ð Þ

8><
>: : ð17Þ

For the linkage orders a-c-b and b-a-c, the recom-
bination fractions between loci are also estimated in a
similar way.
In the repulsion phase, the linkage a-b-c order of three

loci determines p1 to be the frequency of double cross-
over types, so estimates of recombination fractions be-
tween loci a and b, between loci b and c, and between
loci a and c are

rab ¼ 2 p2 þ p1ð Þ
rbc ¼ 2 p3 þ p1ð Þ
rac ¼ 2 p2 þ p3ð Þ

8><
>: : ð18Þ

For the linkage orders b-a-c and a-c-b, the recombin-
ation fractions between three loci in the repulsion phase
can be estimated in this way.
rab , rbc , and rac are simple notations of three recom-

bination fractions in a triple. However, when n markers
on a chromosome or a fragment are genotyped, it is dif-
ficult to use these notations of three recombination fre-
quencies to denote recombination fractions in n(n −
1)(n − 2)/6 triples. To notate recombination fractions in
multiple triples, we let rab = rabc where c is referred to as
a reference marker for recombination fraction between
markers a and b, rac = racb where b as reference marker
for that between loci a and c, and rbc = rbca where a as
reference locus for that between markers b and c, in a
three-locus system consisting of markers a, b, and c [19].
In more general fashion, we denote i for the first marker,
j for the second maker, and k for the last marker. Thus,
the rest n − 2 markers are combined with loci i and j
into n − 2 three-points, therefore, there are n − 2 esti-
mates of the recombination fraction between markers i
and j. Hence estimate of recombination fraction between
loci i and j is given by Tan and Fu’s method [19]:

θij ¼ 1
n−2

Xn−2
k¼1

rijk : ð19Þ

Practical examples
Here we used RFLP (restriction fragment length polymor-
phisms) data of 333 F2 mice from MAPMAKER/EXP (ver-
sion 3.0b), LANDER et al. [13] to illustrate performances
of our ELS and BAT methods to estimate recombination
fractions between dominant and codominant loci. RFLP
markers are codominant markers. In genotype data of
333 F2 mice, “A” stands for homozygote A (two alleles
from parent A), “H” for heterozygote H (an allele from
parent A and the other from parent B), and “B” for homo-
zygote B (two alleles from parent B). We arbitrarily se-
lected 6 codominant markers from the original genotype
data. To evaluate our ELS algorithm, we converted the co-
dominant genotype data into dominant genotype data by
changing B to H. For convenience, we used arabic digits
(1, 2,…,6) to label these six markers: marker 1, marker 2,
…, marker 6. Sometime we also used locus 1, locus 2, …,
locus 6 to mark these six marker loci. The frequencies of
20 non-sister gametes were estimated by respectively per-
forming ELS on the dominant data and BAT on the co-
dominant genotype data, normalized by using Eq. (16)
and the results are summarized in Tables 1 and 2. For the
ELS estimation, three non-sister gametes containing loci 4
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and 6 (146, 246 and 346) fitted well the ratio of 1:1:1:1
(Chi-square test p-value >0.084, Table 1), indicating that
loci 4 and 6 are unlinked to loci 1, 2 and 3. In addition,
the frequencies of gametes 256, 356, and 345 also fitted
the ratio of 1:1:1:1 with p-value ≥ 0.063 (Chi-square test,
Table 1), but gametes 156, 245 and 145 had the ratios
significantly deviating against 1:1:1:1 (Chi-square test
p-value <0.0212, Table 1), we could infer that locus 5
was linked to loci 1 but independent of locus 3 and
unascertained at locus 2. Thus, we definitely excluded
loci 4 and 6 in the linkage. By using eqs. (17) – (19),
the recombination fractions in four triples (123),
(125), (135), and (235) were calculated by following
the five given steps: the first step is to determine the
linkage order of three loci in triple. For example, in
triple (123), p1 = f(abc) = 0.208668 is the largest
value while p2 = f(Abc) = 0.086162 is the smallest
one, that is to say, gamete Abc is double crossover type
and abc is parental type, so their order is 2(b)-1(a)-3(c).
Step2 is to determine linkage phase: since gamete bac is
parental type and bAc is double crossover type, gamete
BAC or bac is couple phase. At step 3, we abstracted fre-
quencies of gametes 123, 125, 135, 235 (Table 3) from
Table 1. At step 4, recombination fractions between loci in
a triple were estimated as

rbac 213ð Þ ¼ 2 f Abcð Þ þ f aBcð Þ½ �
¼ 2 0:086162þ 0:11047ð Þ ¼ 0:39327

racb 132ð Þ ¼ 2 f Abcð Þ þ f abCð Þ½ �
¼ 2 0:086162þ 0:09469ð Þ ¼ 0:36172

rbca 231ð Þ ¼ 2 f aBcð Þ þ f abCð Þ½ �
¼ 2 0:086162þ 0:09469ð Þ ¼ 0:41034

Similarly, we also estimated the recombination frac-
tions in triples (125), (135), and (235) (Table 3). Finally,
the three-point estimates of the recombination fractions
were incorporated into two-point estimates by applying
Eq. (19) to the data in Table 4:

θ12 ¼ r213 þ r215
2

¼ 0:393268þ 0:38106
2

¼ 0:387164;

θ13 ¼ r135 þ r132
2

¼ 0:337072þ 0:36172
2

¼ 0:349396;

θ15 ¼ r152 þ r153
2

¼ 0:37834þ 0:376306
2

¼ 0:377323;

θ23 ¼ r231 þ r235
2

¼ 0:41034þ 0:370672
2

¼ 0:390506;

Table 1 The ELS estimated frequencies of four nonsister gametes in 20 triplets of 6 dominant loci in 333 F2 micea

locus frequency of non-sister gamete Chi-square test

a b c p1 = f(abc) p2 = f(Abc) p4 = f(aBc) p3 = f(abC) p-value ratio

1 2 3 0.208668 0.086162 0.094698 0.110472 0.000339

1 2 4 0.14751 0.087958 0.160866 0.103665 0.028

1 2 5 0.200976 0.080676 0.108494 0.109854 0.00092

1 2 6 0.192229 0.084408 0.126033 0.09733 0.0023

1 3 4 0.140566 0.079252 0.181795 0.098387 0.0038

1 3 5 0.209093 0.065783 0.12237 0.102753 0.00012

1 3 6 0.16895 0.063323 0.165648 0.102079 0.0011

1 4 5 0.173539 0.100396 0.079665 0.1464 0.0069

1 4 6 0.16482 0.102771 0.113819 0.118591 0.0837 1:1:1:1

1 5 6 0.173447 0.07932 0.148645 0.098588 0.0059

2 3 4 0.141958 0.088919 0.172784 0.096339 0.012

2 3 5 0.202566 0.085775 0.112098 0.099561 0.00084

2 3 6 0.139672 0.086032 0.16843 0.105866 0.0212

2 4 5 0.173634 0.117152 0.085607 0.123607 0.0212

2 4 6 0.10113 0.133668 0.133668 0.131535 0.3134 1:1:1:1

2 5 6 0.156859 0.096648 0.142758 0.103735 0.0634 1:1:1:1

3 4 5 0.143582 0.120278 0.098137 0.138002 0.1954 1:1:1:1

3 4 6 0.105025 0.139707 0.129181 0.126086 0.3581 1:1:1:1

3 5 6 0.140841 0.109125 0.152351 0.097682 0.1028 1:1:1:1

4 5 6 0.146847 0.096392 0.156905 0.099856 0.0476

a: The data came from MAPMAKER/EXP(3.0b) [27]
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θ25 ¼ r251 þ r253
2

¼ 0:436696þ 0:395746
2

¼ 0:416221;

θ35 ¼ r351 þ r352
2

¼ 0:450246þ 0:423318
2

¼ 0:436782;

Table 2 displays frequencies of codominant gametes
estimated by our BAT method. It is clear to see that fre-
quencies of gametes 145, 246, 345, 346, and 456 fitted
well ratio of 1:1:1:1 with p-value ≥ 0.0559 (Chi-square
test), however, the frequencies of gametes 156, 256 and
356 did not fit the ratio of 1:1:1:1 with p-value < 0.0121
(Chi-square test, Table 2), inferring that loci 4 and 6 are
unlinked to loci 1, 2 and 3 but locus 5 could not be

inferred to linked to them. Again, in codominant
genotype data, locus 5 was still unascertained. Follow-
ing the steps above, we obtained estimates of recom-
bination fractions between these four loci (Table 5).
Both ELS estimates of recombination fractions be-
tween dominant loci and BAT estimates between co-
dominant loci show that locus 5 could not be tightly
linked to any one of loci 1, 2 and 3. Loci 1, 2 and 3
could be determined to have linkage order of 2-1-3.
Simulation data also showed that the codominant es-
timator had higher precision than the dominant esti-
mator (see Simulation data section), suggesting that
codominant markers indeed contain higher linkage in-
formation than dominant ones.

Table 2 The BAT estimated frequencies of nonsister gametes in 20 triplets of 6 codominant loci in 333 F2 micea

locus frequency of non-sister gamete Chi-square test

a b c p1 = f(000) p2 = f(100) p3 = f(001) p4 = f(010) p-value ratio

1 2 3 0.242929 0.066568 0.080146 0.110358 3.348e-07

1 2 4 0.145838 0.08977 0.162134 0.102258 0.0291

1 2 5 0.196094 0.091387 0.121051 0.091467 0.0017

1 2 6 0.17224 0.104184 0.143308 0.080268 0.0098

1 3 4 0.165099 0.068697 0.191983 0.074221 7.1334e-05

1 3 5 0.222931 0.079297 0.147828 0.049944 1.0943e-06

1 3 6 0.177615 0.065713 0.187929 0.068743 2.3780e-05

1 4 5 0.158699 0.103969 0.114759 0.122573 0.1336 1:1:1:1

1 4 6 0.165089 0.113628 0.139128 0.082155 0.0249

1 5 6 0.155874 0.091722 0.16263 0.089774 0.0121

2 3 4 0.142565 0.093943 0.179432 0.08406 0.0050

2 3 5 0.216411 0.069533 0.134853 0.079203 2.0404e-05

2 3 6 0.160337 0.092614 0.172787 0.074262 0.0020

2 4 5 0.172459 0.100044 0.105018 0.12248 0.0365

2 4 6 0.154284 0.140079 0.121173 0.084464 0.0559 1:1:1:1

2 5 6 0.167782 0.072156 0.153072 0.10699 0.0057

3 4 5 0.154314 0.118649 0.10895 0.118086 0.2051 1:1:1:1

3 4 6 0.144358 0.108635 0.131647 0.115359 0.3080 1:1:1:1

3 5 6 0.16738 0.053399 0.176627 0.102594 0.0002

4 5 6 0.153613 0.092081 0.124467 0.129838 0.1092 1:1:1:1

a: The data came from MAPMAKER/EXP(3.0b) [27]

Table 3 The ELS estimated frequencies of nonsister gametes in
triplets of dominant loci 1, 2, 3 and 5 in 333 F2 mice

locus frequency of gamete

a b c p1 = f(abc) p2 = f(Abc) p3 = f(abC) p4 = f(aBc)

1 2 3 0.208668 0.086162 0.094698 0.110472

1 2 5 0.200976 0.080676 0.108494 0.109854

1 3 5 0.209093 0.065783 0.12237 0.102753

2 3 5 0.202566 0.085775 0.112098 0.099561

Table 4 The estimated recombination fractions between dominant
loci in four triples

triple Recombination fraction between loci

a b c b-a a-c b-c

1 2 3 0.39326 0.36172 0.41034

1 2 5 0.38106 0.37834 0.43669

1 3 5 0.33707 0.37631 0.45024

2 3 5 0.37067 0.39575 0.42332
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Simulation data
We performed simulation study to compare the two es-
timators of recombination fractions. We followed the
simulation scheme of Tan and Fu [19]. Briefly, we set
two linkage maps comprised of 6 dominant loci and 6
codominant loci, respectively. Five possible map dis-
tances 10, 15, 20, 25, and 30 cM (1 cM = 1%) were ran-
domly assigned to the five adjacent intervals on these
two linkage models with equal probability (see Methods
for detail). The point process model [27] was used to
generate F2 population. We did not consider recombin-
ation interference and linkage disequilibrium. Recombin-
ation fractions between adjacent loci in an unknown
linkage phase (or say random phase) were estimated by
the two-point EM [14, 23] and ELS estimators in 100 re-
peated samples of 100, 200, and 300 individuals drawn
from the simulated F2 population. These two estimators
were rated by the variance that quantifies deviation of
estimated recombination fraction between two adjacent
loci from its true value and is equivalent to mean
squared error (MSE). For dominant markers, simulation

shows that the ELS algorithm had much smaller vari-
ances in estimation of true recombination fractions be-
tween adjacent loci in samples of 100, 200 and 300 F2
individuals than two-point EM algorithm (Fig. 1). In
Table 6, one can find that ELS had slightly higher prob-
ability of recovering true linkage maps of 6 loci than EM
[14, 23] and BAT in the case of coupling phase and sam-
ples of 100 and 200 F2 individuals. When sample size
reached 300 individuals, both ELS and EM recovered
true coupling linkage maps with 100% probability and
BAT also had 97.9% recovery rate. However, in unknown
phase, ELS recovered true linkage maps of 6 loci with
23.4% probability in sample of 100 F2 individuals and
reached 85% recovery rate in sample of 300 F2 individ-
uals. By contrast, EM had very low recovery rate (23.4%)
even when sample size was 300. Therefore, ELS per-
formed much better than two-point EM algorithm in all
given scenarios. An inexact comparison can be done be-
tween ELS and three-point EM algorithm of Lu et al. [30],
Table 4 in Lu et al. showed that their three-point EM algo-
rithms had 98.5% probability of finding the correct linkage

Table 5 Comparison between two estimators of recombination fractions between markers

two loci the ELS estimate in dominant genotype data the BAT estimate in codominant genotype data

1 2 0.387164 0.271317

1 3 0.349396 0.275955

1 5 0.377323 0.439563

2 3 0.390506 0.339240

2 5 0.416221 0.426574

3 5 0.436782 0.402158

Fig. 1 Variances of estimated recombination fractions between adjacent dominant loci in unknown linkage phase deviated from their respective
true values Variance of estimated recombination fraction between adjacent dominant loci is given by simulating 100 estimates around true
recombination fraction between adjacent loci. The variance here is equivalent to mean square error (MSE)
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map of three dominant markers in coupling phase from a
sample of full-sib 100 individuals (corresponding to
100 F2 individuals), our ELS had 96.7% probability of re-
covering true linkage map of 6 dominant markers in coup-
ling phase in 100 F2 individuals (Table 6). The probability
to find a given linkage map will remarkably decrease as
number of markers increases. So we can predict that the
three-point EM algorithm would not have over 96.7% of
the probability to find a given linkage map of 6 dominant
markers. For the repulsion phase (or trans × trans), Lu et
al.’s three-point EM algorithm had 99.5% probability of
finding a correct linkage map of three markers in 100 full-
sib individuals, which is higher than 98.6% in coupling
phase. In theory, any EM algorithm should have much
lower probability to find a given linkage order in repulsion
phase than in coupling phase because the repulsion phase
has much less linkage information content than the coup-
ling phase [14, 26]. So, this result may be required to be
confirmed in more simulations. Since Lu et al. did not im-
plement simulation of random phase case and the repul-
sion phase is not random phase, the comparison cannot
be made between the three-point EM and ELS algorithms
in the random phase. For codominant markers, the BAT
method performed with smaller variances than the two-
point EM algorithm in the most cases. The results pro-
vided strong evidence for the conclusion that a method or
algorithm based on three-point gametes can mitigate ef-
fect of low linkage information of repulsion phase on esti-
mation of recombination fractions. Compared to the
simulated results in Table 3 in [19], one can find that the
ELS algorithm is better than the Tan and Fu’s BAT method.
Table 3 in [19] showed that in case of unknown phase, the
BAT method outperformed two-point EM.

Discussion
Accurate estimation of recombination fractions is a key for
mapping multiple markers. Therefore, powerful method for
estimating recombination fractions is required. For domin-
ant loci, the EM and ML methods have been verified to
have low power to estimate frequencies of recombination

between loci in repulsion phase [14, 19]. This is because
the EM method cannot distinguish dominant homozygous
genotypes from dominant heterozygous genotypes.
Compared to the EM algorithm, the ELS algorithm

based on Tan and Fu’s method [19] has small bias for es-
timating recombination fractions between dominant loci
on a chromosome in a larger F2 population due to the
following reasons: (a) gamete analysis can effectively dis-
tinguish marker linkage phases; (b) accurately estimate
q1, and (c) average of estimates of recombination frac-
tion between two loci over all reference loci [Eq. (19)]
effectively balances sampling error. Estimation of q1 is
restriction of the Tan and Fu’s method. We here pro-
posed iteration expectation-least square algorithm (ELS)
to seek for accurate q1 estimation. This new algorithm is
similar to expectation maximum algorithm and its statis-
tical properties will be given by more simulation com-
parisons in elsewhere. In addition, importance for high

efficiency of recombination fraction estimation is Q̂k
� .

ELS had much higher recovery rate by using Q̂k
� than by

using Q̂k in both coupling and unknown phase (Table

6). Correlation analysis also indicated that Q̂k
� indeed has

the linkage behavior similar to Q̂k (Additional file 3, Ap-

pendix B). Furthermore, we found that Q̂k
� obtained from

a data set of 100 simulated samples of 100 F2 individuals

has remarkably smaller variance than Q̂k (data not

shown). To fully confirm that Q̂k
� is the optimal choice

in our ELS method, Q̂k
� was taken into account where

Q̂k
� = Q̂k þ Q̂k

o� �
=2 if Q̂k

o >0, otherwise, Q̂k
� = Q̂k . The

simulated result showed that ~31% of linkage maps re-
covered true order of 6 dominant loci in samples of
100 F2 individuals, which is apparently lower than that

by using Q̂k
� ¼ 1

2 Q̂k þ Q̂k
o� �
. For this reason, we chose

Q̂k
� ¼ 1

2 Q̂k þ Q̂k
o� �

in our ELS algorithm. Besides the ELS
algorithm, average of recombination fraction between
two loci over all reference loci greatly reduces noise of
recombination fractions.
BATII given in Additional file 2, Appendix A, can be

used to estimate frequencies of 8 codominant gamete
types in any nature population because it does not require
the assumption that the sister gametes have equal fre-
quencies in a population. However, its estimation accuracy
is not higher than the first BAT method in F2 population
because sister-gametes really have equal frequencies and
two-locus heterozygote types are not useful in the BATII.
In a natural population, for example, human population,
the frequencies of these gametes are not purely derived
from recombination events but may be due to selection,
genetic drift, migration and mutation. If, however, sister
gametes are found to be equal in statistics, then these fre-
quencies can still be used to inference recombination frac-
tions between loci and recombination inference.

Table 6 Efficiencies of estimators of recombination fractions in
recovering the true linkage maps of 6 dominant loci in the case
of random distance

Estimator Linkage
phase

Sample size

100 200 300

Two-point EM CP 92.3 97.8 100.0

UP 15.7 22.9 23.4

ELS CP 96.7 100.0 100.0

UP 50.5 77.0 85.1

BAT CP 82.1 95.9 97.9

UP 26.0 40.9 42.3

CP: Coupling phase and UP: unknown phase

The Author(s) BMC Bioinformatics 2017, 18(Suppl 11):404 Page 76 of 91



Conclusions
Accurate estimation of recombination fractions between
loci is given by methodologies developed for accurate es-
timation of gamete frequencies in a population. Analyses
of simulated and real dominant and codominant data
show that the ELS method proposed here is a powerful
algorithm for accurate estimation of frequencies of gam-
etes with unknown phase in dominant three-locus sys-
tem in F2 population and BAT is a computationally
efficient and powerful method for estimating frequencies
of non-sister three-point codominant gametes.
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Additional file 2: Appendix A. Binomial analysis of three-point method
(BATII) is described in detail. BATII is used to estimate frequencies of sister
gametes at codominant loci in natural populations. (DOCX 184 kb)

Additional file 3: Appendix B. A proof of a proposition that equal
weights of two datasets combined into a dataset have maximum linkage
information and minimum error for linkage analysis is given.
(DOCX 41 kb)
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