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Abstract

Background: RNA-Seq is currently used routinely, and it provides accurate information on gene transcription.
However, the method cannot accurately estimate duplicated genes expression. Several strategies have been
previously used (drop duplicated genes, distribute uniformly the reads, or estimate expression), but all of them
provide biased results.

Results: We provide here a tool, called mmquant, for computing gene expression, included duplicated genes. If a
read maps at different positions, the tool detects that the corresponding genes are duplicated; it merges the genes
and creates a merged gene. The counts of ambiguous reads is then based on the input genes and the merged genes.

Conclusion: mmquant is a drop-in replacement of the widely used tools htseq-count and featureCounts that
handles multi-mapping reads in an unabiased way.
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Background
RNA-Seq has emerged as the standard method to analyze
several genes in one experiment. Among the different con-
texts in which RNA-Seq is used, differential gene expres-
sion is arguably the most common. This method can be
decomposed into several steps, although variations exist:
read mapping, gene quantification, and test for differen-
tial gene expression (see Fig. 1). Gene quantification aims
at estimating the level of expression of a gene, given the
number of reads that map to this gene.
In complex genomes, many genes are duplicated, and

they constitute the majority of the genes in polyploid
genomes such as wheat. In this configuration, a read pro-
duced by a duplicated gene may be mapped equally well
to each homologous gene, giving rise to multi-mapping
reads. These reads are complex to use in the quantification
step, and several methods have been used to circumvent
this problem.
For instance, the authors of featureCounts [1] designed

in-built annotations, that have merged duplicated and
overlapping genes. Recently, [2] proposed an on-line
method, that requires no pre-processing of the annota-
tion. If a read maps to gene A and gene B, a new “merged
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gene” is created, and the read is attributed to this merged
gene, named gene A–B (see Fig. 2). The method provides
counts for the genes given in input and for the merged
genes. Merged genes can be used as standard genes in
the downstream analysis. This method uses all the infor-
mation given by the RNA-Seq sequencing on ambiguous
reads, without any assumption nor inference.
The designers of the method [2] provided a prototype

that implemented the approach. However, the prototype
supposes that the read and the annotation files have a
pre-defined format. Fine-tuning parameters, available in
most standard quantification tools, are missing (e.g. over-
lap type and library type, see infra). Last, it involves
several Perl files and thus is slow, not appropriate for
large datasets involving many RNA-Seq experiments. In
this paper, we present a new tool that implements the
aforementioned method, together with state-of-the-art
characteristics in terms of usability, especially speed and
options. We believe that this tool will be useful to the
RNA-Seq users, because it is simple (a drop-in replace-
ment of the highly used featureCounts [1] or htseq-count
[3]) and more informative, with no drawback.
The rest of the paper is organized as follows. We will

first detail the implementation of our tool. Then, we will
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Fig. 1 Possible bioinformatics pipe-line for RNA-Seq differential expression analysis. The analysis starts with several FASTQ files, produced by the
sequencing of several replicates of two conditions (e.g. wild type vsmutant). When a genome is available, the reads are mapped, e.g. with STAR [15],
and the corresponding positions are stored into a BAM file. A quantification tool, such as mmquant, presented here, counts the number of reads per
gene. Statistical test for differential expression is performed by a third tool, like DESeq2 [6]

compare the results given by our tool and other state-
of-the-art tools. We will conclude by mentioning future
directions.

Implementation
Briefly, the default method supposes that the reads have
been sorted beforehand. Many other tools, such as visu-
alization tools, have the same requirement, and, arguably,
this step should be performed anyway. Since both input
sets are sorted, the search is approximately linear with
respect to the size of the input and the size of the output.
If the reads are not sorted, we sort the genes into a vector,

cut the genome into non-overlapping bins (default size:
approximately 10kb) and store the index of the first gene
in or after each bin. For each read, we scan the genes start-
ing from the position indexed by the bin of the 5’-most
position of the read.
For comparison, htseq-count requires that the reads

be sorted either by position or by name. featureCounts
requires paired-end reads to be sorted by name.
mmquant proceeds in two steps for quantification. The

first step decides whether a read matches a gene it over-
laps with. Depending on the value � of the “-l” parameter,
provided by the user, the read matches the gene iff:

A

B C

Fig. 2 Overview of the method, on an example. a: A toy configuration, with three genes in black: A, B, and C. Notice that A and B overlap. Six reads
have been mapped to the genome, some of them (reads 2, 4, and 6) map at two different locations. If a read maps unambiguously to a unique locus
and matches a unique gene (like read 1), we attribute the corresponding gene to the read (here, gene A). If a read, like read 2, matches two different
genes, we create a “merged” gene, here A–C, and attribute this merged gene to the read. If a read (read 3) does not match any gene, it is not used. If
a read (read 4) matches a gene (gene A) and an intergenic region, the read is attributed to the gene only. If a read (read 5) matches two different
genes because the genes overlap, the read is also attributed to the merged gene (gene A–B). Similarly, if a read (read 6) matches two overlapping
genes and an other gene, the three genes are merged (A–B–C). Table b provides the attributed gene for each read. c is the quantification table and
the output of the tool for this configuration. Genes are sorted in lexicographical order, as shown in the example. As a consequence, merged gene (A,
B) will always be displayed as A–B, and never as B–A
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• � ≤ 0 and the read is totally included in the gene;
• � ≥ 1 and n ≥ �, where n is the number of

overlapping base pairs between the read and the gene;
• 0 < � < 1 and n ≥ � × s, where n has been

previously defined, and s is the size of the read.

The first step is the search of all the matching genes for a
given read. If a readmaps at several locations, themapping
tool sets the NH tag (that provides the number of hits) of
the SAM/BAM files to a value greater than one. mmquant
uses this information and keeps the read and thematching
genes in memory until all the hits have been scanned.
The second step resolves ambiguities. When a read

matches several genes, some matching genes can be pos-
sibly discarded, depending on the number of overlapping
base pairs. The rules that mmquant uses are provided in
Fig. 3.
The tool supports paired-end reads, and checks that

both ends may match the same transcript, in a way that is
consistent with the sequencing strategy (forward–reverse,
reverse–forward, etc.). The fragments (i.e. the pairs of
reads) are then counted for quantification.
For comparison, htseq-count has three modes: “union”,

“intersection-strict” and “intersection-nonempty”. The
reader can consult the htseq-count article [3] for
a description of these modes. mmquant can emu-
late the “union” —the recommended mode— and the
“intersection-strict” modes, with parameters “-l 1” and
“-l -1” respectively, but not the “intersection-nonempty”.
Ambiguous reads are not used for quantification. In fea-
tureCounts, two parameters (“minOverlap” and “fracOv-
erlap”) are used instead of our “-l” parameter. Default
strategy discards multi-matching reads. These reads can
be used for quantification when the options “-M” and “-
O” are set. In this case, a read will be attributed to each
matching gene (with a normalized weight if the option
“fraction” is used). However, this practice is discouraged
because it almost always provides biased results. Besides,
the “largestOverlap” option makes it possible to assign a
read to the gene that has the largest number of overlapping
bases. This strategy can be emulated by mmquant.

Results
We tested our method on recent data, taken from [4].
Briefly, this article uses RNA-Seq of human brain to
find genes that are differentially expressed in individu-
als diagnosed with bipolar disorder. The article uses two
sequencing protocols (GA-IIx and HiSeq) and microar-
ray to validate the results. Our aim is not to reproduce
their pipe-line (parameters and software versions have not
been provided in the article), but to show the differences
between the most used gene quantification tools (htseq-
count and featureCounts), and our tool. We focused on
the HiSeq dataset, that contained 6 replicates in each

condition, because HiSeq is probably the most used
sequencing machine now. Reads are 100 bp (base pairs)
long, each sample is paired-end and contains approx-
imately 200 millions reads. Admittedly, this dataset is
challenging because duplicated genes are known to play a
major role in human brain [5].
Our pipe-line uses STAR v2.5.0a (with parameters rec-

ommended by ENCODE) and DESeq2 v1.14.1 [6] with
default options and adjusted p-value at 5%, whereas [4]
used TopHat, htseq-count and DESeq (arguably the ref-
erence tools at the time of publication). In the original
paper, the author found only 11 differentially expressed
genes (with adjusted p-value at 5%). We found all of
them with our pipe-line and all the quantification tools,
except one, a pseudo-gene (probably due to a problem
of TopHat, which, on the earliest versions, was known to
favor pseudo-genes with no intron compared to mature
transcripts).
htseq-count was used in the “union” mode because it is

the recommended one. As a consequence, if a read over-
laps two genes, htseq-count considers that the read is
ambiguous and does not use it for quantification. feature-
Counts was used with options “-p -B -C” and mmquant
was used with the “-l 1” parameter (which compares a
gene and a read as soon as they overlap by 1 bp).
Strikingly, the p-values obtained with the three dif-

ferent quantification strategies show a great variability
(see Additional file 1). htseq-count, featureCounts and
mmquant (excluding merged genes) gave 734, 835 and
763 differentially expressed genes respectively. Most of
the difference comes from the way reads are assigned
to the genes. htseq-count and mmquant may attribute a
read to a gene as soon as they have at least one com-
mon base pair, whereas featureCounts requires the read
to included in the gene. Consequently, htseq-count and
mmquant count more reads per gene than featureCounts.
Moreover, mmquant has several rules to resolve ambi-
guities, such as reads matching several genes, whereas
htseq-count and featureCounts discard such reads. As a
consequence, mmquant finds more reads per gene than
htseq-count. Then, mmquant tests more genes (non-
merged and merged genes) than the other tools. Thus, the
adjusted p-value is higher even with the same raw p-value.
This is a usual trade-off between specificity and sensitivity.
Last, the ajusted p-value threshold emphasize these differ-
ences. For instance, 133 of the 158 genes that are found
by featureCounts and not by mmquant have an adjusted
p-value less that 10%, when using mmquant.
mmquant found that 5–6% of the reads where multi-

mapped and could be attributed to several genes. As
a consequence, it found 254 additional differentially
expressed merged genes, involving 516 new genes. Note
that one fourth of the differentially expressed genes is
merged. We tried to find an over-represented function
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Fig. 3 Ambiguous reads resolution. a: The read is included in both genes A and B. Here, the resolution cannot be solved, and the read will be
attributed to gene A–B. b: The read is not totally included in gene A, neither in gene B. nA nucleotides of the read overlap with gene A, and nB
overlap with gene B, and nA > nB . If nA � nB , we may attribute the read to gene A only. However, if nA ≈ nB , the ambiguity cannot be resolved, and
the read is attributed to A–B. The two following cases show the rules to resolve ambiguity. c: We suppose here that nA > nB + N, where N is a
parameter set by the user (default: 30). In this case, mmquant will attribute the read to gene A only. d: We suppose here that nA > nB × P, where P is
given by the user (default: 2). The read will be attributed uniquely to gene A. e: Here, the single end read contains an intron. Exon-wise, the read can
be attributed to gene A or B. In case of ambiguity, introns are compared. The intron of the read matches the intron of gene A, whereas gene B has
no intron there. The read is thus attributed to A. f: The read is ambiguous exon-wise. We compute n′

A and n′
B , the number of nucleotides shared by

the intron of the read and the introns of genes A and B respectively. Ambiguity is solved using n′
A , n

′
B and the rules given in c and d. g: The read is

paired-end. In case of ambiguity, nA and nB are computed as the sums of the overlapping bases between the two reads and the gene A and B
respectively. The rules presented in c and d apply next

for the genes involved in the merged set, using DAVID
[7]. However, almost half of them have no known func-
tion, probably because they are duplicated, and no
over-represented function was clearly linked to bipolar
disorder.
We then considered the 33 merged genes with adjusted

p-value < 1%, which represented very good candidates.
These merged genes included 75 genes that were not
detected otherwise (neither by htseq-count nor fea-
tureCounts, nor in the non-merged genes found by
mmquant). This gene list includes new excellent can-
didates with putative links to bipolar disorder, includ-
ing ADK [8], GTF2I [9], hnRNP-A1 [10], HTRA2 [11],
PKD1 [12] and RERE [13], which have been linked to
various brain-related diseases (see Additional file 2).
Some of these genes have complex regulation systems
in cis: ADK and HTRA2 contain overlapping processed
pseudogenes and antisense transcripts or genes, and
mmquant merges these annotations on the fly. Other
genes, like GTF2I, hnRNP-A1, PKD1, and RERE, are
duplicated genes, or have produced a pseudo-gene in
another locus. It is out of the scope of this study to
validate these genes, but we would like to emphasize
that, because these genes are duplicated, or overlap with

other genes, they have been removed from the standard
analysis.
Concerning time, featureCounts is the fastest tool,

taking 8–11min per sample; mmquant is second with
21–29min (+1–3min if the reads are not sorted);
htseq-count, written in Python, takes 4h15min–5h29min.
mmquant is slower than featureCounts because it has to
store (and look up) all the reads that have been mapped
several times. We obtained this results allocating one
thread per BAM file, but featureCounts can be further
accelerated by allocating more than one thread per input
file, whereas mmquant and htseq-count cannot.
To confirm these results, we used several differen-

tial RNA-Seq datasets available from the Gene Expres-
sion Omnibus (GEO) [14], summarized in Table 1. We
used several model multicellular eukaryotes, with differ-
ent sequencing types and depths. Figures here globally
confirm previous results. The number of differentially
expressed genes given by each tool is comparable. fea-
tureCounts and htseq-count provide near-identical results
for single-end data. featureCounts is the fastest tool,
mmquant is somewhat slower, and htseq-count is an order
of magnitude slower. In mouse, we found that the raw
counts and the (unadjusted) p-values of the non-merged
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Table 1 Results on other datasets

Organism D. melanogaster M. musculus A. thaliana S. cerevisiae

GEO accession GSE80323 GSE86865 GSE89850 GSE83827

reference [16] [17] [18] [19]

# exp. genes 16383 24516 25170 6722

# merged genes 7237 25302 5903 4782

type paired single paired single

# replicates 4 3 3 2

# reads 27M–33M 39M–47M 12M–16M 10M–14M

# hits 28M–34M 53M–70M 12M–15M 13M–17M

# fc genes 1446 13 4622 546

# htsc genes 1432 13 4557 546

# mm genes 1441 10 4599 388

# fc and htsc 1420 13 4503 546

# fc and mm 1415 10 4534 387

# htsc and mm 1399 10 4458 387

# mmmerged only 191 2 394 97

fc time 1mn28– 1mn25– 0mn46– 0mn16–
1mn56 2mn38 1mn10 0mn29

htsc time 36mn– 21mn– 20mn– 4mn11–
46mn 25mn 26mn 5mn58

mm time 2mn35– 2mn06– 1mn19– 0mn20–
3mn31 2mn42 1mn43 0mn28

mm time unsorted 3mn31– 2mn22– 1mn28– 0mn24–
4mn18 2mn53 2mn11 0mn31

The description of each line follows. # exp. genes: number of expressed genes (at
least one read in one of the replicates); # merged genes: number of merged genes
found by mmquant; type: single-end or paired-end; # replicates: number of
replicates in each of the two conditions; # reads: number of reads sequenced; # hits:
number of hits given by STAR; # fc genes: number of differentially expressed genes
found by featureCounts; # htsc genes: number of differentially expressed genes
found by htseq-count; # mm genes: number of differentially expressed non-merged
genes found my mmquant; # mmmerged only: number of genes that constitute
the differentially expressed merged genes, and that are not found by the other two
methods; # fc and htsc: number of differentially expressed genes found by both
featureCounts and htseq-count; fc time: time spent by featureCounts; mm time
unsorted: time spent by mmquant, using unsorted data

genes were almost identical in the three methods. How-
ever, since mmquant adds a large number of merged
genes, the adjusted p-values increase, and thus 3 dif-
ferentially genes are not found by mmquant. In yeast,
we observed that the added merged genes altered the
count distribution: the library sizes and over-dispersion
parameters are sensibly different with andwithoutmerged
genes. As a consequence, mmquant finds less differen-
tially expressed genes.We believe that ourmethod is more
accurate, because it uses more data to infer the count dis-
tributions. Notice that mmquant always finds newmerged
genes.

Conclusion
Gene quantification is an essential step of many RNA-Seq
analyses. Yet, the assumption used by the quantification

tools is not always fully understood, especially concern-
ing multi-mapping reads. With mmquant, we provide a
simple tool, that includes these reads in the quantifica-
tion step, with no assumption on the read distribution.
On our test sample, we found that these multi-mapping
reads could provide up to 25% new differentially expressed
merged genes. These genes were outside of the scope
of previous analyses, thus biasing their results. We hope
that, with mmquant, a drop-in replacement of previ-
ous tools, the genomic “dark matter” will be at last
explored.
In the future, we would like to extend the concept

to feature quantification. In some protocols, especially
sRNA-Seq, one may want to count the number of reads
per feature, such as miRNA, tRNA, rRNA, etc. Even
though a read maps at several loci, all the loci may belong
to the same feature. This method could help reducing
ambiguities and providing useful results as well.

Availability and requirements
• Project name: mmquant
• Project home page: https://bitbucket.org/mzytnicki/

multi-mapping-counter and https://toolshed.g2.bx.
psu.edu/repository?repository_id=93e0efd7b8426c9c
for in the Galaxy Tool Shed

• Operating system(s): Linux
• Programming language: C++
• Other requirements: C++11 or higher, and zlib
• License: Lesser General Public License 3.0

Additional files

Additional file 1: Comparison of the p-value distributions. Each square
outside of the diagonal compares a couple of tools. For instance, the
top-right square compares featureCounts with mmquant. Each dot is a
gene, its x-axis value is − log of the p-value given by a tool, whereas the
y-axis value is − log of the p-value given by the other tool. In the
aforementioned square, the value on the x-axis is given using the
mmquant strategy, and the value on the y-axis is given using the
featureCounts strategy. All axes are log-scaled, and p-values have been
increased by 105 to render 0s. (PDF 1771.52 kb)

Additional file 2: List of differentially expressed merged genes, related to
brain diseases. For each of the six “merged genes” potentially linked to
brain diseases, we provide the actual genes they are made of, as well as
their genomic loci. Notice that merged genes 3 to 6 involve two to three
different loci. (PDF 48 kb)
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BAM: Binary alignment map; bp: Base pairs; GC%: Guanine–cytosine content;
GEO: Gene expression omnibus; h: Hours; kb: Kilo-base; M: Millions; mn:
Minutes; qRT-PCR: Quantitative reverse transcription polymerase chain
reaction; SAM: Sequence alignment map
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