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Abstract

Background: Deep sequencing of lymphocyte receptor repertoires has made it possible to comprehensively profile
the clonal composition of lymphocyte populations. This opens the door for novel approaches to diagnose and
prognosticate diseases with a driving immune component by identifying repertoire sequence patterns associated with
clinical phenotypes. Indeed, recent studies support the feasibility of this, demonstrating an association between
repertoire-level summary statistics (e.g., diversity) and patient outcomes for several diseases. In our own prior work, we
have shown that six codons in VH4-containing genes in B cells from the cerebrospinal fluid of patients with relapsing
remitting multiple sclerosis (RRMS) have higher replacement mutation frequencies than observed in healthy controls or
patients with other neurological diseases. However, prior methods to date have been limited to focusing on repertoire-
level summary statistics, ignoring the vast amounts of information in the millions of individual immune receptors
comprising a repertoire. We have developed a novel method that addresses this limitation by using innovative
approaches for accommodating the extraordinary sequence diversity of immune receptors and widely used machine
learning approaches. We applied our method to RRMS, an autoimmune disease that is notoriously difficult to diagnose.

Results: We use the biochemical features encoded by the complementarity determining region 3 of each B cell receptor
heavy chain in every patient repertoire as input to a detector function, which is fit to give the correct diagnosis for each
patient using maximum likelihood optimization methods. The resulting statistical classifier assigns patients to one of two
diagnosis categories, RRMS or other neurological disease, with 87% accuracy by leave-one-out cross-validation on training
data (N = 23) and 72% accuracy on unused data from a separate study (N = 102).

Conclusions: Our method is the first to apply statistical learning to immune repertoires to aid disease diagnosis, learning
repertoire-level labels from the set of individual immune repertoire sequences. This method produced a repertoire-based
statistical classifier for diagnosing RRMS that provides a high degree of diagnostic capability, rivaling the accuracy of
diagnosis by a clinical expert. Additionally, this method points to a diagnostic biochemical motif in the antibodies of
RRMS patients, which may offer insight into the disease process.
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Background

Lymphocytes express immune receptors on their cell
surface, the genes of which are somatically generated in
developing lymphocytes through a DNA recombination
process known as V(D)J recombination. V(D)] recom-
bination assembles variable (V), diversity (D), and join-
ing (J) gene segments into mature, composite genes. The
diversity of gene sequences generated by V(D)] recom-
bination is huge as a result of varying combinations of
V, D, and | gene segments, as well as sequence modifica-
tions (e.g., exonucleolytic activity and non-templated nu-
cleotide addition) at the junctions of rearranged gene
segments. As a result, each individual has millions of
unique immune receptor genes. Somatic generation of a
tremendously diverse repertoire of immune receptors
enables effective immune responses against an essen-
tially infinite array of antigens, such as those derived
from pathogens or tumors, but it can also lead to detri-
mental effects, such as autoimmune responses and organ
rejection following transplantation. The composition of
immune repertoires shifts in response to such immuno-
logical events, and thus reflects previous and ongoing
immune responses.

Deep sequencing of immune repertoires has made it
possible to comprehensively profile the clonal compos-
ition of lymphocyte populations, opening the door for
novel approaches to diagnose and prognosticate diseases
with a driving immune component by identifying reper-
toire sequence patterns associated with important clin-
ical phenotypes. Recent studies support the feasibility of
this approach. Patterns in the relative abundances of V
gene segment types in a repertoire have been observed
in association with various autoimmune diseases [1-3],
as well as with metastasis-free/progression-free survival
in basal-like and HER2-enriched breast cancer subtypes
and the immunoreactive ovarian cancer subtype [4].
Repertoire diversity has been associated with prognosis
in gastric cancer [5] and with outcome following Ipili-
mumab treatment for metastatic melanoma [6]. We have
demonstrated that VH4-containing genes in B cell reper-
toires from the cerebrospinal fluid of RRMS patients
have higher replacement mutation frequencies at six co-
dons than those in healthy controls [2, 7]. The sum of Z
scores across the six codons can distinguish RRMS pa-
tients from those with other neurological diseases
(OND) [7].

The methods applied to date for associating repertoire
patterns with clinical phenotypes have focused on
repertoire-level features, ignoring the vast amounts of
information available in the millions of individual im-
mune receptors comprising a repertoire. This has been
due to difficulties accounting for the tremendous diver-
sity of immune repertoires and the lack of methods for
mapping the large number of individual sequences in a
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repertoire to a single phenotype label. We have devel-
oped a novel method that addresses both limitations by
combining widely used machine learning methods with
innovative approaches for accommodating the extraor-
dinary sequence diversity of immune receptors and for
aggregating the set of predictions made for each se-
quence in a repertoire.

We applied our method to RRMS, a subtype of mul-
tiple sclerosis (MS). MS is an autoimmune disease that
is notoriously difficult to diagnose. It is believed to be
the result of immune cells attacking the myelin
insulation around nerve cells, leaving patients with phys-
ical and cognitive impairments. Unfortunately, there are
no symptoms, physical findings, or lab tests that provide
a definitive MS diagnosis. Patients have to demonstrate
findings consistent with MS and simultaneously have al-
ternative diagnoses be excluded [8]. Thus, reaching an
MS diagnosis can be a slow process, but early detection
is needed, because prompt intervention can significantly
slow the progression of the disease [9].

We applied our method to B cell receptor (BCR) heavy
chain genes to develop a statistical classifier that assigns
patients to one of two diagnosis categories, RRMS or
OND, based on the BCR heavy chain biochemical fea-
tures. The classifier has 87% accuracy by leave-one-out
cross-validation on training data (N = 23) and 73% ac-
curacy on unused data from a separate study (N = 102).
These results demonstrate the utility of our new method
for identifying repertoire-based signatures with diagnos-
tic potential.

Results

Our overall approach was as follows. We used two data
sets, one as training data and one as validation data
(Table 1). The training data set was used with exhaustive
leave-one-out cross-validation for model selection to
identify the best model from among seven models tested
(Table 2). The seven models correspond to different ap-
proaches to representing immune receptor sequences.
The model with highest classification accuracy by cross-
validation was selected for application to the validation
data set.

The training data set consisted of 23 patients, 11 with
RRMS and 12 with OND (2015 Study, Table 1). The val-
idation data set consisted of 102 patients, 60 with RRMS
and 42 with OND (2017 Study, Table 1). For both

Table 1 Repertoire sequencing data sets used to develop and
test the MS classifier. The number of patients in each study with
each diagnosis is shown

Relapsing Remitting Other Neurological

Multiple Sclerosis Disease
2015 Study (7] 1 12
2017 Study 60 42
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Table 2 Sequence Representations used for Model Selection.
CDR3 sequences were cut into snippets of varying length and
represented as DNA sequence, amino acid sequence, or Atchley
factors [10]. Classification accuracy results are reported as the
fraction of patients for which the model’s prediction of the
diagnosis is correct

Sequence Representation  Classification Accuracy on
the Training Data Set by
Exhaustive 1-Holdout

Cross-Validation

Snippet Length

4 Amino Acids  Atchley Factors 11/23 = 47.8%
5 Amino Acids  Atchley Factors 15/23 = 65.2%
6 Amino Acids  Atchley Factors 20/23 = 87.0%
7 Amino Acids  Atchley Factors 14/23 = 60.9%

DNA Nucleotides
DNA Nucleotides

12/23 = 52.2%
8/23 = 34.8%
15/23 = 65.2%

2 DNA Triplets
6 DNA Triplets

6 Amino Acids  Amino Acid Residue

studies, B cell repertoires were collected and processed
as described in [7]. Briefly, samples were collected from
patient cerebrospinal fluid (CSF) (Fig. la), and VH4-
containing BCR heavy chain genes were sequenced using
next generation sequencing (Fig. 1b). VH4-containing
heavy chains were targeted because previous studies
found elevated VH4 expression in patients with RRMS
[2, 7]. Sequence pre-processing was performed as de-
scribed in Methods to identify complementarity deter-
mining region 3 (CDR3) sequences for input into our
method.

Representing immune receptor sequences for statistical
classification

We utilized the CDR3 sequence of each heavy chain
gene, because it is the somatically generated portion of
the gene and the primary determinant of the antigen
binding specificity encoded by the gene. To accommo-
date the varying length of CDR3, each CDR3 sequence
was cut into snippets of equal length (i.e., k-mers). We
considered snippet lengths of 2, 4, 5, 6, and 7 amino
acids or codons. For each CDR3, the full set of overlap-
ping snippets was used. We considered three different
sequence representations: DNA sequence, amino acid
sequence, and a representation based on Atchley factors
(Fig. 1c). There are five Atchley factors derived from a
set of over 50 amino acid properties by dimensional-
ity reduction to identify clusters of amino acid prop-
erties that co-vary [10]. The five Atchley factors
correspond loosely to polarity, secondary structure,
molecular volume, codon diversity, and electrostatic
charge. For the Atchley factor representation, each
amino acid in a snippet is represented by a vector of
its five Atchley factor values. We conducted model
selection over seven combinations of snippet length
and sequence representation (Table 2).
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Fig. 1 Study Overview (a) B cells are collected from patient cerebrospinal
fluid. (b) DNA is extracted, and next generation sequencing is used to
sequence immunoglobulin heavy chain loci expressing IGHV4
rearrangements. (c) Snippets of amino acid sequence taken from
the CDR3 are converted into a set of chemical features using Atchley
factors. (d) The chemical features are scored by a detector function. The
detector function used in this study is the same function used in logistic
regression. A positive diagnosis (for RRMS) is flagged whenever a high
scoring snippet is found. Values for the weights on each Atchley factor
as well as the bias term are determined by maximizing the likelihood of
obtaining the correct diagnoses on a training set of patients

Scoring each sequence in a repertoire

Every snippet from every CDR3 sequence in a patient’s
repertoire is scored by a detector function indicating if a
snippet predicts RRMS. We use a logistic function be-
cause of its widespread use and simplicity, and because
it models the outcome of a two-category process. The
first step is to compute a biased, weighted sum of the
snippet’s features, referred to as a logit.

logit=">bo+ Wi -f1+Ws-fo+ -+ Wnfy (1)
For the DNA and amino acid sequence representa-

tions, the values f; through fi represent the snippet resi-
dues. For the Atchley factor representation, the f;
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represent the five Atchley factors from each residue in
the snippet. For snippets of length six, N =30. The bias
term by along with the weights W; are the parameters of
the model and are fit by maximum likelihood using gra-
dient descent optimization techniques as described
below. The same weights W; and bias term b, are used
for all snippets. Once the logit is computed, the value is
passed through the sigmoid function to obtain a score
between 0 and 1 (Additional file 1: Figure. S1).

1
score = m (2)

Aggregation of snippet scores to predict a diagnosis

A patient’s snippet scores need to be aggregated into a
single value to form a diagnosis. Because only a small
fraction of BCRs in a patient’s repertoire are expected to
be disease related, it is necessary to capture a diagnosis
even if only a few snippets have a high score. This is ac-
complished by assigning a positive diagnosis when even
a single high scoring snippet is found (Fig. 1d). Assum-
ing the output of the detector function represents a
probability value between 0 and 1, the form of the model
can be written as:

P(positive diagnosis|snip;, snip,, snips, ...)
= Maximum(score;, scorey, scores, ... ) (3)

A probability >0.5 indicates a positive diagnosis (RRMS),
whereas a value <0.5 indicates an OND diagnosis.

Parameter fitting by gradient descent

Specific values for the weights W; and bias term b, in
the detector function are determined using the patient
diagnoses. The values must be chosen to maximize the
likelihood that each predicted diagnosis is correct. To
search for the optimal values, gradient optimization
techniques can be used. With these techniques, each
parameter is iteratively adjusted along the gradient in a
direction that maximizes the log-likelihood, which in
turn maximizes the likelihood that each predicted diag-
nosis is correct. The initial value for the bias term by is
0, and initial values for the weights are drawn at random
according to W," N (0, N uves) -
optimizer, a gradient descent based method, has been
shown to work well on a wide range of optimization
tasks, it is used here [11]. The Adam optimizer is run
for 2500 iterations with a step size of 0.01. The default
values for the other Adam optimizer settings are: f3; =
0.9, f=0.999, ¢ = 1072,

A limitation of using a gradient descent based method
is there is no guarantee of finding the globally optimal
solution. Although the chosen detector function consti-
tutes a linear model, the scores from every snippet are

Because the Adam
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aggregated together in a non-linear fashion. Multiple local
minima could exist. To address this, 10° runs of Adam
optimization, each starting from different initial parame-
ters W; "N (0, Negurest ) » are used, and the best fit solu-

tion over all runs is used to diagnose new patients.

Development of the MS classifier- Model selection and
validation

We applied the above-described approach to our train-
ing data set of 23 patients using one-holdout cross-
validation (Fig. 2a). Classification accuracy on the hold-
out patients was used to identify the best performing
model from among the seven models tried (Table 2). A
snippet size of 6 amino acid residues resulted in the
highest classification accuracy. Categorical representa-
tions of the DNA nucleotides and amino acid residues
both underperformed the Atchley factor representation.
The best performing model correctly diagnosed 20 out
of 23 patients (Table 2, Fig. 3a).

To estimate the probability of correctly classifying 20
of 23 patients by chance using our best performing
model, we performed a permutation analysis. We per-
formed 20 permutations in which patient diagnoses were
permutated, and the one-holdout cross-validation pro-
cedure was conducted. The resulting classification accur-
acies are shown in Table 3. All were lower than 20 out
of 23, allowing us to assign p < 0.05 to the observed ac-
curacy. The average accuracy over all permutations is
40.4%.

To determine if the best performing model generalizes to
unseen data, the full 23-patient training set was used to fit
the weights and bias term, and the resulting model was ap-
plied to score a validation data set of 102 patients (Fig. 2b).
The model correctly diagnoses 73 out of 102 patients, cor-
responding to an accuracy of 72% (Fig. 3b). The ROC curve
for the validation data is shown in Fig. 3c. The area under
the curve is 0.75.

Analysis of the diagnostic biochemical motif

To discern the biochemical features of snippets resulting
in a positive diagnosis, we examined the weights of the
best performing model with parameters fit on the full
23-patient training set. The weights reveal how each
Atchley factor contributes to the score and the relative
importance of each position (Fig. 4). We observe rela-
tively large, negative weights along almost every position
of the snippet for Atchley factors II and IV, indicating a
high probability of an RRMS diagnosis for snippets with
negative values for these two Atchley factors. In particu-
lar, we notice large negative weights for factor II for po-
sitions 1 and 5 and for factor IV for positions 1, 3, and
4. A negative value for Atchley factor II correlates with
amino acid residues that appear frequently in a-helical
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segments. A negative value for Atchley factor IV corre-
lates with amino acid residues less commonly used and
having high heat capacity and refractivity. The weights
for the other Atchley factors are position-dependent. We
observe relatively large positive weights for Atchley fac-
tor I at position 1 and for Atchley factor V at position 3.
We also observe relatively large negative weights for po-
sitions 1 and 3 for Atchley factor III. This indicates in-
creased probability of an RRMS diagnosis for snippets
with large, positively charged, hydrophilic residues at
snippet positions 1 and 3.

We next aligned the highest scoring snippet from each
patient to determine where within CDR3 the diagnostic
snippet is positioned (Fig. 5). We find that the highest
scoring snippets can be located anywhere along CDR3.
Although the snippet sequences do not align well, pat-
terns are observable in their Atchley factors, which are
shown next to each snippet (Fig. 5). Consistent with the
values for the weights, we observe a tendency toward
hydrophilicty for snippet position 1, toward «-helical
values at position 5, toward high heat capacity and re-
fractivity at positions 1 through 4, and toward negative
charge at position 6.

We next looked at the distribution of snippet scores in
the 23 patients of our training data set (Fig. 6). Only 27
of 3259 snippets score above 0.5 (the threshold for a

RRMS diagnosis), and all of these were from RRMS pa-
tient repertoires. Each RRMS patient had no more than
5 snippets that scored above the threshold.

To determine if the rarity of high scoring snippets in
our patient repertoires can be attributed to the likeli-
hood of the corresponding DNA sequences arising by
chance in V(D)] recombination junctions, we examined
the DNA encodings of each snippet. For each amino
acid sequence, there are many possible DNA encodings.
An example of how to calculate the total number of
encodings for a single snippet is shown in Fig. 7a. The
distribution for the total number of ways to encode each
snippet is shown for non-diagnostic snippets in Fig. 7b
and for diagnostic snippets in Fig. 7c. We find that the
diagnostic snippets identified by the model have signifi-
cantly fewer possible encodings than non-diagnostic
snippets (p-value is 7.41 x 107%). Under the naive as-
sumption that CDR3 sequence is generated at random,
RRMS diagnostic snippets would be some of the least
likely to occur.

Discussion

High-throughput sequencing of immune repertoires
now enables their detailed characterization, driving
interest in utilizing repertoires in clinical applications,
including diagnosing and prognosticating diseases (e.g.,
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Fig. 3 Classification Accuracy and Receiver Operating Characteristic
(ROQ) Curve. (a) Classification accuracy for the best performing model
obtained via exhaustive 1-holdout cross-validation on training data. 87%
of patients were correctly classified. (b) Classification accuracy of the
best performing model on the validation data. 72% of patients were
correctly classified. (€) The corresponding ROC curve shows true and
false positive rates for different thresholds of a positive diagnosis based
on the highest snippet score. The area under the curve is 0.75
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[12]). Attempts to date have taken the approach of com-
puting repertoire-level summary statistics, such as gene
segment usage statistics, repertoire diversity, and clonal-
ity, and looking for differences in these statistics between
two sets of repertoires (e.g., cases and controls) [1-7].
This approach captures important features of a reper-
toire as a whole, and it can give insight into the bio-
logical processes underlying repertoire differences, such
as whether there is clonal expansion or recruitment of
new cells. On the other hand, this approach ignores the
vast amount of information available in the individual
immune receptor sequences, in particular, information
about the encoded antigen binding specificities.

We present here a new approach that allows applica-
tion of standard machine learning techniques to mine
the full set of repertoire sequences for sequence patterns
that distinguish one group of repertoires from the other.
There are two key features of our approach. The first is
that we capture all k-mers from all CDR3s in a reper-
toire and represent them as biochemical features using
Atchley factors. The second is that we score all k-mers
in a repertoire and then aggregate the set of scores to
predict a label for the whole repertoire.

We have focused on the CDR3 portion of immune re-
ceptor sequences, because it is the somatically generated
portion of the gene and the primary determinant of the
antigen binding specificity encoded by the gene. The ap-
proach could be readily applied, however, to other parts
of the gene, and even to the full sequence. The longer
the sequence used, however, the more training data
would be required to accommodate the corresponding
increase in the number of model parameters.

To accommodate variation in CDR3 length, we repre-
sent each CDR3 sequence as a set of overlapping k-mers
of a specified length. For example, a CDR3 of eight
amino acids in length would be represented as three 6-
mers. In our MS application, we used k-mers varying
from four to seven amino acids and found that the high-
est classification accuracy was achieved with 6-mers
(Table 2). Some CDR3s in our data sets are only six
amino acids in length and are thus excluded from ana-
lysis when longer k-mers are used. Shorter k-mers, on
the other hand, are more likely to appear in both MS

Table 3 Classification accuracies observed by 1-holdout cross-validation after permuting diagnoses in our training data set. Results
reported as the fraction of samples for which the model's prediction of the diagnosis matches the label assigned under permutation

Classification Accuracy on the Training Data Set by Exhaustive 1-Holdout Cross-Validation (Labels Assigned under Permutation)

7/23 = 304% 11/23 = 47.8% 6/23 = 26.1% 6/23 = 26.1% 7/23 = 304%
15/23 = 65.2% 13/23 = 56.5% 11/23 = 47.8% 12/23 = 52.2% 7/23 = 304%
18/23 = 783% 7/23 = 304% 6/23 = 26.1% 8/23 = 34.8% 11/23 = 47.8%
4/23 = 174% 11/23 = 47.8% 9/23 = 39.1% 10/23 = 43.5% 7/23 = 304%

Average: 40.4%
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and OND repertoires and are therefore not useful for
discrimination.

We hypothesized that using a biochemical representa-
tion of amino acid k-mers would be beneficial, because
such a representation captures sequence features related
to receptor-antigen binding, and therefore related to the
receptor’s function. Additionally, immune receptors with
distinct amino acid sequences that bind to the same
antigen would be expected to have similar biochemical
properties. Indeed, we found that, for a fixed k-mer
length of six amino acids, the biochemical representation
resulted in higher classification accuracy than either an
amino acid or DNA sequence representation (Table 2).

To aggregate the scores from all k-mers in a repertoire
to a repertoire-level label, we took the maximum score

based on the assumption that, among all receptors in a
repertoire, those participating in the phenotype-related
immune response may be rare. Thus, we wanted a func-
tion that would flag a positive diagnosis even for a single
high-scoring snippet. The maximum score is a special
case of the generalized mean, however, and other means,
or even other functions, could be used to accommodate
different assumptions about the underlying immune re-
sponse and its role in the phenotype.

Using this approach, we were able to mine the individ-
ual CDR3 sequences of OND and RRMS patient reper-
toires to discover a biochemical motif that correctly
classifies repertoires according to diagnosis with accur-
acy of 87% on training data and 72% on validation data.
Importantly, no prior knowledge of the disease was
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Fig. 6 Histograms of Snippet Scores for all Snippets in the Training
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from RRMS patients. The blue bars indicate the distribution of
snippet scores from OND patients. Only a few snippets score above

0.5, which is diagnostic of RRMS

utilized (i.e, it was not necessary to know which anti-
gens the B cells may be responding to). Additionally, the
method did not rely on finding “public clones”, as we re-
moved all shared sequences to control for possible
carry-over contamination, as described in Methods.

In the context of MS, a classification accuracy of 72% is
highly significant. MS is an autoimmune disease that is
difficult to diagnose. There are no single symptoms,

a g
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Fig. 7 Encoding Degeneracy of Diagnostic and Non-diagnostic Snippets
in the Training Data Set. (@) An example of how to calculate the number
of ways a snippet can be encoded. (b) The distribution of the number of
encodings for each non-diagnostic snippet. (c) The distribution of the
number of encodings for each diagnostic snippet
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physical findings, or laboratory tests that provide a defini-
tive MS diagnosis [13]. The current method of diagnosis
relies on the 2010 revisions to the McDonald criteria and
requires demonstration of dissemination of central ner-
vous system lesions in both space and time, along with the
exclusion of other diagnoses [8]. Currently, the most
widely used piece of paraclinical evidence for MS
diagnosis is magnetic resonance imaging (MRI).
Therefore, the accuracy obtained using MRI to distin-
guish patients with MS from those with OND is the
most appropriate direct comparison for our 72% ac-
curacy. We know of one study based on the most re-
cent MRI criteria making this assessment. An
accuracy of 57% was observed for distinguishing MS
from primary and secondary central nervous system
vasculitis, lupus, and Sjogren’s syndrome [14]. In this
context, a classification accuracy of 72% is highly
significant.

Opverfitting is a common concern with machine learning
approaches and is usually addressed by regularization. To
determine if the use of regularization could have improved
our model’s performance on unseen data, we re-ran our
procedure using early stopping, L1/L2 regularization, and
bagging. The results are presented in supplementary ma-
terials (see Additional file 2). Only early stopping led to
better performance. The classification accuracy by one-
holdout cross-validation was 20 out of 23. The classifica-
tion accuracy on the validation data set was 75 out of 102
(this is an improvement with two additional patients being
correctly diagnosed). Because we had already un-blinded
ourselves to our validation data set prior to applying these
regularization techniques, we include these results only as
supplementary material and not as the primary result re-
ported in the paper.

The simple model presented here represents a first
step in developing a new family of methods for applying
machine learning to immune receptor sequences and is
not without limitations. First, under the assumption that
CDR3 sequences are generated at random during V(D)]
recombination, and in the absence of negative selection
against particular sequences, every possible snippet
would be expected to appear in a sufficiently large reper-
toire. In this case, the mere presence of individual high-
scoring snippets would not be sufficient to differentiate
patients by their diagnosis, and more sophisticated ag-
gregation functions would be needed. Second, our ap-
proach is designed to work for phenotypes for which the
underlying adaptive immune response is driven by a re-
stricted set of antigens that is common across patients.
Thus, the approach may not be directly applicable to
other immune response types, such as those against can-
cer neoantigens. Finally, while the approach is designed
to be applicable to both BCR and T cell receptor (TCR)
CDR3 sequences, the restriction on TCR to recognize
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antigen in the context of major histocompatibility com-
plex molecules may limit the utility of our approach
when applied to TCR. Our future work will include im-
provements to the method designed to address these
issues.

Conclusion

Immune repertoire sequencing is a promising new tech-
nology for studying adaptive immune responses. The
point of this study is to lay the groundwork for statistical
classifiers of repertoire sequence data. The work pre-
sented here represents a first in combining maximum
likelihood with a statistical model that maps a set of im-
mune receptor sequences to a single diagnosis. Other
published methods require that the repertoire first be re-
duced to a fixed number of features. The model repre-
sents an initial step in developing a new family of
methods for analyzing immune repertoires. Without
relying on disease-specific knowledge about MS, a classi-
fier has been built using novel statistical methods to cor-
rectly diagnose a significant fraction of patients with
either RRMS or OND. The work presented here is fur-
ther demonstration that diseases can be diagnosed from
a sample of a patient’s immune repertoire. In the future,
we expect to improve the diagnostic accuracy of our ap-
proach and to broaden its use to other diseases.

Methods
The BCR heavy chain repertoires used in this study were
collected in the context of other studies and shared with
us upon request ([7] and under review with Multiple
Sclerosis Journal). The samples from each study are re-
ferred to by the year the study was completed (Table 1).
The repertoires were obtained as described in [7].
Briefly, CSF was taken by lumbar puncture from patients
diagnosed with either RRMS or OND. DNA was ex-
tracted from CSF cell pellets, and targeted PCR was con-
ducted to amplify rearranged BCR genes. Because of the
limited amount of DNA extracted from each CSF sam-
ple, the PCR amplification protocol has been designed
and carefully implemented to minimize the impact of
amplification bias and carry-over contamination between
samples. DNA is first amplified using whole genome
amplification followed by targeted PCR amplification of
the variable region of BCR heavy chain genes utilizing a
V gene segment from the VH4 family. VH4 sequences
were targeted because previous studies found VH4 usage
to be elevated in patients with RRMS [15, 16]. Sequen-
cing was conducted on the 454 platform. All tissue and
patient data from both studies was handled in accord-
ance with IRB-approved protocols.

The DNA sequences for each sample were processed
to prepare them for analysis following recommendations
in [17]. Specifically, sequences with a length less than
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300 base pairs or an average quality score less than 35
were removed. The regions of each sequence to which
the PCR primers hybridize were trimmed, and duplicate
sequences appearing within a single sample were
counted and then collapsed to a single sequence. The
remaining sequences were aligned to a database of
germline gene segments for V, D, and ] gene assignment.
Sequences representing non-functional rearrangements
were removed. Processing was performed using the
pRESTO [18], IgBlast [19], and RepCalc pipelines on the
VDJServer Immune Repertoire Analysis Portal (http://
www.vdjserver.org).

For the sequences remaining after processing, the
CDR3 nucleotide sequences were identified, according
to the Immunogenetics Information System (http://
www.imgt.org) definitions. CDR3 sequences containing
ambiguous base calls were removed, and the remaining
sequences were compared across samples to identify po-
tential carry-over contamination. The amount observed
was in line with other studies [20, 21]. Sequences ob-
served in more than one sample were removed. The
remaining CDR3 sequences were used as input to de-
velop the statistical classifier as described above.

Model development was implemented in TensorFlow,
an open source machine learning package published by
Google [22]. The data is represented as a 3-dimensional
tensor of the form [Patient, Snippet, Atchley Factors].
The Atchley factors for each snippet are scored using
TensorFlow functions for logistic modelling. The output
is a tensor with a shape of [Patient, Score]. For each pa-
tient, the maximum score is used to represent their diag-
nosis. Taking the maximum score produces a new 1-
dimensional tensor with a shape of [Probability]. Model
parameters are fitted using gradient optimizers included
with TensorFlow. Our project’s source code is available
from https://github.com/jostmey/MaxSnippetModel.

Additional files

Additional file 1: Figure. S1. Plot of the logistic function used as part
of the detector function to convert the logit value to a score between 0
and 1. (DOCX 50 kb)

Additional file 2: This document describes the results of applying four
different approaches for mitigating overfitting. (DOCX 94 kb)
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