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for count-based small-sample sequencing
data with a quad-negative binomial model
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Abstract

Background: As a newly emerged research area, RNA epigenetics has drawn increasing attention recently for the
participation of RNA methylation and other modifications in a number of crucial biological processes. Thanks to
high throughput sequencing techniques, such as, MeRIP-Seq, transcriptome-wide RNA methylation profile is now
available in the form of count-based data, with which it is often of interests to study the dynamics at
epitranscriptomic layer. However, the sample size of RNA methylation experiment is usually very small due to its
costs; and additionally, there usually exist a large number of genes whose methylation level cannot be accurately
estimated due to their low expression level, making differential RNA methylation analysis a difficult task.

Results: We present QNB, a statistical approach for differential RNA methylation analysis with count-based small-
sample sequencing data. Compared with previous approaches such as DRME model based on a statistical test covering
the IP samples only with 2 negative binomial distributions, QNB is based on 4 independent negative binomial
distributions with their variances and means linked by local regressions, and in the way, the input control samples are
also properly taken care of. In addition, different from DRME approach, which relies only the input control sample only
for estimating the background, QNB uses a more robust estimator for gene expression by combining information from
both input and IP samples, which could largely improve the testing performance for very lowly expressed genes.

Conclusion: QNB showed improved performance on both simulated and real MeRIP-Seq datasets when compared
with competing algorithms. And the QNB model is also applicable to other datasets related RNA modifications,
including but not limited to RNA bisulfite sequencing, m1A-Seq, Par-CLIP, RIP-Seq, etc.
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Background
DNA chemical modifications and their functions have been
well established through intensive research ranging from
simple model organisms to human in the past decade [1–3].
While RNA modifications have yet drawn such attention
until recent studies suggest RNA N6-methyladenosine
(m6A) plays an important role in various biological pro-
cesses, including circadian clock, RNA degradation, cocaine
addiction, RNA-protein interaction, etc. [4, 5]. It is known
that more than 100 different types of RNA modifications

exist in all 3 kingdoms of life, and most of them are RNA
methylation [6]. Till this day, the most widely applied ap-
proach for profiling transcriptome-wide RNA m6A methyla-
tion is methylated RNA immunoprecipitation sequencing
(m6A-seq or MeRIP-seq), which combines methylated DNA
immunoprecipitation (MeDIP), immunoprecipitation of
RNA-binding proteins (RIP), and RNA sequencing (RNA-
seq) to enable high-resolution detection of transcriptome-
wide RNA methylation. MeRIP-Seq immunoprecipitates
heavily fragmented, methylated RNA fragments with anti-
m6A antibody and then sequences the purified RNA frag-
ments for computational processing (See Fig. 1). Meanwhile,
two types of samples, the IP and the input control, are
obtained. The IP sample includes mostly the methylated
fragments, while the input control sample includes all RNA
fragments, which is generated to measure the basal RNA
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expression level of all genes as the background [7–9]. Differ-
ent from whole exome sequencing (WXS), whole genome
sequencing (WGS) and RNA-Seq, MeRIP-Seq needs anti-
m6A antibody to capture the methylated mRNA fragments.
In addition, due to the depleteon at both 5′ and 3′ ends as a
result of RNA fragmentation and considerable variations in
transcript abundance, it is necessary to have the input
control sample. Till this day, MeRIP-Seq has been widely
applied to various species, including, human, mouse,
fly, pig, zebrafish, rice, yeast, HIV, etc., effectively
unveiled the function of RNA m6A methylation in
circadian clock, translation, miRNA processing, RNA-
protein interaction, DNA damage response, etc.
[10, 11]. However, due to the chemical instability of
RNA molecule and the intricate experiment proce-
dures, MeRIP-Seq experiment is still rather difficult to
perform due to DNA contamination, RNA degradation
or immunoprecipitation failure, etc.
By comparing the IP and input control samples, RNA

methylation sites can be identified in a peak calling proced-
ure [12, 13], based on which, differential RNA methylation
analysis can unveil the dynamics in post-transcriptional
RNA methylation under two different experimental condi-
tions in a case-control study [14, 15].

Differential methylation analysis concerns the difference in
methylation level between two conditions, which has shown
to be of crucial biological significance [16]. Previously, there
have been a number of computational approaches developed
for differential methylation analysis of DNA [17–22]. Similar
to DNA methylation, RNA methylation is also revers-
ible and non-stoichiometric, and it is reasonable to
speculate that the computational algorithms developed
for DNA methylation are equally applicable to RNA
methylation data. However, the unique features of RNA
methylation and MeRIP-Seq technique call for novel
computational approaches.
The first important feature of MeRIP-Seq data is the

highly heterogeous reads coverage due to different RNA
expression level. When profiling the RNA methylome
with MeRIP-Seq, the quantification of RNA methylation
level usually starts from a paired integer measurements t
and c, with t representing the number of reads propor-
tional to the absolute amount of methylation and c pro-
portional to the absolute amount of un-modified
molecule. Specifically in MeRIP-Seq data, t refers to the
reads count of a particular methylation site (or other fea-
ture) in the Immunoprecipitation (IP) sample, while c is
calculated from the same site in the corresponding input

Fig. 1 Illustration of MeRIP-Seq Protocol. In MeRIP-Seq, two types of samples (IP and input control samples) are generated. In the beginning of
the protocol, RNA molecules are firstly sheared into fragments of around 100 nt. Through anti-m6A antibody, the IP sample provides unbiased
measurement of the methylated RNA fragments; the input control sample reflects the basal RNA abundance
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control (input) sample. The methylation levelp ∈ [0, 1] of
this site can then be estimated by

p^¼ t
t þ c

ð1Þ

where p^ denotes the percentage of methylation of this
site on the corresponding RNA molecule. However, in
practice, this estimation is not always accurate, e.g., al-
though the same 100% of methylation is reported in two
RNA methylation sites with measurements [t1, c1]
= [100, 0] and [t2, c2] = [1, 0]. When sequencing noise is
considered, the original reads count data of the two sites
actually conveys substantially different information.
While [t1, c1] = [100, 0]suggests a confident estimation of
relatively high methylation level; [t2, c2] = [1, 0]essentially
suggests that there is only very limited information re-
ceived due to insufficient reads coverage, and the actual
methylation level of this site is not accurately available.
Conceivably, the estimation in Eq. (1) is relatively accur-
ate only when n = t + c is large, which is often not true in
RNA methylation sequencing data due to the existence
of a large number of very lowly expressed genes. For this
reason, a single estimated value for methylation level is
usually not adequate for RNA methylation data process-
ing, and it is necessary to keep the original integer mea-
surements (t and c) for more precise quantification,
which calls for count-based statistical models. Please
note that, the aforementioned issue is different from the
case of DNA methylation sequencing data, where a sin-
gle value generated from Eq. (1) for the estimated
methylation level is usually appropriate. This is because
that the reads coverage of different CpG sites in DNA
sequencing is usually highly homogeneous, so sufficient
reads coverage can be reached simultaneously for most
CpG sites of interests. Additionally, as shown in Fig. 2,
differential gene expression at RNA level may cause a

discrepancy between the absolute amount of methylation
and the relative amount, which calls for a precise estima-
tion of the basal background and makes it different from
the differential analysis of DNA methylation or DNA-
protein interaction measured by ChIP-Seq.
The second prominent feature of MeRIP-Seq data is the

limited number of samples (small sample size) available.
Currently, due to the costs and technical difficulties of
MeRIP-Seq experiment, there are usually no more than 3
biological replicates presented in a single study, which
causes major difficulty in estimating the site-specific vari-
ability of RNA methylation level. When reliable estimation
of variability in methylation level cannot be achieved, it is
difficult to further assess whether the observed difference is
due to within-group biological variability or not, making
differential RNA methylation analysis between two experi-
mental conditions fail. To solve this problem, we need
novel approaches that work at even small-sample size
scenario. Meanwhile, a number of small-sample inference
approaches have been developed for sequencing data in-
cluding, most notably, DESeq [23] and EdgeR [24], both of
which rely on negative binomial distribution model with a
linked variance and mean, which can shed light on this
issue with a feasible solution for differential RNA methyla-
tion analysis problem at small sample size scenario.
To address the aforementioned limitations and chal-

lenges of MeRIP-Seq RNA methylation sequencing data,
we propose here the QNB model, a small-sample size solu-
tion for differential RNA methylation analysis, which
stands for quad-negative binomial model. With 4 cross-
linked negative-binomial distributions for modeling the IP
and Input control samples of MeRIP-Seq in two different
experimental conditions, respectively, the proposed model
is capable to robustly capture the within-group variability
of RNA methylation level at small sample size scenario so
as to perform more effective differential RNA methylation

Fig. 2 Differential methylation of DNA and RNA. Although the absolute amount of methylated RNA molecule decreases under the treated condition,
the relative amount increased, indicating a hyper-methylation of the RNA molecule occurred together with expression down-regulation. In DNA
methylation analysis, the absolute and relative amount of methylation always show consistent trend
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analysis. The model has been implemented in an R package
that is freely available.

Methods
Differential RNA methylation data analysis includes the
following steps: reads alignment, peak calling (methylation
site detection), reads counting and differential analysis.
The newly developed QNB package deals with the last
step (See Fig. 3). Please note that, this is only one example.
In practice, if differential methylation analysis is applied to
gene or base resolution, only reads count is needed, and
peak calling step will not be necessary.

QNB model
Let ti , j and ci , j represent the reads counts of the i-th
feature (gene or RNA methylation site) in the paired IP
and input control sample of MeRIP-Seq data from j-th
biological replicate, respectively. When the sequencing
depths of different samples are the same, we may ignore
its influence and have

ti;jeBinomial pi;ρ jð Þ; ni;j
� �

ð2Þ

where ni , j = ti , j + ci , j and ρ(j) represents the experimen-
tal condition (cell type, tissue or treatment) of thej-th
biological replicate, and pi , ρ(j) denotes the percentage of
methylation for the i-th feature in j-th biological repli-
cate. The goal of differential RNA methylation analysis
for a specific feature is to test whether the percentage of
methylation remain the same under two different experi-
mental conditions A and ℬ, i.e., the null hypothesis pi;A
¼ pi;ℬ .
Considering the over-dispersion effect of sequencing

reads count data, ti , jand ci , jare assumed to follow the
negative binomial distribution

ti;jeNB μt;i;j; σ
2
t;i;j

� �
ð3Þ

ci;jeNB μc;i;j; σ
2
c;i;j

� �
ð4Þ

where their means can be decomposed by

μt;i;j ¼ qipi;ρ jð Þei;ρ jð Þst;j ð5Þ

μc;i;j ¼ qi 1−pi;ρ jð Þ
� �

ei;ρ jð Þsc;j ð6Þ

Here, qirepresents the expected abundance of feature i
under all conditions in a standard sequencing library. st ,
jand sc , j represent the size factor of the IP and input con-
trol sample of the j-th biological replicate and directly re-
flect their sequencing depth. pi , ρ(j) stands for risk of RNA
methylation, or the true percentage of methylation for
feature i under condition ρ(j) on the common scale, i.e.,
without rescaling by the size factors sc , j andst , j. Addition-
ally, ei , ρ(j) is introduced to model differential expression at
RNA level as a feature-specific size factor, which indicates
the abundance of feature i under a specific experimental
condition compared with the standard abundance qi.
In this model, the sequencing size factor st , j and sc , j of

the IP and input control sample can be conveniently esti-
mated from the total number of the reads in a library or
using the “geometric” approach developed for RNA-Seq data
[23, 25]. The other parameters can be estimated as follows:

q^i ¼ E
∀j

ti;j
st;j

þ ci;j
sc;j

� �
ð7Þ

p^i;ρ jð Þ ¼
X
j:ρ jð Þ¼ρ

ti;j
st;j

� �
=
X
j:ρ jð Þ¼ρ

ti;j
st;j

þ ci;j
sc;j

� �
ð8Þ

e^i;ρ ¼ 1
ρj jq̂i

X
j:ρ jð Þ¼ρ

ti;j
st;j

þ ci;j
sc;j

� �
ð9Þ

where |ρ| denotes the number of biological replicates
under a specific experimental condition ρ.
Please note that, compared with the DRME model [26], a

more robust estimator for background expression level of
the feature is implemented Eq. (7) by taking advantage of
both the IP and input control samples. In DRME model,
the basal level of gene expression is estimated from the in-
put control sample only, as in theory without anti-body
based enrichment, the input control sample of MeRIP-Seq
data should contain both methylated and unmodified

Fig. 3 Differential RNA methylation data analysis. The complete differential RNA methylation analysis may require the following steps: reads
alignment, peak calling (methylation site detection), reads counting and differential analysis
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molecules, and thus corresponds to the true expression
level. However, since the reads are usually enriched in the
IP samples for a methylation sites to be called, there is usu-
ally less reads in the input control samples, and thus the es-
timator is not robust for very lowly expressed genes. For
this reason, the basal level is estimated from the sum of in-
put and IP samples in the QNB model. The robust estima-
tor should largely improve the testing performance for very
lowly expressed genes.
Inspired by the DESeq formulation [23], the variance

in Eqs. (3) and (4) can be further decomposed into the
shot noise and raw variance, i.e.,

σ2t;i;j ¼ μt;i;j
shot noise

þ ei;jst;j
� �2

υt;i;ρ jð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
raw variance

ð10Þ

σ2c;i;j ¼ μc;i;j
shot noise

þ ei;jsc;j
� �2

υc;i;ρ jð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} raw variance ð11Þ

whereμt , i , j andμc , i , jare the variance of a Poisson distri-
bution, which is often used to model technical replicates
in NGS data. Additionally, due to biological variability,
the over-dispersion of a Poisson model is represented by
(ei , ρ(j)st , j)

2υt , i , ρ(j)and(ei , ρ(j)sc , j)
2υc , i , ρ(j), where ei , ρ(j) and

st , j(or sc , j) quantify the impact of condition-specific
gene differential expression and sample-specific library
size (or the sequencing depth), respectively. We consider
the per-feature raw variance parameterυi , ρ is a smooth
function of the expected methylation rate pi , ρand the
feature abundance qi , ρ under a specific condition ρ, i.e.,

υt;i;ρ jð Þ ¼ υt;ρ pi;ρ jð Þ; qi;ρ jð Þ
� �

ð12Þ

υc;i;ρ jð Þ ¼ υc;ρ pi;ρ jð Þ; qi;ρ jð Þ
� �

ð13Þ

For methylation reads count ti , j in the IP sample, the var-
iances on the common scale w^t;i;ρ can be calculated with

w^t;i;ρ ¼ 1
ρj j−1ð Þ

X
j:ρ jð Þ¼ρ

ti;j
ŝt;jêi;ρ jð Þ

−qt;i;ρ

	 
2
ð14Þ

where

qt;i;ρ ¼
1
ρj j

X
j:ρ jð Þ¼ρ

ti;j
ŝt;jêi;ρ jð Þ

ð15Þ

Let

zt;i;ρ ¼
q^ip

^
i;ρ jð Þ
ρj j

X
j:ρ jð Þ¼ρ

1
ŝt;jêi;ρ jð Þ

� �
ð16Þ

Following the methodology of DESeq model [23], we
show in the supplementary materials (Additional file 1)
that w^t;i;ρ−zt;i;ρ

� �
is an unbiased estimator for the raw

variance parameter υt , i , ρ, with

υ^t;i;ρ jð Þ p^i;ρ; q
^
i

� �
¼ wt;i;ρ p^i;ρ; q

^
i

� �
−zt;i;ρ ð17Þ

as our estimate for the raw variance parameterυt , i , ρ(j).
We use a 2-dimensional local regression on the graph

p^i;ρ; q
^
i;w

^
t;i;ρ

� �
to obtain a smooth function of wt;i;ρ

p^i;ρ; q
^
i

� �
. Since w^t;i;ρ in Eq. (14) is the sum of squared

random variable, the residuals of the modelwt;i;ρ−wt;i;ρ

p^i;ρ; q
^
i;ρ

� �
are skewed. Following reference [27] and the

practice in DESeq [23], we also implemented a general-
ized linear model of the gamma family for the local
regression with the implementation in R locfit package

[28] for estimation of wt;i;ρ p^i;ρ; q
^
i

� �
.

Similar to the estimation of υt , i , ρ(j) and wt , i , ρ in the
IP samples as described previously, the raw variance par-
ameter υc , i , ρ(j) and the variance of reads on the com-
mon scale wc , i , ρ for the input control samples can also
be estimated.

Testing & Metrics
For differential RNA methylation analysis, we consider
the null hypothesis that condition A and condition ℬ
are of the same methylation rate on the common scale,
i.e.,pi;A ¼ pi;ℬ ¼ pi;O, which can be estimated with

p^i;O ¼
X
j∈A∪ℬ

ti;j
st;j

=
X
j∈A∪ℬ

ti;j
st;j

þ ci;j
sc;j

� �
ð18Þ

For each feature i and replicate j of its condition ρ(j),
the reads counts ti , jand ci , jare considered independently
distributed. For differential methylation analysis between
condition A and ℬ, we construct 4 random variables
following negative binomial distributions for the IP and
input control samples under two experimental condi-
tions, respectively, i.e.,

ti;A ¼
X
j∈A

ti;j
� �eNB μ^t;i;A; σ

2̂
t;i;A

� �
ð19Þ

ti;ℬ ¼
X
j∈ℬ

ti;j
� �eNB μ^t;i;ℬ ; σ

2̂
t;i;ℬ

� �
ð20Þ

ci;A ¼
X
j∈A

ci;j
� �eNB μ^c;i;A; σ

2̂
c;i;A

� �
ð21Þ

ci;ℬ ¼
X
j∈ℬ

ci;j
� �eNB μ^c;i;ℬ ; σ

2̂
c;i;ℬ

� �
ð22Þ

It is not difficult to calculate the distribution parame-
ters in Eqs. (19), (20), (21) and (20). Taking ti;A for
example, we have
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μ^t;i;A ¼ p^i;Oq
^
ie
^
i;A

X
j∈A

s^t;j ð23Þ

σ̂t;i;A2 ¼ p^i;Oq
^
ie
^
i;A

X
j∈A

st;j þ υA p^i;O; q
^
i

� �
e
2̂
i;A

X
j∈A

s
2̂
t;j ð24Þ

Given the total number of methylation read count
ti ¼ ti;A þ ti;ℬ
� �

and the total number of reads under

each condition ni;A ¼ ti;A þ ci;A
� �

and (ni ,ℬ = ti ,ℬ + ci ,
ℬ) do not change, the joint conditional probability of the
observation ti;A ¼ t

� �
can be calculated with

P ti;A ¼ tjti; ; ni;A; ; ni;ℬ
� � ¼ P ti;A ¼ t

� �
P ti;ℬ ¼ ti−t
� �

P ci;A ¼ ni;A−t
� �

P ci;ℬ ¼ ni;ℬ−ti þ t
� �

ð25Þ
whose components are previously defined in Eqs. (19),
(20), (21) and (22).
Please note that, the over-dispersion of reads counts in

input control samples are also modeled and covered in
the QNB test, making it substantially different from the
DESeq, DRME or ChIPComp. The QNB test essentially
covers all the 4 samples with 4 cross-linked binomial
distributions; while in DRME model, the input control
samples are used only for gene expression estimation, so
the statistical test covers the IP samples only with 2
negative binomial distributions. The inclusion of input
control samples in the test, rather than simply using it
as a background, makes a major contribution to the per-
formance improvement, and also makes QNB substan-
tially different from all other count-based (negative-
binomial distribution-based) approaches such as DRME,
edgeR, DESeq and ChIPComp.
The statistical significance of an observation can then

be calculated using a two-sided test

p‐value ¼
P

t:P tð Þ≤P ti;Að ÞP tð ÞP
∀tP tð Þ ð26Þ

Besides the p-value that quantifies the statistical signifi-
cance, the risk ratio (RR) of RNA methylation level, which
quantifies the degree of differential methylation, can also
be calculated based on Eq. (8), with

RRi ¼ p^i;A=p
^
i;ℬ ð27Þ

where conditionℬ is considered as the control group in a
case-control study and Aas the treated group. Please note
that, the percentage of methylation under an experimental
conditionpi;A denotes a normalized degree of methylation
observed on the data rather than the true percentage of
methylation in biological sense. However, it still provides a
good evaluation of the relative methylation level. Similar
to the methylation risk ratio (RR), the odds ratio (OR) of
RNA methylation, which also quantifies the degree of

differential RNA methylation, can be calculated after com-
pensating the sample sequencing depth

ORi ¼
P

j∈A ti;j=st;j
� �P

j∈A ci;j=sc;j
� �( )

=

P
j∈ℬ ti;j=st;j

� �P
j∈ℬ ci;j=sc;j

� �( )
ð28Þ

QNB package
The proposed method has been implemented in the QNB
R package and is freely available through the Comprehen-
sive R Archive Network (CRAN): https://cran.rstudio.com/
web/packages/QNB/. For sample size factor estimation,
QNB uses the “geometric” approach [23, 25] by default, but
it is also possible for the user to provide the size factors
calculated from other methods. It is also worth mentioning
that, compared with the DRME model, QNB package
allows 4 different modes for estimating the raw variance
parameter in Eq. (17) for different scenarios, including,
“per-condition”, “pooled”, “blind” and “auto”.

� The mode “per-condition” calculates an empirical
dispersion value by considering the data from samples
for this condition for each condition with replicates.

� The mode “pooled” estimates a single pooled
dispersion value using the samples from all
conditions with replicates.

� The mode “blind” ignores the sample labels and
estimates a dispersion value as if all samples were
replicates of a single condition, so this mode supports
variance estimation even if there are no real biological
replicates from the same condition available.

� The mode “auto” selects mode according to the
number of samples automatically. Under this option,
“per-condition” mode is adopted when biological
replicates are available for a more sensitive estimation
of the raw variance parameter; while the “blind” mode
is used when no biological replicates are available.

QNB package implements the “auto” mode by default.

Results
To evaluate the performance of the proposed method, it is
tested on simulated and real datasets, and compared with
other approaches including exomePeak [12], MeTDiff
[15], DRME [26] and Bltest [29]. We have also included in
the comparison the DSS method [30], which is a most
recent method developed for DNA differential methyla-
tion analysis, and the ChIPComp method [31], which was
developed for differential binding analysis from ChIP-Seq
data.

Test on simulated dataset
The simulated data mimics the reads count information
of 20,000 methylation sites in 3 IP and input control
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samples from two experimental conditions. Specifically,
to simulate the impact of differential expression, we let
log(qi) follow a uniform distribution and the percentage
of methylation pi , ρ(j) follow a uniform distribution be-
tween 0 and 1. The two size factors ei , ρ(j) and st , j are set
to follow normal distributions after log transformation,
in which the variance can be adjusted to mimic the im-
pact of condition-specific differential expression and dif-
ferent sequencing depth. In addition, pi , ρ(j) are set to be
equal between two conditions for 50% of the RNA
methylation sites, which are corresponding to the non-
differential sites. The others are set different as the true
differential RNA methylation sites. Additionally, we set
υt , i , ρ(j) = d/{ei , ρ(j)st , j} and υc , i , ρ(j) = d/{ei , ρ(j)sc , j}to mimic
the impact of over-dispersion among biological repli-
cates. Here, d is a constant value to quantify the degree
of over-dispersion, with a greater value indicating in-
creased difference among biological replicates from the
same condition. To evaluate the performance of the
methods tested, 100 random datasets are generated and
tested against these methods, and their area under re-
ceiver operating characteristic curves (AUCs) are calcu-
lated to evaluate their performance, respectively.
In the first experiment, we tested the impact from the

number of biological replicates on the performance of dif-
ferential RNA methylation analysis. As shown from Fig. 4,
when the number of biological replicates increases, the
performance of all 7 approaches increases. This is reason-
able as additional information is provided when the num-
ber of biological replicates increases. The proposed QNB
method consistently outperforms the competing methods
on datasets with 2, 3, 4 or 6 biological replicates; however,

sufficient number of biological replicates is still essential
for more reliable results.
We then tested the impact of over-dispersion on the dif-

ferential RNA methylation performance. As shown in Eqs.
(10) and (11), over-dispersion is directly tied up with the
variance of reads count, so it is not surprising to see from
Fig. 5 that, the performance of all 7 approaches decreases
as over-dispersion increases. Specifically, QNB method
still consistently outperforms the competing methods on
different dispersion settings tested.
In the 3rd experiment, we tested the impact of differ-

ential expression, which contributed to a major differ-
ence between RNA and DNA methylation analysis. As
shown in Fig. 6, changes in expression level between dif-
ferent conditions hinder the performance of differential
RNA methylation analysis, which is reasonable because
it leads to unbalanced reads count in two experimental
conditions, i.e., a lot of reads under one condition but
very limited number of reads under the other condition.
QNB can handle differential expression relatively well
and perform better than the competing methods.

Test on human U2OS dataset
QNB approach was then tested on real RNA methylation
sequencing dataset that profiles m6A methylome in un-
treated U2OS cells and after treated with SAH hydroly-
sis inhibitor 3-deazaadenosine (DAA) [32]. The original
raw data in SRA format was obtained directly from GEO
(GSE48037), which consists of 3 IP and 3 Input MeRIP-
Seq replicates under control condition and after DAA
treatment, respectively (a total of 12 libraries). The short
sequencing reads are firstly aligned to human genome

Fig. 4 Impact from number of biological replicates on differential RNA methylation analysis. The performance of all 7 methods tested increases as
the number of biological replicates increases, suggesting biological replicates are still essential for the proposed small-sample inference approach.
QNB method outperforms competing approaches on datasets with 2, 3, 4 and 6 biological replicates, succeeded by DRME, DSS and ChIPComp
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assembly hg19 with Tophat2 [33]. In the reads alignment
step, other splice-aware aligners such as Tophat2 [33],
HISAT [34], STAR [35], RSEM [36], Kallisto [37] and Sal-
mon [38] are also applicable. Then, a total 29,427 RNA
N6-methyl-adenosine (m6A) sites are called by using exo-
mePeak R/Bioconductor package with UCSC gene anno-
tation database. In the peak calling step, to obtain a
consensus RNA methylation site set between two experi-
mental conditions (control and DAA treatment), the IP
and Input control samples are merged, respectively. Then
we used Bioconductor packages GenomicFeatures and

Rsamtools [39] on R platform to obtain the reads
count of every RNA methylation sites from the 3 IP
and input control samples under two conditions,
respectively. The reads count information can then be
used for comparing QNB method with the other
competing approaches.
A major limitation for testing differential RNA methyla-

tion analysis with real dataset is the lack of experimentally
validated true differential methylation site. Without ground
truth, it is difficult to effectively compare the performance of
different approaches. For this reason, we designed a sample-

Fig. 5 Impact of over-dispersion on differential RNA methylation analysis. The performance of differential RNA methylation decreases as the over-dispersion
increases, and QNB method consistently outperforms the competing methods, succeeded by DRME, DSS and ChIPComp

Fig. 6 Impact of RNA differential expression on differential RNA methylation analysis. In this experiment, we adjusted the variance of ei , ρ(j) for the
impact of differential expression setting. It can be seen that, the performance of differential RNA methylation analysis decreases as the degree of
differential expression increases, and QNB achieved better performance than competing approaches under all 4 setting tested
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swop test by taking advantage of a set of true negative data
generated by sample swop. In the designed sample-swop
test, differential RNA methylation analysis is firstly con-
ducted on the original data with correct sample class label
information and generated a set of“genuine”result; then dif-
ferential analysis is applied to a “mock” dataset with half of
the samples swopped between the two conditions tested to
generate a set of “mock” result. Compared with the “genu-
ine” result that is expected to carry biological meaning, the
“mock” result is generated with incorrect sample labels and
thus represents a background associated with no biological
meanings (see Fig. 7). For the aforementioned reasons, an
effective differential RNA methylation method should report
as many differential methylation sites as possible in the
“genuine” result, and at the same time report as less differ-
ential methylation sites as possible in the “mock” result
given a specific confidence level. In another word, when two
approaches report the same number of DRMSs on the
“mock” dataset, the one that reports more DRMSs on the
“genuine” dataset achieved a better performance.
As is shown in Fig. 8, QNB outperforms the other com-

peting algorithm on real MeRIP-Seq dataset in the
sample-swop tests, especially at more stringent signifi-
cance level. In the figure, x-axis represents the percentage
of DRMSs called on “mock” dataset, and y-axis represents
the percentage of DRMSs detected on the corresponding
“genuine” datasets. For QNB approach, when 1% of sites
are reported as DRMSs on “mock” datasets, around 12%
of DRMSs are reported on the corresponding “genuine”
datasets. With an assumption that there exists similar
background noise in “mock” and “genuine” datasets, the
DRMSs reported in the “genuine” dataset should have a
false discovery rate of around 0.073. Please note that, in

the sample swop test above, a negative dataset was created
when positive data is not available. Similar strategies have
been used previously [13, 15, 40].
We then applied the QNB method to the complete

MeRIP-Seq dataset including all the replicates. In the end,
1355 out of 29,427 RNA methylation sites are identified as
DRMSs at significance level 0.05 by QNB method. As
shown in Fig. 9, the DRMSs identified by QNB method
are mostly with large methylation risk ratio compared
with the features of a similar abundance.

Test on mouse midbrain dataset
We showed previously with a sample-swop test that, QNB
method outperforms competing methods on a real RNA
methylation sequencing dataset that profiles the epitran-
scriptomic impact of DAA treatment to human U2OS
cells. It is necessary to examine whether this is still true
on a different dataset. For this purpose, we repeated this
test on a different MeRIP-Seq dataset, which studies the
impact of FTO knock down in mouse midbrain [41].
Similar settings are adopted as previously described in

the human dataset. The sequencing reads are down-
loaded from NCBI GEO and then aligned to mouse
mm10 genome assembly with Tophat2 aligner, then R/
Bioconductor packages are used for identifying the RNA
methylation sites and counting the number of reads as-
sociated with them. Similar to the DAA treatment ex-
periment described previously, 3 pairs of “genuine” and
“mock” datasets are generated with the 3 biological rep-
licates from the control and FTO knock down MeRIP-
Seq experiment. By fixing the percentage of differential
RNA methylation sites (DRMSs) in the 3 “mock” data-
sets, we calculated the percentage of DRMSs in their

Fig. 7 Creation of the mock dataset with sample swop. A “mock” dataset can be created from the original dataset by swop half of the samples
between the two experimental conditions. The differential RNA methylation result generated from the original data with correct sample label reflects
biological meaningful difference; while the result generated from the “mock” dataset has no biological meaning. In theory, a good algorithm should
pick up as many as differential methylation sites from the “genuine” dataset but as less as differential methylation sites from the “mock” dataset. The
example above shows how a pair of “genuine” and “mock” datasets is created from two biological replicates - sample 1 and sample 2. Since the tested
MeRIP-Seq dataset has 3 biological replicates under each condition, it is possible to create 3 pairs of “genuine” and “mock” datasets from 3 pairs of
replicates, i.e., sample 1 and 2, sample 2 and 3, sample 3 and 1. It is then possible to compare the performance of different algorithms
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corresponding “genuine” datasets at the same signifi-
cance level. It can be seen from Fig. 10 that, QNB out-
performs the competing approaches in the sample-swop
test on this mouse MeRIP-Seq dataset, especially at
more stringent significance level.

Discussion
The newly proposed approach is in many ways related to
DESeq sand DRME model, including the negative bino-
mial assumption of reads count data, the decomposition
of variance into the shot noise and the raw variance, the
usage of local regression of gamma family for estimating
the variance and the construction of the test; however,
QNB also extended these two models by including the in-
put control samples as additional components for a more
comprehensive statistical evaluation. And compared with
the DRME method [26], a more robust estimator of the
background (RNA expression level) is used by merging in-
formation from both the IP and input control samples.
Importantly, as shown on simulated system and the real
MeRIP-Seq datasets from human and mouse, we showed
in a sample-swop test that, QNB obviously outperforms
the existing differential RNA methylation approaches, in-
cluding exomePeak [12], MeTDiff [15], DRME [26] and
Bltest [29]. It also outperforms DSS [30], a method devel-
oped for DNA methylation differential analysis, and ChIP-
Comp [31], a method developed for ChIP-Seq analysis.
There exist a number of issues that may affect the per-

formance of QNB method in differential RNA methylation
analysis. Firstly, biological replicates are still essential for
achieving reliable results. As shown in Fig. 4, increased
number of replicates helps to improve the prediction
performance of QNB and the other 6 methods tested.
Secondly, due to the existence of very lowly expressed
genes, adequate sequencing depth is still necessary for de-
tecting the features of low abundance. Thirdly, QNB relies
on accurate reads count data of the RNA methylation sites

Fig. 8 Comparison of differential algorithms on human DAA treatment experiment with sample-swop test. We generated 3 pairs of “genuine” and
“mock” datasets with the 3 biological replicates from the control and DAA treatment MeRIP-Seq experiment. By fixing the percentage of DRMSs in the
3 “mock” datasets, we calculated the percentage of DRMSs in their corresponding “genuine” datasets at the same significance level. QNB outperforms
the competing methods especially at high significance level. The exomePeak method and Bltest achieved almost the same performance

Fig. 9 Differential RNA methylation analysis. QNB method identified
1355 DRMSs out of a total of 29,427 RNA methylation sites after DAA
treatment to U2OS cells at significance level 0.05. Compared with the
features with less number of reads, the observed methylation fold
changes for abundant features have a smaller range, and the DRMSs
identified are mostly with larger methylation risk ratio between the
two conditions compared with the features of a similar abundance
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(or other features), so precise determination of RNA
methylation sites on the transcripts and proper sequen-
cing reads alignment and counting are indispensable. In
MeRIP-Seq data, it can be difficult to differentiate isoform
transcripts and thus difficult to perform isoform-specific
differential RNA methylation analysis. Fourthly, data qual-
ity can still be a major limitation for RNA methylation se-
quencing experiments because of the technical difficulties
and high costs. Without proper experiment design and
implementation, the following computational analyses
may end in vain. Fifthly, it is still an open question how to
best estimate the library size factor of the samples for
MeRIP-Seq data. Conceivably, the size factors of the IP
and input control samples may not be directly comparable
due to their instinct properties and their distinct distribu-
tion patterns, and the immunoprecipitation efficiency of
different IP samples may not be the same. Sixthly, the pro-
posed method assumes that the variability of methylation
level is a smooth function of expression level and methyla-
tion level; however, as the number of biological replicates
increases, a more straightforward approach might be
directly modeled and estimate site-specific variability
without this assumption. All the aforementioned issues
call for further investigation and improvements.

Conclusions
RNA methylation has emerged as an important layer for
gene regulation, where biological functions are modulated
by reversible post-transcriptional RNA modifications. We
proposed here a QNB model together with an R package
for differential RNA methylation analysis at small sample

size scenario. The method is based on four negative bino-
mial distributions with their means and variances cross-
linked together, which model the IP and input control
samples under 2 experimental conditions, respectively.
Compared with other methods on the simulated and real
MeRIP-Seq datasets, QNB is much more effective for dif-
ferential RNA methylation analysis with the small-sample
sequencing data. QNB model can also be applied to other
data types related to RNA modifications, such as RNA bi-
sulfite sequencing, m1A-Seq, Par-CLIP and RIP-Seq.
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