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Abstract

Background: A common task in microarray data analysis is to identify informative genes that are differentially
expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of
significant genes has been essential in analyzing the data. However, the performances of many gene selection
techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a
limited number of sample replicates.

Results: We have proposed new filter-based gene selection techniques, by applying a simple modification to
significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a
series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following
findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In
particular, our methods are much better when the given data are noisy and sample size is small. They showed
relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became
significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were
available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with
traditional methods in classification tasks for microarrays.

Conclusions: The results of simulation study and real data analysis have demonstrated that our proposed methods

are effective for detecting significant genes and classification tasks, especially when the given data are noisy or
have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for

microarray data analysis.
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False discovery rate

Background

Microarray technologies allow us to measure the expres-
sion levels of thousands of genes simultaneously. Analysis
on such high-throughput data is not new, but it is still
useful for statistical testing, which is a crucial part of tran-
scriptomic research. A common task in microarray data
analysis is to detect genes that are differentially expressed
between experimental conditions or biological phenotype.
For example, this can involve a comparison of gene
expression between treated and untreated samples, or
normal and cancer tissue samples. Despite the rapid
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change of technology and the affordable cost for conduct-
ing whole-genome expression experiments, many past
and recent studies still have relatively few sample repli-
cates in each group, which makes it difficult to use typical
statistical testing methods. These two problems, high
dimensionality and small sample size problems, have trig-
gered developments of feature selection in transcriptome
data analysis [1-9]. These feature selection methods can
be mainly classified into four categories depending on
how they are combined with learning algorithms in classi-
fication tasks: filter, wrapper, embedded, and hybrid
methods. For details and the corresponding examples of
these methods, we refer the reader to several review
papers [10-18]. As many researchers commented, filter
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methods have been dominant over the past decades due
to its strong advantages, although they are the earliest in
the literature [11-13, 15, 16]. They are preferred by biol-
ogy and molecular domain experts as the results gener-
ated by feature ranking techniques are intuitive and easy
to understand. Moreover, they are very efficient because
they require short computation time. As they are inde-
pendent of learning algorithms, they can give general solu-
tions for any classifier [15]. They also have a better
generalization property as the bias in the feature selection
and that of the classifier are uncorrelated [19]. Inspired by
its advantages, we focus on the filter method in this study.

One of the most widely used filter-based test methods is
significance analysis of microarrays (SAM) [1]. It identifies
genes with a statistically significant difference in expression
between different groups by implementing gene-specific
modified #-tests. In microarray experiments, some genes
have small variance so their test statistics become large,
even though the difference between the expression levels of
two groups is small. SAM prevents those genes from being
identified as statistically significant by adding a small posi-
tive constant to the denominator of the test statistic. This is
a simple but powerful modification for detecting differen-
tially expressed genes, considering the characteristics of
microarray data. Since its establishment, the SAM program
has been repeatedly updated. The latest version is 5.0 [20].

We also aim to develop methods for detecting signifi-
cant genes based on a deeper understanding of microarray
data. Even when researchers monitor an experimental
process and control other factors that might have an influ-
ence on the experiment, biological or technical error can
still arise in high-throughput experiments. For example,
when one sample among a number of replicated samples
gives an outlying result owing to a technical problem, vari-
ance of the gene expression becomes larger than expected
and its test statistic becomes small. This is a major issue
because it can lead to biologically informative genes failing
to be identified as having a significant effect. Therefore,
we here attempt to reduce this increase in variance for
such cases by modifying the variance structure of SAM
statistics, using two weighting schemes. It is also import-
ant to adjust the significance level of tests. Since we gener-
ally need to test thousands of genes simultaneously, the
multiple testing problem arises. To resolve this problem,
several methods have been suggested as replacements
for the simple p-value; for example, we can use the
family-wise error rate (FWER), false discovery rate
(FDR) [1, 21], and positive false discovery rate (pFDR)
[22]. Among them, FDR, which is the expected pro-
portion of false positives among all significant tests, is
a popular method to adjust the significance level. It
can be computed by permutation of the original data-
set. The test procedures we propose in this paper also
use FDR, the same as SAM.
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Once a list of significant genes is established by a gene
selection method, researchers may carry out further ex-
periments such as real-time polymerase chain reaction
to determine whether these reference genes are biologic-
ally meaningful. However, many genes may not be tested
owing to limitations of time and resources. For example,
even if hundreds of genes are included in a list of refer-
ence genes for a user-defined significance cutoff, re-
searchers may just select a few top-ranked genes among
them for further analyses. Therefore, it is very important
that the genes are properly ranked in terms of their sig-
nificance, especially for top-ranked genes [23, 24]. As
such, in this paper, we focus on improving test statistics
for each gene and assessing how well each test method
identifies significant genes.

For microarray data analysis, a comparison of the per-
formance of gene selection methods is difficult because
we generally do not know the “gold standard” reference
genes in actual experiments. In other words, we do not
know which genes are truly significant. This is a com-
mon problem encountered in transcriptome data ana-
lysis, so most studies have focused on comparing
classification performances, which are determined by the
combination of the feature selection and learning algo-
rithm. As these results are clearly dependent on the per-
formance of learning method, we cannot compare the
effectiveness of feature selection techniques definitively
[16]. Therefore, in this paper, we generate spike-in syn-
thetic data that allow us to determine which genes are
truly differentially expressed between two groups. For
this, we suggest a data generation method based on the
procedure proposed by Dembélé [25]. By performing
such simulations, we can see how the performance
changes depending on the characteristics of the dataset,
such as sample size, the proportion of differentially
expressed genes, and noise level. In this study, we focus
on comparing performance according to noise level as
our goal is to efficiently detect significant genes in a
noisy dataset. To verify that our proposed methods can
also compete with previous methods for actual micro-
array data, we use two sets of actual data that have a list
of gold standard genes based on previous findings. All of
these real datasets are publicly available and can be
downloaded from a website [26] and R package [27]. In
order to compare different gene selection methods, we
also define two performance metrics that can be used
when true differentially expressed genes are known.

This paper is organized as follows. In the next section,
we review the algorithm of SAM and propose statistical
tests for microarray data that are modified versions of
SAM, named MSAM1 and MSAM2. In addition, we ex-
plain our synthetic data generation method and suggest
two performance metrics. In the results section, we de-
scribe our simulation studies and real data analysis. We
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compare SAM, MSAM1, and MSAM2 using 14 types of
simulated dataset, which have different noise levels and
sample sizes, and two sets of real microarray data. We
next discuss the difference between the three methods
in detail, focusing on FDR estimation. Additionally, we
give the results of classification analysis using some top-
ranked genes selected by each method. In the last
section, we summarize and conclude this paper.

Methods

In this section, we briefly review the SAM algorithm [1]
and propose new modified versions of SAM, focusing on
calculating the test statistic.

SAM

Let x; and y;; be the expression levels of gene i in the jth
replicate sample in states 1 and 2, respectively. For such
a two-class case, the states of samples indicate different
experimental conditions, such as control and treatment
groups. Let n; and n, be the numbers of samples in
these two groups, respectively. The SAM statistic pro-
posed in [1] is defined as follows:

73
' S+ So
where X; and ¥, are the mean expression of the ith gene

for each group, x; = > 1" x;/m and y; =} %,y;/n;.
The gene-specific scatter s, is defined as:

s = a{i (w-%:)" + > (yi/‘_yf)z}

j=1 j=1

where a=(1/n + 1/ny)/(ny + 1, —2) and sy is a small
positive constant called the fudge factor, which is chosen
to minimize the coefficient of variation of d;. The com-
putation of sg is explained in detail in [3].

Now let us consider the overall algorithm. The SAM
algorithm proposed in [1] can be stated as follows:

1. Calculate test statistic d; using the original dataset.

2. Make a permuted dataset by fixing the gene
expression data and shuffling the group labels under
the Hy where Hy: x;,-y; = 0 for all i.

3. Compute test statistics d; using the permuted data
and order them according to their magnitudes as
d{y)sd(y <-+-<d(,), where 1 is the number of genes.

4. Repeat steps 2 and 3 B times and obtain d;,(b)<d,
(b)<---=d,(b) for b=1,2, ..., B, where B denotes
the total number of permutations.

5. Calculate the expected score dﬁ) = Zledfi)(b) /B.
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6. Sort the original statistic from step 1, d(1) < d(q) <
- < d(,,).

7. For user-specific cutoff A, genes that satisfy |d;)-
d6)| > A are declared significant. A gene is defined

as being significantly induced if d(i>—d6) > A and
significantly suppressed if d, (i)—dﬁ) < -A.

8. Define dp) as the smallest d(; among significantly
induced genes and dgown) as the largest d;) among
significantly suppressed genes.

9. The false discovery rate (FDR) is defined as the
proportion of falsely significant genes among genes
considered to be significant and can be estimated as
follows:

_ S iy (b)2d ) Ve (b)Sd aoun) } /B

FDR ,
#{l 2 d(iy2d (up) VA (i) <d (down) }

The algorithm consists of two parts: computation of
the test statistic and determination of the cutoff for a
given A. We will focus on the first of these parts and
apply a simple modification to the computation of gene-
specific scatter s; to find a more robust test statistic. The
numerator of the modified statistic and that of the ori-
ginal SAM statistic are the same. All of the procedures
can be implemented using the samr package for Biocon-
ductor in R. [20] described how to use the package and
provided technical details of the SAM procedure.

Modified SAM
From one experiment [28], we observed several cases in
which most of the results of gene expression are very
close to each other, apart from one substantial outlier.
As a result, the ranks of these genes from SAM are
lower than expected. This prompted us to propose a
new test method that has a different variance structure,
leading to robustness on identifying informative genes in
the presence of outliers. Throughout the paper, we use
the term “outliers” to indicate “unusual observations”.
Let us consider two cases with the following data: case
1: (5,5,5,5,8.54) and case 2: (3,4,5,6,7). For these two
cases, the variance is the same, inferring that they have
the same spread. However, even though the levels of
variance are equal, in fact, we cannot say that the data
points are similarly distributed. We believe that case 1 is
more reliable than case 2. Our goal, therefore, is to
propose a test statistic that has a more significant result
for case 1 than for case 2. To minimize the effects of
outliers among samples, we use the median instead of
the mean and employ a weight function w when com-
puting the test statistic, resulting in a less weight on an
outlier sample that is far from other samples. A modified

S;, 8, is defined as follows:
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j=1 =1

" J > wle) (e -median; 53))* + > w(3,) (v -median;(3) )

Accordingly, our test statistic d; is defined as follows:

K|

d =2

.+ So

l

m

Methods modified by this approach might be particu-
larly useful when detecting differentially expressed genes
from noisy microarray data. The key idea is to reduce
the impact of outliers when calculating the test statistic.
We propose two different weight functions in this paper.

The values of s; and d; would differ quite markedly de-
pending on the used weight function.

Modified SAM1 (Gaussian weighted SAM)

The weight function used in Modified SAM1 (MSAM1)
is based on the Gaussian kernel, which is a widely used
weight that decreases smoothly to 0 with increasing dis-
tance from the center. It is defined as follows:

o) = Lo (1)
where ¢ is the probability density function of a stand-
ard normal distribution, ¢(x) = e*/2/\/2. The mean
#i is a gene-specific parameter such that 4, = median,(x;)
and standard deviation ¢ is a data-dependent constant
determined by the following procedure: first, m is
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defined as follows. m =max(|x; — median,(x;)|, |y; -
mediany(y;)|). It is calculated from given data. Second, p
is a user-defined value between 0 and 1. Finally, given m
and p, we can find the value of ¢ that satisfies the fol-
lowing equation:

m = F(1-p;0,0)

where F is the cumulative distribution function of a nor-
mal distribution. Therefore, m would approximately be
the 100(1 — p)th percentile point of a normal distribution
with mean 0 and standard deviation o. As can be seen
from Fig. 1, smaller p yields smaller ¢. Therefore, smaller
p makes the weight applied to outlier samples smaller.
On the other hand, as p increases, the results of original
and modified SAMs become similar because the weight
on the outlier is very similar to the weight on the non-
outliers. In this research, we set p = 0.001 since we found
that this value is sufficiently small to reduce the effect of
outliers.

For a better understanding of MSAM1, we here illus-
trate the weight function of MSAMI1 and its application
in detail. Let us consider Leukemia data [29]; for details
of this data, see real data analysis section. The data con-
sist of 38 samples (27 from ALL patients and 11 from
AML patients) and 7129 genes. For simplicity and clar-
ity, we randomly selected five samples for each sample
type and applied SAM, MSAM1 with p=0.01 and
MSAM1 with p=0.001. In order to compare weights
given by each method, let us take one gene,
M96326_rnal_at (Azurocidin). This gene would be a
good example to clarify the difference between SAM
and MSAMI1 because it has an outlier sample. From
Fig. 2, we can see that gene expressions in group 1 are
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Fig. 1 Two examples of the weight function for MSAM1 when m is 2. When setting p = 0.05, ¢ is determined to be 1.22 (left panel), and when
setting p=0.1, it is determined to be 1.56 (right panel). Since m is the 100(1 — p)th percentile point of N(0, 6), the grey-shaded area in each panel
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Fig. 2 Gene expressions of M96326_rnal_at (Azurocidin) from 5 ALL
patients and 5 AML patients
A\

similar. On the other hand, one of five samples in group
2 is clearly far from others. Table 1 and Fig. 3 show its
gene expressions and weights computed by SAM and
MSAMLI. In Fig. 3, the lengths of 5 red dashed lines indi-
cate the weights on the 5 observations. As we stated
above, we can also see that smaller p makes the differ-
ence between weights applied to outlier and non-outlier
samples greater.

Modified SAM2 (inverse distance weighted SAM)

This method uses Euclidean distance among the obser-
vations. The weight function used in Modified SAM2
(MSAM?2) is defined as follows:

w(x;) = .
PN de (i, %)

where dg(x;, xy) is the Euclidean distance between the
jth and kth samples of gene i. The reason that we use
this weight function can be explained by the following
example. Let us assume that there are 10,000 genes (i =
1,2,...,10000). Also, suppose there are 4 sample
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replicates (observations) in a group of the first gene (i =
1) and their gene expressions are x11,%x15,%13 and x14.
Let w; be the weight on jth observation for j=1, 2, 3 and
4. In this case, the weights on these observations are as

follows. .

4 -1 4 -
w1 = (/Z: dE(xlhxlk)) , W2 = (/Z: dE(xBaxlk)) s
=1 =1

-1

4 -1 4
w3 = (;dE(xIEnxlk)) , Wi = (;dE(xlzhxlk))

If x11,%;12 and x;5 are close to each other and x4 is far
from these 3 values, w, is much smaller than w; , wy and
ws. Therefore, by using this weight function, we can give
a smaller weight to an outlier. The further away an ob-
servation is from the others, the smaller weight is given.

Synthetic data generation

To run experiments, we need to generate synthetic gene
expression data. These datasets should have characteris-
tics similar to those of real microarray data to ensure
that the results are reliable and valid. Two important
characteristics of gene expression data, which are re-
ported elsewhere [25, 30, 31] and also considered in this
study, are as follows:

1. Under similar biological conditions, the level of gene
expression varies around an average value. In rare
cases, technical problems would result in values far
away from this average.

2. Genes at low levels of expression have a low signal-
to-noise ratio.

The ‘technical problems’ mentioned in the first of
these points are one possible explanation for outliers ob-
served in microarray data. Since our goal is to develop
methods that detect differentially expressed genes well
in a noisy dataset containing outliers, we consider not
only a dataset with little noise, but also a noisy dataset
with outliers. We ensure that outliers are present at
higher probability in several of the datasets to provide a
wider range of comparisons among the different test
methods. Basically, we follow the microarray data gener-
ation model by Dembélé [25], which uses a beta

Table 1 Comparison of SAM and MSAM1 weights: an informative gene from leukemia data, M96326_rna1_at (Azurocidin)

ALL AML
Gene expressions (x10%) —0.86 0.05 0.16 0.74 130 0.55 411 7.79 7.96 19.60
SAM weights 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MSAM1 weights (x107% 037 037 037 037 037 030 035 037 037 0.20
for p=0.01
MSAM1 weights (x107% 049 0.50 0.50 0.50 049 033 045 050 0.50 0.17

for p=0.001
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Setp =0.01
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Fig. 3 The left panel illustrates the weights of MSAM1 when p is 0.01. The right panel is the case when p is 0.001. In each panel, 5 black circle
points are gene expressions of M96326_rnal_at (Azurocidin) from 5 AML patients. The lengths of 5 red dashed lines indicate the weights on the
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distribution. In this article, we employ a beta and a nor-
mal distribution to generate data points, assuming that
the levels of gene expression essentially follow such dis-
tributions. To allow outliers in generated data, we add a
technical error term in our model; this term is men-
tioned in [25], but not used in their model. According to
the noise level and distribution type, we consider four
different simulation set-ups as follows: Scenario 1, non-
contaminated beta; 2, contaminated beta; 3, non-
contaminated normal; 4, contaminated normal. There-
fore, data used in scenarios 1 and 3 have low noise level,
and data used in scenarios 2 and 4 have high noise level.
The step-by-step procedure for our data generation
method is summarized as follows.

Step 1. Let n be the number of genes and #; and 7, be
control and treatment sample sizes, respectively.

Step 2. Generate z; from a beta (normal) distribution
for i=1,2,...,n and transform the values, z; = [b + ub
XZ;.

Step 3. For each z;, generate (n; + n,) values as follows:
z; unif ((1-a;)z;, (1 + a;)z;), where a; = de Mz,

Step 4. The final model is given by

d[j = Zjj + Sij + njj + tij

where the term s; allows us to define differentially
expressed genes. Their values are zero for the control
group, s;~N (¢4, 02,) for genes with induced expression,
and s;~N (—ude,afle) for genes with suppressed expres-
sion, where p;, = p"" + Exp(12). n; is an additive noise
term, n;~N (0, af,). The final term ¢; is used to define
outlying samples by allowing non-zero values for some
genes. The undefined parameters for each step can be
set by the users. The values we use in this paper are as
follows: A, =0.13, 1, =2, " =0.5, 04 =0.5, 0,=04.

For these parameters, the influence of different param-
eter settings on the generated data is well explained else-
where [25].

Scenario 1: Beta with low noise level

In this case, we generate data points from Beta(shape;,
shape,). shape, and shape, are two shape parameters of
the beta distribution and we here set shape; =2 and
shape, = 4. We also set [b =4, ub=14. The values of ¢;
are zero for this case.

Scenario 2: Beta with high noise level

Here, we generate a noisier data than above data. The
generation procedure is basically the same as the above
case, except for allowing some non-zero f; To make
outlying samples, we contaminate the data by adding
gaussian noise to some treatment samples: For genes
with induced or suppressed expression,

t,7~N(O, aﬁeo) for j = (ny + 1y — Hgeo + 1), ..., (M1 + 1)
where 0y, is a non-zero constant and g, is the num-
ber of outlying samples. We here set 0geo, =1 and 74,
=[0.2 x ny] where [x] =m if m<x<m+1 for all integer
m. For example, if there are five sample replicates in a
treatment group, there can be one possible candidate as
an outlier. Therefore, 04., and #4., control the distribu-
tion and noise level of outlying samples. We believe that
this set-up is reasonable because it does not destroy the
original data structure while controlling the noise level
of the data.

Scenario 3: Normal with low noise level

This scenario assumes that the levels of gene expression
essentially follow a normal distribution, instead of a beta
distribution. In this research, we use the normal
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distribution with mean 10 and standard deviation 1.5 for
generated data points to be distributed between realistic
bounds; the gene expression levels on a log2 scale after
robust multichip analysis normalization usually vary be-
tween 0 and 20. We set [b=0, ub=1 in Step 2, which
means that no transformation is applied.

Scenario 4: Normal with high noise level

To generate a noisier normal data, we use the same data
generation procedure of Scenario 3, except for allowing
some non-zero f; in Step 4. The structure of f; is the
same as in Scenario 2.

Performance metrics

To compare the performance of several methods, we
need several evaluation measures. Since we know which
genes are differentially expressed in our simulated data-
sets, we can define two performance metrics as follows,
measuring how well each method identifies these TRUE
genes. Prior to define metrics, let G,,={i: gene i the ex-
pression of which is truly significantly induced} and
Gaown=1i: gene i the expression of which is truly signifi-
cantly suppressed}.

Rank sum (RS)
We define the rank sum (RS) of TRUE genes as follows:

RS = ZieGuPquW” Z,’:d,»dpol(ld"'S 1)

where I(-) is an indicator function. The reason for deter-
mining the ranks of genes with high and low expression
is that the SAM procedure uses such a method when de-
tecting genes of the two groups. We use the absolute
value of test statistics because test statistics of genes
with suppressed expression have negative values. For RS,
lower values indicate better performance.

Top-ranked frequency (TRF)
The top-ranked frequency (TRF) of TRUE genes is com-
puted by

TRE(r) = #{i<GupUGaonn : Y, 1(dils|d|)=r }.
Here, r denotes the rank cutoff and is set to be smaller
than the number of observations in G, and Ggown. For
a given cutoff r TRF computes the number of TRUE
genes ranked within r. For TRF, higher values indicate
better performance.

To understand the performance metrics better, let us
consider the following case. We have 100 genes and 10
TRUE genes among them. Assume that we obtain a top-
ranked gene list as shown in Table 2 by a gene selection
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Table 2 An example list of top-ranked genes

Gene rank Rank of true genes True or false
1 1 T
2 2 T
3 - F
4 4 T
5 5 T
6 6 T
7 - F
8 - F
9 9 T
10 10 T
1 1 T
12 - F
13 13 T
14 - F
15 15 T
Rank sum 76

method. Among the 15 genes in the table, five are false
genes (3", 7, 8™, 12™ and 14™ genes in the table). In
this case, RS = 76, TRF(5) = 4, and TRF(10) =7.

Results

Simulation studies

In this section, we compare gene selection methods
using synthetic datasets. We consider four scenarios de-
scribed above. For each scenario, we consider 7 different
combinations of #; and 7, in order to take into account
the affects of sample size and class imbalance on gene
selection performance as follows: (ny,n,)=(5,5), (5,
10), (10, 5), (10, 10), (10, 15),(15,10) and (15,15). For
all scenarios, we assume that there are 2% target genes
(1% up-regulated and 1% down-regulated genes) among
the total of 10,000 genes. For simplicity, let us assume
that the first 100 genes are downregulated and last 100
genes are upregulated. Then, we can describe the struc-
ture of our simulation data as shown in Fig. 4. This ex-
ample illustrates the structure of noisy data containing
outliers. In this case, the last two samples are outlying
samples among 10 treatment samples of 200 target
genes. There are five different distributions of data
points: A, B, C, D, and E. For 9800 nontarget genes, the
distributions of the control and treatment samples are
the same (A). The first 100 downregulated genes are
generated from two distributions (B and C) and the last
100 upregulated genes are also generated from two dis-
tributions (D and E). Groups C and E indicate outlier
samples. If there are no outliers in the dataset, B is
equivalent to C and D is equivalent to E. The empirical
density plot of each group is shown in Fig. 5. For
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Control samples Treatment samples
Gene (1 2 3 4 5 6 7 8 9 1011 2 3 4 5 6 7 8 9 10
1% B C
98% A A
1% D E

Fig. 4 An example of simulated data structure. Each row and each column of this data frame correspond to a gene and a replicate sample, respectively,
so we have a 10,000 x 20 data matrix in this study. We assume that there are 2% target genes (1% up-regulated and 1% down-regulated genes) among
the total of 10,000 genes, and ten replicates in each group. There are five different distributions of data points: A, B, C, D, and E; groups C and E indicate

outlier samples

visualization, we use 5000 data points to ensure equiva-
lent density of the points for each group (A, B, and C),
that is, with a 1:1:1 ratio, not using the original ratio
among the three groups.

We conduct simulation studies using synthetic data
and compare the results using three metrics; two of
them are RS and TRF, which were defined above, and
the third is AUC. AUC is the area under a receiver oper-
ating characteristic (ROC) curve. Therefore, this value

falls between 0 and 1, and higher values indicate better
performance. We consider five gene selection methods,
named SAM, SAM-wilcoxon, SAM-tbor, MSAM1 and
MSAM2. SAM-wilcoxon is the Wilcoxon version of
SAM [20, 32]. SAM-tbor is basically the same with
SAM, except for applying a simple trim-based outlier re-
moving algorithm to data prior to running SAM. In this
study, we remove the largest and smallest observations
from each sample type. Figs. 6 and 7 display the average
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performance of 100 simulations for each method on the
three metrics. Table 3 shows numerical results of 4
cases. The best performance on each metric is shown in
boldface. In scenario 1, the original SAM always outper-
form SAM-wilcoxon and SAM-tbor. Although SAM-
tbor show better performance than SAM in some cases
of scenario 2, its performance is worse than those of
MSAMs. As can be seen from the figures and table, our
proposed methods show better performance than three
versions of SAM in all cases. In particular, modified
SAMs are much better when given data is noisy (sce-
nario 2, compared to scenario 1) and is a little better
for less noisy cases. We can also see that our methods
show more robust performance in all cases. When there
is two outliers among ten samples, the number of target
genes found by original SAM is reduced by 2-17%,
whereas that found by MSAMs is reduced by 1-8%. In
particular, when n; =5, n; = 10 in scenario 2, SAM fails
to detect 90 genes among the 200 TRUE genes, whereas
MSAM?2 fails to detect only 60 genes on average. Simu-
lation results of scenarios 3 and 4 are in Additional file 1.
These results are very similar with those of scenarios 1
and 2; MSAMs always perform better than three ver-
sions of SAM.

Real data analysis 1: Fusarium

The Fusarium dataset contains 17,772 genes and nine
samples: three each from control, dtri6, and dtril0
groups [28]. Robust multichip analysis algorithm is used
for condensing the data for the following [33]: extraction
of the intensity measure from the probe level data, back-
ground adjustments, and normalization. The post-

Table 3 Simulation results for 4 cases
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processed dataset used in [28] are stored at PLEXdb
(http://www.plexdb.org) (accession number: FG11) [26].
As this data was from gene mutation experiments, re-
searchers provided a list of genes that are differentially
expressed between control and treatment (dtri6, dtril0)
groups. These genes are as follows: fgd159-500_at (con-
served hypothetical protein), fgd159-520_at (trichothecene
15-O-acetyltransferase), fgd159-540_at (Tri6 trichothecene
biosynthesis positive transcription factor), fgd159-550_at
(TRI5_GIBZE - trichodiene synthase), fgd159-560_at,
fgd159-600_at (putative trichothecene biosynthesis), fgd321-
60_at (trichothecene 3-O-acetyltransferase), fgd4-170_at
(cytochrome P450 monooxygenase), fgd457-670_at (TRI15
— putative transcription factor), fg03534_s_at (trichothecene
15-O-acetyltransferase), fg03539_at (TRI9 — putative tricho-
thecene biosynthesis gene), and fg03540_s_at (TRI11 — iso-
trichodermin C-15 hydroxylase).

In real data analysis sections, we only consider SAM,
MSAM]1, and MSAM2, all of which show good perform-
ance in simulation studies; we found that SAM-wilcoxon
and SAM-tbor are worse than the original SAM in the
previous section. Moreover, we cannot apply SAM-tbor
to this data because this data has only three sample rep-
licates in each group. Like this case, we can see that such
a trim-based method is limited in its applications.

Tables 4 and 5 show the rank of 11 reference genes
that are differentially expressed between the control
group and the treatment groups (dtri6 and dtril0, re-
spectively). The last row in each table indicates the rank
sum of these 11 genes. As we can see, MSAM?2 shows
the best performance because the rank sum of this
method is the smallest among those of the three gene

Scenario 1, n;=5,n,=10

Scenario 1, ny =10, n,=10

RS AUC TRF
Rank cutoff 100
SAM 115,542 0.95 88.93
SAM-w 169,865 0.92 64.43
SAM-tbor 128,588 0.94 87.21
MSAM1 104,236 0.96 92.02
MSAM2 101,705 0.96 92.81

Scenario 2, n;=5,n,=10

RS AUC TRF
Rank cutoff 100
SAM 172,669 0.92 77.88
SAM-w 205,161 0.91 58.14
SAM-tbor 162,252 0.93 80.54
MSAM1 136,442 0.94 87.69
MSAM2 120,594 0.95 9245

RS AUC TRF
200 100 200
13267 83,544 0.97 94.28 14774
96.84 125513 0.95 79.37 118.18
12867 88,765 0.96 9372 14642
140.70 77317 0.97 95.84 153.08
142.47 77,109 0.97 96.05 153.58

Scenario 2, ny =10, n,=10

RS AUC TRF
200 100 200
11038 128,966 0.94 87.97 129.06
85.55 158,618 093 7444 108.06
113.94 110,655 0.95 92.05 13797
12876 104,286 0.96 9423 144.82
139.89 100,887 0.96 95.15 147.48

Note: the best performance in each case is shown in bold type
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Table 4 Rank of genes of interest: control versus dtri6

SAM MSAM1 MSAM2

Gene Xy, di rank  d; rank  d; rank
fgd457-670_at  —4.82 —2545 1 -19.78 1 -862 3
fgd159-550_at  —5.13 -2458 2 —-1920 2 927 2
fgd159-600_at  —538 -1824 6 -1410 6 -812 4
fg03534_s_at —-448 —=1470 7 -1029 7 564 7
fg03540_s_at —-334 -1356 8 —9.97 9 =502 14
fgd321-60_at =371 =1326 9 -9.50 10 -528 10
fg03539_at -380 1321 10 -1007 8 =519 12
fgd159-500_at  —366 —1249 11 -9.01 11 -539 9
fgd159-520_at  -508 -1160 12 -8.70 12 562 8
fgd159-540_at —4.06 —1073 18 -859 13 -503 13
fgd4-170_at 498 =922 26 —7.58 21 =521 N
Rank sum 110 100 93

Note: the best performance in terms of rank sum is shown in bold type

selection methods. In particular, MSAMs improve the
rank of the genes named fgd4-170_at and fgd159-500_at.
For each of these genes, the result for one of their treat-
ment samples is far from those for the other two sam-
ples. From the analysis, it can be asserted that our
proposed methods efficiently identify the genes whose
replicate samples contain an outlier, such as fgd4-170_at
and fgd159-500_at.

Real data analysis 2: Leukemia

Leukemia is a cancer of the bone marrow, where blood
cells are made. In leukemia, abnormal blood cells are
produced in the bone marrow and crowd out other nor-
mal blood cells. Depending on the type of abnormal
blood cells that are multiplying, leukemia can be classi-
fied as acute lymphocytic leukemia (ALL) or acute

Table 5 Rank of interest genes: control versus dtri10

SAM MSAM1 MSAM2

Gene Xi—V; d; rank  d; rank  d; rank
fg03539_at -6.66 -2218 1 =1727 1 -1046 2
fg03534_s_at  —400 -1124 4 -842 4 -568 4
fgd159-560_at -2.76 -9.74 5 -801 5 -522 6
fgd159-600_at —3.28 -877 8 —6.81 8 -492 7
fgd159-520_at  —4.17 -8.12 —6.31 10 —4.65 8
fgd457-670_at —-335 —644 16 -505 18 -383 12
fgd4-170_at -353 =573 21 -4.76 19 -3.68 13
fgd159-550_at  —3.22 —4.89 26 —4.23 22 -342 16
fg03540_s_at  —-235 —484 27 -388 27 -290 23
fgd321-60_at  -162 -3.07 60 -244 64 -1.88 38
fgd159-500_at  —1.73 —-2.88 78 -237 73 -190 37
Rank sum 255 251 166

Note: the best performance in terms of rank sum is shown in bold type
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myeloid leukemia (AML). Identifying the type of
leukemia is very important because patients should re-
ceive different treatments according to the disease type.
[29] studied a generic approach to cancer classification
based on gene expression and provided a list of 50 sig-
nificant genes for classifying ALL and AML. After this
study, this dataset has been widely used in transcrip-
tomic analysis, e.g., [34, 35]. This data are available in
the golubEsets library in Bioconductor [27]. The original
data consist of 38 samples (27 from ALL patients and 11
from AML patients) and 7129 genes. We randomly se-
lected five, seven, and ten samples for each sample type
and repeated this experiment 100 times for averaging
because biological experiments usually have a small
number of samples owing to limitations of time and re-
sources. It is thus important that a method shows good
performance even if the sample size is small.

The simulation results are shown in Table 6. In this
table, RS and TRF values of three gene selection
methods, which were computed by using 50 genes that
are considered informative in [29] over 100 trials. For
each case, the best performance is shown in boldface in
the table. As we can see, MSAM1 or MSAM?2 performs
better than SAM in terms of RS and TRE, regardless of
rank cutoff values. The overall performance of SAM and
MSAM1 are very similar, but MSAMI1 always performs
slightly better than SAM. In the point of view of sample
size, MSAM?2 outperform SAM and MSAMI1 when the
sample size is very small, e.g., 5, and MSAM1 performs
better than SAM and MSAM2 when the sample size is
moderate, e.g., 7 and 10. As the sample size increases, all
of the three methods identify informative genes better.

FDR comparison

In this section, we discuss the FDR estimation proce-
dures of SAM, MSAM1, and MSAM2. FDR is used in
SAM procedure in order to deal with a multiple testing
problem. The SAM interface in R, samr package [20],
provides a significant gene list based on the FDR value
that is estimated by its internal function. We also con-
struct our own interface for MSAMs in R, based on the
samr package, in order to allow for users to apply our
proposed methods to their transcriptome research; see
Additional file 2. Users start the procedure by setting
their desired FDR value (for example, 0.2). We will call
this value ‘estimated FDR’. Based on the estimated FDR,
our procedure calculates the value of corresponding A
and identifies potentially significant genes. In real appli-
cations, we do not know TRUE FDR, so the estimated
FDR is used as a substitute for TRUE FDR. If the esti-
mated value is different from the true value, the number
of genes that are detected using the estimated FDR is
larger or smaller than the true number. Therefore, users
may be interested in how well SAM and MSAMs
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Table 6 Rank sum and top-ranked frequency of informative genes in Leukemia data

# picked samples: 5

# picked samples: 7

# picked samples: 10

Rank sum
SAM MSAM1 MSAM2 SAM MSAM1 MSAM2 SAM MSAM1 MSAM2
22,287 21,585 15,815 11,924 11,790 13,286 5566 5534 11,256
Top-ranked frequency
r SAM MSAM1 MSAM2 SAM MSAM1 MSAM2 SAM MSAM1 MSAM2
20 5.05 529 7.46 7.56 7.86 9.05 11.93 12.15 1034
40 7.74 824 12.72 12.55 12.95 14.48 19.11 20.05 16.70
60 1030 11.19 16.46 1633 17.09 18.02 25.10 25.89 20.23
80 1276 1354 19.02 19.78 20.52 20.63 29.30 30.27 22.71
100 14.67 15.74 21.36 22.59 23.52 23.07 32.72 33.54 24.75
120 16.72 17.75 2343 24.76 25.74 2545 35.65 36.22 26.94
140 1838 1948 25.25 26.90 27.67 27.29 37.77 38.16 2891
160 20.03 20.94 26.79 2867 29.74 2892 39.60 39.92 3048

Note: the best performance for each rank cutoff is shown in bold type

procedures estimate TRUE FDR value. To this end, in
this section, we evaluate SAM, MSAM1, and MSAM2,
focusing on their FDR estimation performances.

Since we know the number of TRUE significant genes
in our simulated datasets, we can compare the estimated
FDR and TRUE FDR in simulation study. After 100 sim-
ulations, we draw a scatter plot of the TRUE FDR versus
the estimated FDR by calculating the average values of
the TRUE FDR for each estimated FDR. We next draw a
smooth curve close to the scatter plot for scenarios 1
and 2 to find the estimation accuracy at various levels of
EDR. In particular, the estimation accuracy at low FDR
is important since researchers generally set FDR at a
small value so as to avoid having a large proportion of
falsely significant genes among the detected genes. For
this reason, we only show the results when the estimated
FDR is lower than 0.5. Figure 8 displays the results; see
the top two plots. As we can see, SAM estimates the
TRUE EDR very accurately and two modified SAMs
slightly overestimate the TRUE FDR. In other words, our
methods have conservative property in their FDR esti-
mation. However, the conservative estimation of FDR
may not cause serious problems for the analysis when
we use FDR as an upper bound of a tolerable error [36].

For such an analysis, the more important thing is how
many non-significant genes are included in the detected
genes. Because the truths are known in the simulated
data, we can calculate the number of falsely detected
genes among the identified genes. With the same num-
ber of total positives, the method with the smallest num-
ber of false positives is the best [36]. Using the plotting
method described above, a smooth curve of the number
of false positive genes versus the total number of identi-
fied genes are drawn. Figure 8 shows the results From
the figure, we can see that MSAMI1 and MSAM2 gives

smaller number of false positive genes than SAM across
all noise level and the total number of identified genes.
From the results, we can say that MSAMs are better
than SAM because they includes the less number of false
genes in the selected gene subset.

When we estimate FDR, we calculate both median
FDR and mean FDR to determine which estimate more
closely approximates the true value. Since the original
samr interface provides the median FDR and 90th per-
centile FDR only, we modified its estimation function
and obtained the median and mean values of FDR. As a
result, we found that the median FDR was closer than
the mean FDR to the TRUE FDR for all methods. This
coincides with results published elsewhere [37], in which
the median FDR was recommended as a criterion for
gene selection methods when the estimated proportion
of differentially expressed genes is greater than 1%, re-
gardless of the sample size. Based on these results, we
use the median value instead of the mean value when es-
timating FDR.

Classification analysis

Once important genes are identified from thousands of
genes, they can be used to predict two different experi-
mental states or responses (for example, cancer and nor-
mal). Therefore, we also examine how well a few top
genes selected by each method identify the true classes.
We attach these results in Additional file 3. In this file,
we introduce 4 datasets we used and explain the con-
struction of classifiers, 6 gene selection methods, 3 per-
formance metrics to be considered in this study. Our
comments on the results are also included. As can be
seen in the file, our proposed methods, MSAMs, show
quite good performances in all cases. In this additional
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section, we prove their competitiveness in classification
tasks, not only in gene selection tasks.

Discussion

In transcriptome data analysis, most studies have been
devoted to developing filter-based methods that are the
simplest and fastest, and most computationally efficient.
Hybrid methods, which are generally the combination of
filter and wrapper methods, have recently gained popu-
larity in the literature [13]. These methods consist of
two steps: First, relevant features are selected by a filter
method and the remaining features are eliminated. Sec-
ond, a wrapper method verify these features and deter-
mine the final feature set that gives high classification
accuracy [16]. In this point of view, filter methods have
a lot of flexibility as they can be combined with not only
any learning algorithm, but also any gene selection
method, such as a wrapper method, resulting in a hybrid
method. The performance of a hybrid method relies to-
tally on the combination of filter and wrapper methods
as well as the classifier [18]. We believe that accurate
gene selection by filter methods clearly allow better

classification accuracy. Therefore, our new filter-based
methods will be useful not only in gene selection, but

also constructing a good classifier in microarray
applications.
Our experiments showed the efficiency of our

methods; it was demonstrated that when the same num-
ber of genes were selected, our methods included the
less number of false genes than the conventional
method. Our results also strongly suggest that these
newly proposed methods outperform the conventional
method and show quite consistent performance, even
with a high noise level and a small sample size. Given
that noisy data and a small sample size are commonly
encountered in microarray studies [30, 38—40], we be-
lieve that our methods will prove useful.

This research was based on the existing interface of
SAM that was modified to apply our proposed methods.
This modified version of the samr package is available in
Additional file 2. We attempted to find a balance be-
tween flexibility and control in the usage of our methods
by allowing users to set particular parameters and by
minimizing the number of modifications to the original
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interface. Additional file 2 includes a detailed explan-
ation of what we changed, but users can easily apply our
methods to their own datasets without reading the
manuscript in the first file, since we provide some simple
and useful examples of detecting differentially expressed
genes using our methods in Additional file 4. We also
provide two real datasets and one simulated dataset used
in this study (see Additional files 5, 6 and 7). All of the
additional files are also available at author’s homepage
(http://home.ewha.ac.kr/~josong/MSAM/index.html).

Conclusions

We have proposed new test methods for identifying
genes that are differentially expressed between two
groups in microarray data and evaluated their perform-
ance using a series of simulated data and two real data-
sets. The results have demonstrated that our proposed
methods identified target genes better than the original
method, SAM, for both simulation studies and real data
analysis. Using our weighting schemes, significant genes
can be selected in a more robust manner by avoiding
the overestimation of variance. In particular, these pro-
cedures are very effective when the given data are noisy
or the sample size is limited. Therefore, they prevent
technical or biological problems that can occur in bio-
logical experiments and data pre-processing from im-
peding accurate gene selection. We believe that our
proposed methods can be applied to various datasets in
other fields if they have characteristics similar to micro-
array data.

Additional files

Additional file 1: Additional simulation results for scenario 3 and 4
(DOCX 399 kb)

Additional file 2: . R code for the modified samr package. (R 29 kb)
Additional file 3: Classification analysis section (DOCX 564 kb)

Additional file 4: R code for some examples of our method for
detecting genes that are differentially expressed. (R 2 kb)

Additional file 5: Fusarium data (CSV 2107 kb)
Additional file 6: Leukemia data (CSV 1168 kb)
Additional file 7: Simulated data (scenario 2) (CSV 2380 kb)
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