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Abstract

Background: Elaboration of powerful methods to predict functional and/or physical protein-protein interactions
from genome sequence is one of the main tasks in the post-genomic era. Phylogenetic profiling allows the
prediction of protein-protein interactions at a whole genome level in both Prokaryotes and Eukaryotes. For this
reason it is considered one of the most promising methods.

Results: Here, we propose an improvement of phylogenetic profiling that enables handling of large genomic
datasets and infer global protein-protein interactions. This method uses the distance correlation as a new measure
of phylogenetic profile similarity. We constructed robust reference sets and developed Phylo-dCor, a parallelized
version of the algorithm for calculating the distance correlation that makes it applicable to large genomic data.
Using Saccharomyces cerevisiae and Escherichia coli genome datasets, we showed that Phylo-dCor outperforms
phylogenetic profiling methods previously described based on the mutual information and Pearson’s correlation as
measures of profile similarity.

Conclusions: In this work, we constructed and assessed robust reference sets and propose the distance correlation
as a measure for comparing phylogenetic profiles. To make it applicable to large genomic data, we developed
Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation. Two R scripts that can be
run on a wide range of machines are available upon request.
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Background
In the last two decades, several computational ap-
proaches have been proposed to infer both functional
and physical protein-protein interactions (PPIs). These
methods includes the identification of gene fusion events
[1, 2], conservation of gene neighborhood [3] or phylo-
genetic profiling [4, 5]. Recently, the increasing number
of fully sequenced genomes led to a renewed interest in
these approaches. Among them, the phylogenetic profil-
ing is one of the most promising in that it allows to pre-
dict protein-protein interactions at a whole genome
level, while gene fusion and gene neighborhood are rela-
tively rare events found typically in prokaryotic
genomes.
Well implemented methods, based on phylogenetic

profiling, have been developed and successfully applied
for understanding relationships between proteins and/or

to gain insights on the function of uncharacterized pro-
teins [see for example [6–8]. These methods are based
on the detection of orthologs either from sequence simi-
larity score or from tree-based algorithms (for a recent
implementation see [9]).
In general, phylogenetic profiling is based on the as-

sumption that proteins involved in the same biological
pathway or in the same protein complex co-evolve [for a
review see [10]. In a first implementation [4], the phylo-
genetic profile of a protein was defined as a binary vec-
tor that describes the occurrence pattern of orthologs in
a set of fully sequenced genomes, and the Hamming dis-
tance was used to score the similarity between profile
pairs. Subsequently, to evaluate different degrees of se-
quence divergence, phylogenetic profiles were recon-
structed using probabilities derived by the expectation
values obtained aligning the proteins under study with a
genome reference set [5]. Among measures proposed to
score the phylogenetic profile similarities [for a review
see [11], the Mutual Information (MI) was demonstrated
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to correlate well in accuracy with genome-wide yeast
two-hybrid screens or mass spectrometry interaction as-
says [5]. Although it was largely adopted as a measure of
phylogenetic profile similarity, Simon and Tibshirani re-
cently debated about the lower power of MI in detecting
dependency between two variables compared with cor-
relation measures [12].
In this work, we propose the distance correlation

(dCor) as a novel metric to score phylogenetic profile
similarity. dCor measures any dependence between two
variables, ranges between 0 and 1, and it satisfies all re-
quirements of a distance [13, 14].
In order to apply this measure to large genomic data,

we developed a novel parallel version of the original al-
gorithm. Furthermore, we adopted a new strategy of
genome selection to obtain unbiased and large reference
sets of genomes. We applied this methodology to con-
struct phylogenetic profiles of two model organisms,
Escherichia coli and Saccharomyces cerevisiae and con-
firmed that correlation measures (dCor and Pearson’s
correlation) have a more robust predictive perform-
ance than the MI. In particular we showed that dCor
performs better than Pearson’s correlation (PC) and
MI especially in predicting physical protein-protein
interactions.

Implementation
Phylogenetic profiling
Phylogenetic profiles were obtained as arrays of pro-
bability values according to

P ¼ −1=log10 Eð Þ
For E-values higher than 10−1, the probability value is

set to 1, as proposed in [5].
Where E are the E-values obtained from the align-

ments of S. cerevisiae and E. coli protein sequences
against the four reference sets. To do this, we applied
the Smith-Watermann alignment algorithm [15]. The
FASTA package version 36 was implemented as a
stand-alone software on two Work Stations both dual
core, the first with 12 CPU and the second with 8
CPU.

Similarity measures
One of the method usually used to establish similarity
between phylogenetic profiles is the mutual information
that is calculated according to

MI A;Bð Þ ¼ H Að Þ þ H Bð Þ−H A;Bð Þ
where H(A) = − ∑ p(a) ln p(a) is the summation of the
marginal entropies, calculated over the intervals of
probability distribution p(a), of the gene A to occur
among the organisms in the reference set. H(A, B) =

− ∑ ∑ p(a, b) ln p(a, b)represents the summation of the
relative entropies of the joint probability distribution
p(a, b)of co-occurrence of gene A and B across the
set of reference genomes, in the intervals of the prob-
ability distribution. The mutual information was cal-
culated by using the mutualInfo function available in
bioDist R package [16] after binning the data into 0.1
intervals.
We calculated dCor according to Szekely and collabo-

rators [13, 14]. The original implementation (available in
the energy package of Bioconductor) allows the calcula-
tion only between two arrays of data. For this reason, we
developed two novel scripts that make possible to per-
form dCor NxN phylogenetic profile comparison, where
N is the number of genes in a given genome. In
principle, the method is applicable also to binary phylo-
genetic profiles.
First, the matrix of the Euclidean distances was ob-

tained calculating the difference between thek-th
element and thel-th element of the phylogenetic pro-
file as

D ¼ ⌊dkl⌋

where.
dkl = |ak − al|r as the distance between the r-th pairs of

elements of the profiles.
Second, each distance dkl of the matrix D was then

converted into an element dakl of the matrix of the cen-
tered distances DA, calculated as

dakl ¼ dkl−dk−dl þ dkl

where.

dk ¼ 1
n

Pn

k¼1
dkl is the average calculated on the rows of

the distance matrix;

dl ¼ 1
n

Pn

l¼1
dkl is the average calculated on the columns

of the distance matrix;

dkl ¼ 1
n2
Pn

k;l¼1
dkl is the average calculated on all the ele-

ments of the distance matrix;
where k = l = 1,.…, n = 1 ,…, j.
The distance correlation between the profilesApandAq

was calculated as

dCorpq ¼ CovðDAp;DAqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var DAp

� �
Var DAq

� �q

where Cov and Varrepresent the covariance and the
variance of the matrices of the centered distances and p
= q = 1 , … , i.
Pearson’s correlation was calculated according to
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PC ¼
Pn

i¼1 xi−xð Þ yi−yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi −xð Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi−y
pq

Þ2
Where n is the size of the two arrays x and y, and x

and y are the corresponding means.

Gold standards and predictive performance assessment
On the basis of KEGG database [17], we considered pro-
teins belonging to the same metabolic pathway as func-
tional related and hence to be included in the True
Positive data set (TP-fun). To derive the True Negative
data set (TN-fun), we developed a graph-based algo-
rithm to identify non-interacting proteins. Proteins are
included in TN-fun if the length of the shortest path be-
tween the metabolic pathways (sub-graphs) they belong
was higher or equal to five.
The physically interacting proteins were derived from

the STRING database [18]. Protein pairs with evidence
about a direct physical interaction were considered as
True Positive (TP-phy). True Negative data set (TN-
phy) was obtained by applying the graph-based algo-
rithm previously described.
The Area Under the Curve (AUC) was adopted as a

measure of the prediction accuracy. The AUC was calcu-
lated as the sum of the approximated areas of the trape-
zoids obtained for each profile similarity score interval,
according to the Gini’s formula

AUC ¼ 1
2

X

i

Xi−Xi−1ð Þ Y i þ Y iþ1ð Þð Þ

where Xi is the false positive rate and Yi is the true posi-
tive rate at the i-th interval of profile similarity score.
Each interval was set equal to 0.1 of distance correlation
or of mutual information and the related rates were cal-
culated. In order to perform the 10-fold cross-
validations, each dataset was randomly divided in 10
subsets of equal size and the related AUCs calculated.
The total number of TPs and TNs obtained by

dCor, PC and MI calculation in complete data set
GS_fun and GS_phy in each reference set is provided
in Additional file 1: Table S3.

Results and discussion
Reference set construction
It has been shown that the predictive performance of
phylogenetic profiling is affected by the size and the gen-
ome composition of the reference set [19, 20]. To ad-
dress this issue, we set up a procedure to construct a
reference set that includes a number of genomes suffi-
ciently high to ensure a robust statistics but excludes
very similar organisms to avoid redundancy, spanning as
much organisms diversity as possible.
To construct genome reference sets, we exploited

information in the eggNOG database [17], where

1133 manually selected genomes were collected and
classified as “core” (high quality genomes) and “per-
ipheral” (genomes not completely validated) on the
basis of genome coverage, status of gene annotation
and gene completeness.
The first reference set (RS1) excluded all the strains of

the same species classified as “peripheral” genomes. A
second reference set (RS2) was generated from RS1 ex-
cluding the eukaryotic genomes with a “peripheral” attri-
bute till having 45 eukaryotic genomes in a such way to
pass from a ratio 5:1 to a ratio 13:1. To construct the
third reference set (RS3), we progressively excluded “per-
ipheral” prokaryotic genomes, in order to obtain the
same ratio of RS1 but almost the half size. The last refer-
ence set (RS4) was obtained from RS3 on the basis of
the Tree of Life derived from the eggNOG database, ex-
cluding close phylogenetically related eukaryotic ge-
nomes until reaching the same ratio of RS2 (Table 1). In
all the four reference set 61 genome from Archea are in-
cluded. The complete lists of genomes in RS1-RS4 are as
Supplemental data (Additional file 2: Table S1).
In this way, we obtained four reference sets of “high

quality” genomes different in size and composition.
Using each of the four reference sets, we constructed
four phylogenetic profile data sets for S. cerevisiae and
E. coli model genomes and evaluated the effect of the
reference set size comparing RS1 vs RS3 and RS2 vs
RS4, and composition, comparing RS1 vs RS2 and RS3
vs RS4.

Phylogenetic profiling
We applied the Smith-Watermann alignment algorithm
[15] to align the S. cerevisiae and E. coli protein se-
quences against the reference sets. Phylogenetic profiles
are constructed as arrays of probability values obtained
by the E-values according to

P ¼ −1=log10 Eð Þ

For E-values higher than 10−1, the probability value is
set to 1, as proposed in [5]. Phylogenetic profile matrices
are available in Supplemental data (Additional file 3:
Table S2).
Comparative analysis of phylogenetic profiling was

performed using the dCor [13], the PC and the MI. In

Table 1 Summary of genomes in the reference sets

Prokaryotes Eukaryotes Ratio

Reference set 1 (RS1) 592 120 5:1

Reference set 2 (RS2) 592 45 13:1

Reference set 3 (RS3) 230 45 5:1

Reference set 4 (RS4) 230 18 13:1
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order to apply dCor calculation to biological large data
sets, we developed a novel algorithm, Phylo_dCor (the
strategy is schematically represented in Fig. 1). This
proposed implementation strongly reduces the com-
plexity of the original algorithm proposed by Szekelyet
al. [13] and hence RAM requirements making it pos-
sible to install and run Phylo_dCor on a wide range of
machines.
A first script (Phylo_dCor_step1.r) for the R envir-

onment was developed to calculate the matrix of cen-
tered distances from each phylogenetic profile. First, a
phylogenetic profile matrix Pi x Gj was constructed
where Pi are the probability values calculated for each
hit found in the Gj genomes of the reference set (step
a). Then, we adopted a “split-apply-combine” strategy
using the plyr R package [21]. This allowed us to
parallelize the most “time-consuming” steps subdivid-
ing the Pi xGj matrix into N sub-matrices and hence
the calculations of the Euclidean distance matrices
(step b) and of the Euclidean centered distance matri-
ces (step c). The resulting matrices of centered dis-
tances were stored in a repository of binary files
(.rds) (step d). A second R code (Phylo_dCor_step2.r)
was developed to perform the calculation of the dis-
tance correlation (step e).

To evaluate the performance of the method, a ten-
fold cross-validation procedure was carried out on
two different sets of gold-standards. The first set was
derived from the metabolic pathways in KEGG data-
base [22], and includes as TPs pairs of functionally
related proteins (GS_fun), the second set was ob-
tained from the STRING database [18], to assess the
performance in predicting physical protein-protein in-
teractions (GS_phy). The predictive performance was
estimated by calculating the Area Under the ROC
Curve (AUC) values for each of the 10 randomly se-
lected independent subsets.
The analysis was performed on all proteins deduced

from the two model genomes, including paralogs and
possible horizontal gene transfers. Being them consid-
ered in all the three assessments, the comparative pre-
dictive performance of dCor, PC and MI was not
affected. Moreover, possible false positives can be evalu-
ated and eventually filtered away in a second step.
In Fig. 2 results regarding the assessment on GS_fun

are shown in panels a and b, while results obtained using
GS_phy are reported in panel a’ and b’. In all cases but
one, the predictive performance of the phylogenetic pro-
filing using dCor (grey box-plot) outperforms the one
obtained using MI (empty box-plot) and PC (ligth blue

Phylo_dCor_step1.r

Phylo_dCor_step2.r

Fig. 1 Pipeline of the dCor calculation. The phylogenetic profile matrix of Pi proteins constructed using a reference set of size Gj genomes (step
a); starting from this data, the Di Euclidean jxj distance matrices (step b) and the DAi centered Euclidean distances (step c) were calculated
applying a “split-apply-combine” algorithm; DAi matrices were stored in a repository of binary files (step d), from which they were extracted to
proceed with the calculation of the distance correlation matrix (step e)
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box-plot). We confirmed that both size and composition
of the reference set affect phylogenetic profiling. How-
ever, the use of dCor and PC to compare phylogenetic
profiles strongly reduces this effect, especially in the case
of the eukaryotic genomes. In general, it seems that
physical interactions (Fig. 2, panels a’ and b’) are pre-
dicted better than functional relationships. This could be

due to a higher robustness of the gold standards GS-phy
than GS-fun, in that physical interactions are experi-
mentally validated. PC outperforms dCor in the case of
the GS-Fun gold standard in E. coli, furthermore in this
case the effect of the size and/or genome composition of
the reference sets affects also the predictive performance
of correlation measures.

Fig. 2 Benchmarking of Phylo-dCor application. Results of the ten-fold cross-validation procedure to assess predictive performances of dCor (grey
box plots), PC (ligth blue box plots) and MI (empty box plots). Results obtained using GS_fun benchmark are shown in panels a and b, while in
panels a’ and b’ are reported results obtained using GS_phy
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Collectively, our results indicate that the proposed ap-
plication is robust, and significantly improves the per-
formance of PPI prediction. It can efficiently handle
large genomic data sets and does not require high calcu-
lation capacity.

Conclusions
The increasing number of fully sequenced genomes led
to a renewed interest in the elaboration of powerful
methods to predict both functional and physical protein-
protein interactions. In this framework, we propose a
novel phylogenetic profiling procedure using distance
correlation as a similarity measure of phylogenetic pro-
files. To make it applicable to large genomic data, we de-
veloped Phylo-dCor, a parallelized version of the original
algorithm for calculating the distance correlation. Two R
scripts that can be run on a wide range of machines will
be made available on request. Furthermore, we adopted
a new strategy of genome selection to obtain unbiased
and large reference sets of genomes. In two model ge-
nomes: E. coli and S. cerevisiae we showed that the dis-
tance correlation outperforms phylogenetic profiling
methods previously described.

Additional files

Additional file 1: Table S3. Table of TPs and TNs. The number of True
Positives and True Negatives obtained by dCor, MI and PC calculation for
each reference set and each gold standard (GS-fun and GS-phy) for E. coli
and S.cerevisiae. (XLSX 23 kb)

Additional file 2: Table S1. List of reference set genomes. The complete
lists of genomes utilized for construction of reference sets RS1-RS4. (XLSX 85 kb)

Additional file 3: Table S2. Phylogenetic profile matrices. The
phylogenetic profiles derived for E. coli and S. cerevisiae using the
reference set RS1. (XLSX 68277 kb)
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