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Abstract

Background: With ever-increasing amounts of data produced in biology research, scientists are in need of efficient
data analysis methods. Cluster analysis, combined with visualization of the results, is one such method that can be
used to make sense of large data volumes. At the same time, cluster analysis is known to be imperfect and depends
on the choice of algorithms, parameters, and distance measures. Most clustering algorithms don’t properly account
for ambiguity in the source data, as records are often assigned to discrete clusters, even if an assignment is unclear.
While there are metrics and visualization techniques that allow analysts to compare clusterings or to judge cluster
quality, there is no comprehensive method that allows analysts to evaluate, compare, and refine cluster assignments
based on the source data, derived scores, and contextual data.

Results: In this paper, we introduce a method that explicitly visualizes the quality of cluster assignments, allows
comparisons of clustering results and enables analysts to manually curate and refine cluster assignments. Our
methods are applicable to matrix data clustered with partitional, hierarchical, and fuzzy clustering algorithms.
Furthermore, we enable analysts to explore clustering results in context of other data, for example, to observe
whether a clustering of genomic data results in a meaningful differentiation in phenotypes.

Conclusions: Our methods are integrated into Caleydo StratomeX, a popular, web-based, disease subtype analysis
tool. We show in a usage scenario that our approach can reveal ambiguities in cluster assignments and produce
improved clusterings that better differentiate genotypes and phenotypes.
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Background
Rapid improvement of data acquisition technologies and
the fast growth of data collections in the biological sci-
ences increase the need for advanced analysis methods
and tools to extractmeaningful information from the data.
Cluster analysis is a method that can help make sense of
large data and has played an important role in data mining
for many years. Its purpose is to divide large datasets into
meaningful subsets (clusters) of elements. The clusters
then can be used for aggregation, ordering, or, in biology,
to describe samples in terms of subtypes and to derive
biomarkers. Clustering is ubiquitous in biological data
analysis and applied to gene expression, copy number,
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and epigenetic data, as well as biological networks or text
documents, to name just a few application areas.
A cluster is a group of similar items, where similar-

ity is based on comparing data items using a measure of
similarity. Cluster analysis is part of the standard toolbox
for biology researchers, and there is a myriad of different
algorithms designed for various purposes and with dif-
fering strengths and weaknesses. For example, clustering
can be used to identify functionally related genes based
on gene expression, or to categorize samples into disease
subtypes. Since Eisen et al. [1] introduced cluster analy-
sis for gene expression in 1998, it has been widely used to
classify both, genes and samples in a variety of biological
datasets [2–5].
However, while clustering is useful, it is not always

simple to use. Scientists have to deal with several chal-
lenges: the choice of an algorithm for a particular dataset,
the parameters for these algorithms (e.g., the number of
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expected clusters), and the choice of a suitable similar-
ity metric. All of these choices depend on the dataset and
on the goals of the analysis. Also, methods generally suit-
able for a dataset can be sensitive to noise and outliers in
the data and produce poor results for a high number of
dimensions.
Several (semi)automated cluster validation, optimiza-

tion, and evaluation techniques have been introduced to
address the basic challenges of clustering and to deter-
mine the amount of concordance among certain outcomes
(e.g., [6–8]). These methods try to examine the robust-
ness of clustering results and guess the actual number
of clusters. This task is often accompanied by visualiza-
tions of these measures by histograms or line graphs.
Consensus clustering [9] addresses the task of detect-
ing the number of clusters and attaining confidence in
cluster assignments. It applies clustering algorithms to
multiple perturbed subsamples of datasets and computes
a consensus and correlation matrix from these results to
measure concordance among them, and explores the sta-
bility of different techniques. These matrices are plotted
both as histograms and two-dimensional graphs to assist
scientists in the examination process.
Although cluster validation is a useful method to exam-

ine clustering algorithms it does not guarantee to recon-
struct the actual or desired number of clusters from each
data type. In particular, cluster validation is not able to
compensate weaknesses of cluster algorithms to create
an appropriate solution if the clustering algorithm is not
suitable for a given dataset.
While knowledge about clustering algorithms and their

strengths and weaknesses, as well as automated validation
methods are helpful in picking a good initial configura-
tion, trying out various algorithms and parametrizations
is critical in the analysis process. For that reason, scientists
usually conduct multiple runs of clustering algorithms
with different parameters and compare the varying results
while examining the concordance or discordance among
them.
In this paper we introduce methods to evaluate and

compare clustering results. We focus on revealing speci-
ficity or ambiguity of cluster assignments and embed
our contributions in StratomeX [10, 11], a framework
for stratification and disease subtype analysis that is also
well suited to cluster comparison. Furthermore, we enable
analysts to manually refine clusters and the underlying
cluster assignments to improve ambiguous clusters. They
can transfer entities to better fit clusters, merge similar
clusters, and exclude groups of elements assumed to be
outliers. An important aspect of this interactive process is
that these operations can be informed by considering data
that was not used to run the clustering: when considering
cluster refinements, we can immediately show the impact
on, for example, average patient survival.

In our tool, users are able to conduct multiple runs of
clustering algorithms with full control over parametriza-
tion and examine both conspicuous patterns in heatmaps
and quantify the quality and confidence of cluster assign-
ments simultaneously. Our measures of cluster fit are
independent from the underlying stratification/clustering
technique and allow investigators to set thresholds to clas-
sify parts of a cluster as either reliable, uncertain, or a
bad fit. We apply our methods to matrices of genomic
datasets, which covers a large and important class of
datasets and clustering applications.
We evaluate our tool based on a usage scenario with

gene expression data from The Cancer Genome Atlas and
demonstrate how visual inspection and manual refine-
ment can be used to identify new clusters.
In the following we briefly introduce clustering algo-

rithms and their properties, as well as StratomeX, the
framework we used and extended for this this research,
and other, relevant related work.

Cluster analysis
Clustering algorithms assign data to groups of similar
elements. The two most common classes of algorithms
are partitional and hierarchical clustering algorithms [12];
less frequently used are probabilistic or fuzzy clustering
algorithms.
Partitional algorithms decompose data into non-

overlapping partitions that optimize a distance function,
for example by reducing the sum of squared error met-
ric with respect to Euclidean distance. Based on that,
they either attempt to iteratively create a user-specified
number of clusters, like in k-Means [13] or they uti-
lize advanced methods to guess the number of clusters
implicitly, such as Affinity Propagation [14].
In contrast to that, hierarchical clustering algorithms

generate a tree of similar records by either merging
smaller clusters into larger ones (agglomerative approach)
or splitting groups into smaller clusters (divisive). In the
resulting binary tree, commonly represented with a den-
drogram, each leaf node represents a record, each inner
node represents a cluster as the union of its children.
Inner nodes commonly also store a measure of similarity
among their children. By cutting the tree at a thresh-
old, we are able to obtain discrete clusters from the
similarity tree.
These approaches use a deterministic cluster assign-

ment, i.e., elements are assigned exclusively to one cluster
and are not in other clusters. In contrast, fuzzy cluster-
ing uses a probabilistic assignment approach and allows
entities to belong tomultiple clusters. The degree of mem-
bership is described by weights, with values between 0
(no membership at all) and 1 (unique membership to one
cluster). These weights, which are commonly called prob-
abilities, capture the likelihood of an element belonging
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to a certain partition. A prominent example algorithm is
Fuzzy c-Means [15].
Clustering algorithms make use of a measure of similar-

ity or dissimilarity between pairs of elements. They aim
to maximize pair-wise similarity or minimize pair-wise
dissimilarity by using either geometrical distances or cor-
relation measures. A popular way to define similarity is
a measure of geometric distance based on, for example,
squared Euclidean or Manhattan distance. These mea-
sures work well for “spherical” and “isolated” groups in the
data [16] but are less well suited for other shapes and over-
lapping clusters. More sophisticated methods measure
the cross-correlation or statistical relationship between
two vectors. They compute correlation coefficients that
denote the type of concordance and dependence among
pairs of elements. The coefficients range from -1 (opposite
or negative correlation) to 1 (perfect or positive cor-
relation), whereas zero values denote that there is no
relationship between two elements. The most commonly
used coefficient in that context is the Pearson product-
moment correlation coefficient that measures the linear
relationship by means of the covariance of two vari-
ables. Spearman’s rank correlation coefficient is another
approach to estimate concordance similar to Pearson’s but
uses ranks or scores for data to compute covariances.
The choice of distance measure has an important

impact on the clustering results, as it drives an algo-
rithm’s determination of similarity between elements. At
the same time, we can also use distance measures to iden-
tify the fit of an element to a cluster, by, for example,
measuring the distance of an element to the cluster cen-
troid. In doing so, we do not necessarily need to use the
same measure that was used for the clustering in the first
place. In our technique, we visualize this information for
all elements in a cluster, to communicate the quality of fit
to a cluster.

StratomeX
StratomeX is a visual analysis tool for the analysis of corre-
lations of stratifications [10, 11]. This is especially impor-
tant when investigating disease subtypes that are believed
to have a genomic underpinning. Originally developed as
a desktop software tool, it has since been ported to a
web-based client-server system [17]. Figure 1 shows an
example of the latest version of StratomeX. By integrat-
ing our methods into StratomeX, we can also consider
the relationships of clusters to other datasets, including
clinical data, mutations, and copy number alteration of
individual genes.
StratomeX visualizes stratifications of samples

(patients) as rows (records) based on various attributes,
such as clinical variables like gender or tumor staging,
bins of numerical vectors, such as binned values of copy
number alterations, or clusters of matrices/heat maps.

Within these heat maps, the columns correspond to e.g.,
differentially expressed genes. StratomeX combines the
visual metaphor used in parallel sets [18], with visualiza-
tions of the underlying data [19]. Each dataset is shown as
a column. A header block at the top shows the distribution
of the whole dataset, while groups of patients are shown
as blocks in the columns. Relationships between blocks
are visualized by ribbons whose thickness represents the
number of patients shared across two bricks. This method
can be used to visualize relationships between group-
ings and clusterings of different data, but can equally
be used to compare multiple clusterings of the same
dataset.
StratomeX also integrates the visualization of “depen-

dent data” by using the stratification of a neighboring
column for a different dataset. This is commonly used to
visualize survival data in Kaplan-Meier plots for a partic-
ular stratification, or to visualize expression of a patient
cluster in a particular biological pathway.

Related work
There are several tools to analyze clustering results and
assess the quality of clustering algorithms. A common
approach to evaluate clustering results is to visualize the
underlying data: heatmaps [1], for example, enable users
to judge how consistent a pattern is within a cluster for
high-dimensional data.
Seo at el. [20] introduced the hierarchical clustering

explorer (HCE) to visualize hierarchical clustering results.
It combines several visualization techniques such as scat-
tergrams, histograms, heatmaps and dendrogram views.
In addition to that, it supports dynamic partitioning of
clusters by cutting the dendrogram interactively. HCE
also enables the comparison of different clustering results
while showing the relationship among two clusters with
connecting links. Mayday [21, 22] is a similar tool that,
in contrast to HCE, provides a wide variety of clustering
options.
CComViz [23] is a cluster comparison application that

uses the parallel sets technique to compare clustering
results on the same data, and hence is related to the orig-
inal StratomeX. In contrast to our proposed technique it
does not allow for internal evaluation, cluster refinement,
or the visualization of cluster fits.
Lex et al. [24] introduced Matchmaker, a method that

enables both, comparisons of clustering algorithms, and
clustering and visualization of homogeneous subsets,
with the intention of producing better clustering results.
Matchmaker uses a hybrid heatmap and a parallel sets or
parallel coordinates layout to show relationships between
columns, similar to StratomeX. VisBricks [19] is an exten-
sion of this idea and provides multiform visualization for
the data represented by clusters: users can choose which
visualization technique to use for which cluster.
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Fig. 1 Screenshot of Caleydo StratomeX, which forms the basis of the technique introduced in this paper showing data from the TCGA Kidney Renal
Clear Cell Carcinoma dataset [4]. Each column represents a dataset, which can either be categorical, like in the second column from the left which
shows tumor staging, or based on the clustering of a high-dimensional dataset, like the two columns on the right, showing mRNA-seq and RPPA
data, respectively. The blocks in the columns represent groups of records, where matrices are visualized as heat maps, categories with colors, and
clinical data as Kaplan-Meier plots. The columns showing Kaplan-Meier plots are “dependent columns”, i.e., they use the same stratification as a
neighboring column. The Kaplan-Meier plots show survival times from patients. The first column shows survival data stratified by tumor staging,
where, as expected, higher tumor stages correlate with worse outcomes

In contrast to these techniques, Domino [25] provides a
completely flexible arrangement of data subsets that can
be used to create a wide range of visual representations,
including the Matchmaker representation. It is, however,
less suitable for cluster evaluation and comparison.
A tool that addresses the interactive exploration of

fuzzy clustering in combinationwith biclustering results is
FURBY [26]. It uses a force-directed node-link layout, rep-
resenting clusters as nodes and the relationship between
them as links. The distance between nodes encodes
the (approximate) similarity of two nodes. FURBY also
allows users to refine or improve fuzzy clusterings by
choosing a threshold that transforms fuzzy clusters into
discrete ones.
Tools such as ClustVis [27] and Clustrophile [28] take a

more traditional approach to cluster visualization by using
scatterplots based on dimensionality reduction (e.g., using
PCA) and/or heat maps to visualize clustering results.
While these tools are well suited to evaluate a particular
clustering result, they are less powerful with regards to
comparison between clusterings.

A tool that is more closely related to our work is
XCluSim [29]. It focuses on visual exploration and vali-
dation of different clustering algorithms and the concor-
dance or disconcordance among them. It combines several
small sub-views to form a multiview layout for cluster
evaluation. It contains dendrogram and force-directed
graph views to show concordance among different cluster-
ing results and uses colors to represent clusters, without
showing the underlying data. It offers a parallel sets view
where each row represents one clustering result and thick
dark ribbons depict which groups are stable, i.e., con-
sistent throughout all clustering results. In contrast to
XCluSim, our method integrates cluster metrics with the
data more closely and can also bring in other, related
data sources, to evaluate clusters. Also, XCluSim does not
support cluster refinement.
Table 1 provides a comparison between these most

closely related tools and our technique.
Our methods are also related to silhouette plots, which

visualize the tightness and separation of the elements in
a cluster [30]. Silhouette plots, however, work best for
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Table 1 Comparison of our technique to the most important existing tools with respect to basic data-processing and visualization
features, clustering options, cluster visualization features, and software properties

General features This work StratomeX [10, 11] CComViz [23] XCluSim [29] ClustVis [27]

Support of multiple genomic data types ✓ ✓ ✓ ✓ ✓

Integration of contextual data ✓ ✓ ✗ ✗ ✗

Import of custom datasets ✓ ✓ ✓ ✓ ✓

Preprocessing of datasets ✗ ✗ ✗ ✓ ✓

Interactive plots / Linking and brushing ✓ ✓ ✗ ✓ ✗

Customizable plots ✓ ✓ ✗ ✓ ✓

Automated removal of visual clutter ✓ ✓ ✓ ✓ ✗

Clustering features

Dynamic application of clustering ✓ ✓ ✗ ✓ ✓

Interactive cluster refinement ✓ ✗ ✗ ✗ ✗

Hard/partitional clustering ✓ ✗ ✗ ✓ ✓

Hierarchical clustering ✓ ✗ ✗ ✓ ✗

Fuzzy clustering ✓ ✗ ✗ ✗ ✗

Density Based Clustering ✗ ✗ ✗ ✓ ✗

Cluster visualization

Visualize multiple stratifications ✓ ✓ ✓ ✓ ✗

Detailed view of clusters / stratifications ✓ ✓ ✗ ✓ ✗

Visualization of cluster fits ✓ ✗ ✗ ✗ ✗

PCA plots ✗ ✗ ✗ ✗ ✓

Cluster results comparison /
evaluation

✓ ✓ ✓ ✓ ✗

Stable cluster analysis ✓ ✗ ✓ ✓ ✗

Software properties

Web-based software / tool ✓ ✗ ✗ ✗ ✓

Open source ✓ ✓ ✗ ✗ ✓

Actively developed ✓ ✗ ✗ ✓ ✓

The most important features for our technique are highlighted in bold. Note that our technique does not support preprocessing, density based clustering, and PCA plots, but
otherwise is the most comprehensive tool. Feature groups and important features are shown in bold

geometric distances and clearly separated and spherical
clusters, whereas our approach is more flexible in terms
of supporting a variety of different measures of cluster
fit. Also, silhouette plots are typically static, however, we
could conceivably integrate the metrics used for silhou-
ette plots in our approach. iGPSe [31], for example, is
a system similar to StratomeX that integrates silhouette
plots.

Implementation
Requirements
Based on our experience in designing multiple
tools for visualizing clustered biomolecular data
[10, 11, 19, 24, 25, 32], conversations with bioinfor-
maticians, and a literature review, we elicited a list of
requirements that a tool for the analysis of clustered
matrices from the biomolecular domain should address.

R I: Provide representative algorithms with control
over parametrization. A good cluster analysis tool
should enable investigators to flexibly run various
clustering algorithms on the data. Users should have
control over all parameters and should be able to
choose from various similarity metrics.

R II: Work with discrete, hierarchical and probabilis-
tic cluster assignments. Visualization tools that
deal with the analysis of cluster assignments should
be able to work with all important types of clus-
tering, namely discrete/partitional, hierarchical, and
fuzzy clustering. The visualization of hierarchical
and fuzzy clusterings is usually more challenging:
to deal with hierarchical clusterings a tool needs to
enable dendrogram cuts, and to address the proper-
ties of fuzzy clusterings, it must support the analysis
of ambiguous and/or redundant assignments.
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R III: Enable comparison of cluster assignments.
Given the ability to run multiple clustering algo-
rithms, it is essential to enable the comparison
of the clustering results. This will allow analysts
to judge similarities and differences between algo-
rithms, parametrizations, and similarity measures. It
will also enable them to identify stable clusters, i.e.,
those that are robust to changes in parameters and
algorithms.

R IV: Visualize fit of records to their cluster. For the
assessment of confidence in cluster assignments, a
tool should show the quality of cluster assignments
for its records and the overall quality for the clus-
ter. This enables analysts to judge whether a record
is a good fit to a cluster or whether it’s an outlier
or a bad fit.

R V: Visualize fit of records to other clusters. Cluster-
ing algorithms commonly don’t find the perfect fit
for a record. Hence, it is useful to enable analysts
to investigate if particular records are good fits for
other clusters, or whether they are very specific to
their assigned clusters. This allows users to consider
whether records should be moved to other clusters,
whether a group of records should be split off into
a separate cluster, and more generally, to evaluate
whether the number of clusters in a clustering result
is correct.

R VI: Enable refinement of clusters. To enable the
improvement of clusters, users should be able to
interactively modify clusters. This includes shifting
of elements to better fitting clusters based on simi-
larity, merging clusters considered to be similar, and
excluding non-fitting groups from individual groups
or the whole dataset.

R VII: Visualize context for clusters. It is important to
explore evidence for clusters in other data sources. In
molecular biology applications in particular, datasets
rarely stand alone but are connected to a wealth of
other (meta)data. Judging clusters based on effects
in other data sources can indicate practical relevance
of a clustering, or can reveal dependencies between
data sets and hence is important for validation and
interpretation of the results.

Based on these requirements, our tool extends
StratomeX with new clustering features for cluster
evaluation and cluster improvement. Table 1 illustrates
how our tool differs from existing clustering tools by
comparing their set of features with our work.

Design
We designed our methods to address the aforementioned
requirements while taking into account usability and good
visualization design practices. Our design was influenced

by our decision to integrate the methods into Caleydo
StratomeX as StratomeX is a well-established tool for sub-
type analysis. A prototype of our methods is available
at http://caleydo.org/publications/2017_bmc_clustering/.
Please also refer to the Additional file 1: supplementary
video for an introduction and to observe the interaction.
We developed a model workflow for the analysis and

refinement of clustered data, illustrated in Fig. 2. This
workflow is made up of four core components: (1) running
a clustering algorithm, (2) visual exploration of the results,
(3) manual refinement of the clustering results, and (4)
interpretation of the results.

1. Cluster creation. Investigators start by choosing a
dataset and either applying clustering algorithms
with desired parametrization or selecting exist-
ing, precomputed clustering results. The clustered
dataset is added to potentially already existing
datasets and clusterings.

2. Visual exploration. Once a dataset and clustering are
chosen, analysts explore the consistency of clus-
ters and/or compare the results to other clustering
outcomes to discover patterns, outliers or ambigui-
ties. If there are not confident about the quality of
the result, or want to see an alternative clustering,
they can return to step 1 and create new clusters
by adjusting the parameters or selecting a different
algorithm.

3. Manual refinement. If analysts detect records that are
ambiguous, they can manually improve clusters to
create better stratifications in a process that iterates
between refinement and exploration. The refine-
ment process includes splitting, merging and remov-
ing of clusters.

4. Result interpretation. Once clusters are found to be
of reasonable quality, the analysts can proceed to
interpret the results. In the case of disease subtype

Fig. 2 The workflow for evaluating and refining cluster assignments:
(1) running clustering algorithms, (2) visual exploration of clustering
results by investigating cluster quality and comparing cluster results
(3) manual refinement and improvement of unreliable clusters and
(4) final interpretation of the improved results considering contextual
data

http://caleydo.org/publications/2017_bmc_clustering/
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analysis with StratomeX, they can assess the clin-
ical relevance of subtypes, or explore relationships
to other genomic datasets, confounding factors, etc.
Of course, supplemental data can also inform the
exploration and refinement steps.

We now introduce a set of techniques to address our
proposed requirements within this workflow.

Creating clusters
Users are able to create clusters by selecting a dataset from
a data browser window and choosing an algorithm and
its configuration (see Fig. 3). In our prototype, we provide
a selection of algorithms commonly in bioinformatics,
including k-Means, (agglomerative) hierarchical cluster-
ing, Affinity Propagation, and Fuzzy c-Means. Each tab
represents one clustering technique with corresponding
parameters, such as the number of clusters for k-Means,
the linkage method for hierarchical clustering, or the
fuzziness factor for Fuzzy c-Means, addressing R I. Each
execution of a clustering algorithm adds a new column
to StratomeX, so that multiple alternative results can be
easily compared.

Cluster evaluation
In our application, there are two components that enable
analysts to evaluate cluster assignments: (1) the display
of the underlying data in heatmaps or other visualiza-
tions and (2) the visualizations of cluster fit alongside the
heatmap, as illustrated in Fig. 4. The cluster fit data is
either a measure of similarity of each record to the clus-
ter centroid, or, if fuzzy clustering is used, the measure of
probability that a record belongs to a cluster. Combining
heatmaps and distance data allows users to relate
patterns or conspicuous groups in the heatmap to their
measure of fit.
To evaluate the fit of each record to its cluster (R IV),

we use a distance view shown right next to the heatmap
(orange in Fig. 4). It displays a bar-chart showing the dis-
tances of each record to the cluster centroid. Each bar is

Fig. 3 Example of the control window to apply clustering algorithms
on data. Different algorithms are accessible using tabs. Within the
tabs, the algorithm can be configured using algorithm-specific
parameters and general distance metrics

Data All Cluster DistancesDistance
Views

Group 2

Group 1

Group 0

Between-Cluster DistancesHeatmaps
Group 0 Group 1 Group 2

Within-Cluster
Distances

Fig. 4 Illustration of heatmaps, within-cluster, and between-cluster
distance views. The heat maps (green, left) show the raw data
grouped by a clustering algorithm. The within-cluster distance view
shows the quality of fit of each record to its cluster (orange, middle).
The between-cluster distance view shows the quality of fit of each
record to each other cluster (violet, right). This enables analysts to
spot whether a record would also fit to another cluster

aligned with the rows in the heatmap and thus represents
the distance or correlation value of the corresponding
record to the cluster mean. The length of a bar encodes
the distance, meaning that short bars indicate well fitting
records while long bars indicate records that are a poor
fit. In the case of cross-correlation, long bars represent
records with high concordance whereas small bars indi-
cate a disconcordance among them. While the absolute
values of distances are typically not relevant for judging
the fit of elements to the cluster, we show them onmouse-
over in a tool-tip. The heatmaps and distance views are
automatically sorted from best to worst fit which makes
identifying the overall quality of a cluster easy. In addition
to that, we globally scale the length of each bar according
to its distance measure, so that the largest bar represents
the maximal computed distance measure across all dis-
tance views. Note that the distance measure used for the
distance view does not have to be the one that was used
for clustering. Figure 5 shows a montage of different dis-
tance measures for the same cluster in distance views.
Notice that while some trends are consistent across many
measures, this is not the case for all measures and all pat-
terns, illustrating the strong influence of the choice of a
similarity measure.
Related to cluster fit is the question about the speci-

ficity of a record to a cluster (R V). It is conceivable that
a record is a fit for multiple clusters, or that it would be
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Fig. 5 A montage of distance views showing different distance
metrics for the same cluster. From left to right: Euclidean distance,
Cranberry distance, Chebyshev distance, and Pearson correlation.
Note that long bars for Pearson correlation indicate high similarity.
This illustrates that different distance metrics are likely to produce
different results

a better fit to another cluster. To convey this, we com-
pute the distances of each record to all other cluster
centroids and visualize it in a matrix of distances to the
right of the within-cluster distance view (violet in Fig. 4).
In doing so, we keep the row associations intact. We do
not display the within-cluster distances in the matrix,
which results in empty cells along the diagonal. This view
helps analysts to investigate ambiguous records and sup-
ports them in judging whether the number of clusters
is correct: if a lot of records have high distances to all
clusters, maybe they should belong to a separate clus-
ter. On demand, the heatmaps can also be sorted by any
column in the between-cluster distance matrix. As an
alternative to the bar charts, we also provide a grayscale
heat map for between-cluster distances (see Fig. 6),
which scales better when the algorithm produced many
clusters.

Visualizing probabilities for fuzzy clustering Since our
tool also supports fuzzy clustering (R II) we provide a
probability view, similar to the distance view, to show
the degree of membership of each record to all clus-
ters. In the probability view, the bars show the probability
of a record belonging to a current cluster, which means
that long bars always indicate a good fit. As each record
has a certain probability to belong to each cluster, we
use a threshold above which a record is displayed as a
member of a cluster. Records can consequently occur in
multiple clusters. Records that are assigned to multiple
clusters are highlighted in purple, as shown in Fig. 7,
whereas unique records are shown in green. As for dis-
tance views, we also show probabilities of each record

Fig. 6 Example of five clusters, shown in heat maps. Next to the heat
maps, small bar charts show the within-cluster distances which
enables an analyst to evaluate the fit of individual elements to the
cluster. The records are sorted by fit, hence the worst fitting records
are shown at the bottom of each cluster. The grayscale heat map on
the right shows the distance of each record to each other cluster, i.e.,
the first column shows the fit to the first cluster, the second column
shows the fit to the second cluster, etc. Columns that correspond to
the within-cluster distances are empty

belonging to each cluster in a matrix, as shown in Fig. 7
on the right.

Cluster refinement
Once scientists have explored the cluster assignments,
the next step is to improve the cluster assignments if
necessary (R VI).
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Fig. 7 Example of three clusters produced by fuzzy clustering, shown
in heatmaps. The probabilities of each patient belonging to their
cluster are shown to their right. Green bars represent elements unique
to the cluster while purple indicates elements belonging to more
clusters. The between-cluster probabilities are displayed on the right

Splitting clusters Not all elements assigned to a cluster
fit equally well. It is not uncommon that a group of ele-
ments within a cluster is visibly different from the rest, and
the clusters would be of higher quality if it were split off.
To support splitting of clusters, we extended StratomeX to
enable analysts to define ambiguous regions in a cluster.
The distance views contain adjustable sliders that enable
analysts to select up to three regions to classify records
into good, ambiguous, and bad fit (the green, light-green,
and bright regions in Fig. 8). By default, the sliders are
set to the second and third quartile of the within-cluster
distance distribution. Based on these definitions, analysts
can split the cluster, which extracts the blocks into a sep-
arate column in StratomeX, as illustrated in Fig. 8). This
new column is treated like a dataset in its own right, such

Sliders

Good Fit

Uncertain Fit

Bad Fit

Fig. 8 Example of a cluster being split into three different subsets.
The dark green region at the top corresponds to record that fit
reliably to the cluster, the light-green group in the middle
corresponds to records that are uncertain with respect to cluster fit,
the white group at the bottom corresponds to records that do not fit
well with the cluster. The black sliders on top of the bar charts can be
used to manually adjust these regions. The split clusters are shown as
a separate column on the right

that the distance views show the distances to the new cen-
troids. However, these splits are not static: it is possible to
dynamically adjust both sliders and hence the correspond-
ing cluster subsets. In the context of fuzzy clustering,
clusters can also be split based on probabilities.
Splitting only based on distances, however, does not

guarantee that the resulting groups are as homogeneous
as they could be: all they have in common is a certain
distance range from the original centroid, yet these dis-
tances could be in opposite “directions”. To improve the
homogeneity of split clusters, we can dynamically shift the
elements between the clusters, so that the elements are in
the cluster that is closest to them using an approach simi-
lar to the k-Means algorithm. Shifting is based on the same
similarity metric that was used to produce the original
stratification.

Merging and exclusion Our application also has the
option to merge clusters. Especially when several clusters
are split first, it is likely that some of the new clusters
exhibit a similar pattern, and that their distances also indi-
cate that they could belong together. This problem of too
many clusters for the data can be addressed using a merge
operation. We also support cluster exclusion since there
might be groups or individual records that are outliers and
shouldn’t belong to any cluster.

Integration with StratomeX
The original StratomeX technique already enables clus-
ter comparison R III through the columns and ribbons
approach. It also is instrumental in bringing in contextual
information for clusters R VII, as mentioned before. This
can, for example, be used to asses the impact of refined
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clusterings on phenotypes. Figure 9 shows the impact of a
cluster split on survival data, for example.

Technical realization
Our methods are fully integrated with the web-version
of Caleydo StratomeX. The software version is based on
Phovea [33], an open source visualization platform tar-
geting biomedical data. It is based on a client-server
architecture with a server runtime in Python using the
Flask framework and a client runtime in JavaScript and
Typescript. Phovea supports the development of client-
side and server-side plugins to enhance web tools in a
modular manner. The clustering algorithms and distance
computation used in this work are implemented as server-
side Phovea plugins in Python using the SciPy and NumPy
libraries. The front end, including the distance and matrix
views, is implemented as a client-side Phovea plugin and
uses D3 [34] to dynamically create the plots. The source
code is released under the BSD license and is available at
http://caleydo.org/publications/2017_bmc_clustering/.

Results
A common question in clustering is how to determine the
appropriate number of clusters in the data. While there
are algorithmic approaches, such as the cophenetic corre-
lation coefficient [35], to estimate the number of clusters,
visual inspection is often the initial step in confirming
that a clustering algorithm has separated the elements
appropriately. In this usage scenario we use our approach
toinspect and refine a clustering result provided by an

external clustering algorithm and to confirm our results
with an integrated clustering algorithm.
We obtained mRNA gene expression data from the

glioblastoma multiforme cohort of The Cancer Genome
Atlas study [2] as well as clustering results generated using
a consensus non-negative matrix factorization (CNMF)
[36]. Verhaak et al. [2] reported four expression-derived
subtypes in glioblastoma, which motivated us to review
the automatically generated, uncurated, CNMF cluster-
ing results with 4 clusters. Visual inspection indicates that
clusters named Group 0 and Group 1 contain patients that
appear to have expression profiles that are very different
from the other patients (see Fig. 10c). Using the within-
cluster distance visualization and sorting the patients in
those clusters according to the within-cluster distance
reveals that the expression patterns are indeed very dif-
ferent and that the within-cluster distances for those
patients are also notably larger than for the other patients.
Resorting the clusters by between-cluster distances to the
other 3 clusters, respectively, shows that these patients
are also different from the patients in the other clusters
(see Fig. 10).

Manual cluster refinement Using the sliders in the
within-cluster distance visualization and the cluster split-
ting function we separated aforementioned patients from
the clusters named Group 0 and Group 1. Because their
profiles are very similar, we merged them into a single
cluster using the cluster merging function (see Fig. 10e).
The expression profiles in the resulting new cluster look

Fig. 9 Overview of the improved StratomeX. a The first column is stratified into three groups using affinity propagation. b Distances between all
clusters are shown. c The second column shows the same data but is clustered differently using a hierarchical algorithm. d Notice that Group 2 in
the second column is a combination of parts of Group 1 and Group 2 of the first column. eManual cluster refinement: The second block (Group
1) of the second column is split, and we see clearly that the patterns in the block at the bottom is quite different from the others. f This block also
exhibits a different phenotype: the Kaplan-Meier plot shows worse outcomes for this block. g The rightmost column shows the same dataset
clustered with a fuzzy algorithm. h Notice that the second cluster contains mostly unique records (most bars are green), while the other two clusters
share about a third of their records (violet)

http://caleydo.org/publications/2017_bmc_clustering/
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Fig. 10 Results of manual cluster refinement and comparison with additional data types and clustering results. a The original clustering is shown in
the leftmost column. b The records in the clusters are sorted by within-cluster distances, c the bottom sections of the clusters contain the
expression profiles with poor cluster fit. d The second column from the left shows the manually refined clustering with 5 clusters. e Here, poorly
fitting records from two groups of the original clustering were split off and subsequently merged. f The Kaplan-Meier plots show patient survival for
each of the five clusters in the second column. g The three rightmost columns are k-Means clustering results computed with the software. Notice
that the manually derived cluster e consistently appears in the k-means clustering results

homogeneous and are visibly different from the expres-
sion profiles in the other four clusters. We examined
patient survival times (Fig. 10f) across the five clusters and
did not observe any notable differences in the new cluster.
Since the web-based prototype of StratomeX is currently
still lacking the guided exploration features of the origi-
nal standalone application [11], we were unable to identify
a meaningful correlation between the new cluster and
mutation and copy number calls or to identify significantly
overlapping clusters in other data types.
However, we also compared the five clusters derived

from the original four-cluster CNMF result with other
clustering results computed on the same gene expres-
sion matrix (Fig. 10g) and found, for example, that three-,
four-, and five-cluster k-Means clustering results using
Euclidean distance and the k-means algorithm include
almost exactly the same cluster that we identified in
the CNMF clustering results using visual inspection and
manual refinement.

Discussion
Our methods are limited by the inherent limitations of
StratomeX: when working with a large number of clus-
ters, ribbons between the individual columns can result
in clutter. We observe that 10-15 clusters can be used
without too much clutter. Also, the number of columns
is limited to about ten on typical displays. In terms of

computational scalability, we found that even the compu-
tationally complex clustering algorithms such as affinity
propagation execute almost interactively for a dataset with
about 500× 1500 entries, and complete within one to two
minutes for a genomic dataset with about 500 × 12, 000
entries on our t2.micro Amazon EC2 instance with 1 CPU
and 1 GB memory. We find that the performance of our
technique is in line with or superior to related techniques
(see Table 1).
Our implementation currently cannot appropriately

compare columns clustered with fuzzy algorithms, as the
ribbons connecting the columns assume that every row
exists only once. We plan on addressing this limitation in
the future, either by allowing overlapping ribbons, or by
using a separate visualization optimized to visualize set
overlaps, such as UpSet [37].

Conclusions
Clustering is an important yet inherently imperfect pro-
cess. In this paper we have introduced methods to eval-
uate and refine clustering results for the application to
matrix data, as it is commonly used in molecular biol-
ogy. In contrast to previous approaches, we combine
visualization of the data directly with visualization of
cluster quality and enable the comparison of multiple
clustering results. We also allow interactive refinement
of clusters while associating the updated clusters with
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contextual data, which allows analysts to judge clusters
not only by the data used for clustering, but also based on
effects observable in related datasets. We argue that our
tool is thus the most comprehensive technique to refine,
create, evaluate, compare, and contextualize clustering
results.
In the future, we plan on adding additional clustering

algorithms, as different algorithms have complementary
strengths and weaknesses, and explore the possibility of
using distributed clustering algorithms to scale to even
bigger datasets. Also, density based clustering algorithms
[38], which treat outliers separately would be valuable to
integrate and would mandate an extension of our visu-
alization method. We also plan on addressing cases with
large numbers of clusters, a current limitation of our
approach, which, however, will likely require a different
visualization approach.
We plan on enabling analysts to cluster individual

blocks, i.e., to run a clustering algorithm on the subset
of records that were previously assigned to a cluster. This
approach could be used to identify groups of outliers in
clusters, which could then be split off and re-integrated
with other clusters.
Finally, we will extend our work to datasets that are not

in matrix form. This will require novel visual representa-
tions, as there is no equivalent to the well-defined borders
of cluster blocks when clustering graphs or textual data.

Availability and requirements
Project name: Caleydo StratomeX
Project home page: http://caleydo.org/publications/
2017_bmc_clustering/
Operating system(s): web-based
Programming language: Python, JavaScript
Other requirements: none
License: The 3-Clause BSD License

Additional file

Additional file 1: We provide a Supplementary Video showing an
interactive demonstration of the technique. (MP4 44,339 kb)
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