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Abstract

Background: Aging is characterized by a gradual breakdown of cellular structures. Nuclear abnormality is a hallmark
of progeria in human. Analysis of age-dependent nuclear morphological changes in Caenorhabditis elegans is of great
value to aging research, and this calls for an automatic image processing method that is suitable for both normal and
abnormal structures.

Results: Our image processing method consists of nuclear segmentation, feature extraction and classification. First,
taking up the challenges of defining individual nuclei with fuzzy boundaries or in a clump, we developed an accurate
nuclear segmentation method using fused two-channel images with seed-based cluster splitting and k-means
algorithm, and achieved a high precision against the manual segmentation results. Next, we extracted three groups of
nuclear features, among which five features were selected by minimum Redundancy Maximum Relevance (mRMR) for
classifiers. After comparing the classification performances of several popular techniques, we identified that Random
Forest, which achieved a mean class accuracy (MCA) of 98.69%, was the best classifier for our data set. Lastly, we
demonstrated the method with two quantitative analyses of C. elegans nuclei, which led to the discovery of two
possible longevity indicators.

Conclusions: We produced an automatic image processing method for two-channel C. elegans nucleus-labeled
fluorescence images. It frees biologists from segmenting and classifying the nuclei manually.
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Background
The nucleus is vital for many cellular functions and
is a prominent focal point for regulating aging [1–3].
Caenorhabditis elegans (C. elegans) is an important model
organism for studying aging because of its small size,
transparent body, well-characterized cell types and lin-
eages. Several important studies have found age-related
morphological alterations in C. elegans nucleus, such
as changes of nuclear shape and the loss of peripheral
heterochromatin [4]. It is reported that these alterations
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are highly related to lamin and chromatin. Therefore, biol-
ogists usually label them with fluorescence proteins and
use the fluorescence images to study aging [5–8].
To assess characteristics of nuclear morphology during

the aging process, biologists usually manually identify the
nuclei from images, subjectively estimate the type of the
nuclei and evaluate the nuclear morphology according to
experience. This process lacks consistent standards and
high efficiency. Thus, an effective and automatic process-
ing method for C. elegans fluorescence images is needed
for nuclear morphological analysis.
There is a rapid development of imaging informatics,

producing some advanced segmentation and classifica-
tion methods [9–16]. We have tried these methods and
found that many of them do not work properly on our
images because of the complexity of our images. In our
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images, many nuclei are highly textured, leading to low
intensity continuity and messy gradient directions. Fur-
thermore, our images have a wide range of nuclear sizes,
covering both small nuclei (neuronal nuclei) and large
nuclei (intestinal nuclei). The high background noise and
large variation of image quality also affect the segmenta-
tion results. Thus, the existing methods are not suitable
for our images. More details of these method’s limita-
tions and discussions can be found in Additional file 1. In
addition, few image processing studies and quantification
researches focus on C. elegans nucleus-labeled fluores-
cence images, not only because of the gap between biology
and image processing field, but also the image processing
challenges.
Age-related changes of nuclear architecture of C. ele-

gans pose a challenge to image analysis. Extensive dete-
rioration of the nuclear morphology has been observed
in worms of advanced age, including a systemic loss of
DAPI-stained intestinal nuclei, which could result from
loss of nuclei, loss of nuclear DNA, or reduced affinity
of old DNA for DAPI for unknown reasons [17]. Identi-
fying intestinal nuclei by green fluorescent protein (GFP)
labeling also becomes ineffective in old worms due to
an increase of background fluorescence [18]. In addition,

images of old C. elegans nuclei are intrinsically fuzzier
and misshapen, because old nuclei lose their round shape
and their proper distribution of nuclear components [19].
As such, despite the rapid development of imaging infor-
matics, processing methods that can handle fluorescence
images of both young and old C. elegans nuclei are cur-
rently unavailable.
In this paper, we present an integrated image process-

ing method on two-channel nuclear-labeled fluorescence
image. First, a segmentation method based on two-
channel images fusion is proposed to separate the nuclei
from the background. Second, a set of geometric, inten-
sity and texture features are extracted to describe nuclear
morphological properties. Five features are selected by
mRMR as the most important features for classification.
Next, several classification algorithms are employed and
compared. Finally, two examples of quantitative feature
analysis are shown.

Methods
In this section, the acquisition and processing method of
C. elegans nucleus-labeled fluorescence images are pre-
sented in detail. Figure 1 shows the flowchart of the
method.

Fig. 1 Flowchart of the image processing approach. Green-channel images and red-channel images are input into nucleus segmentation.
Two-channel images are fused together for further thresholding segmentation, seed-based segmentation and precise segmentation. Next, several
features are extracted from the segmented nucleus and are filtered by feature selection. Then, the selected features are applied for classification.
Finally, the classified images are quantified for morphological analysis
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C. elegans strains
The two C. elegans strains used in this study were
MQD1658 and MQD1798. They both express LMN-
1::GFP, which labels nuclear lamina with green flu-
orescence, and HIS-72::mCherry, which labels histone
with red fluorescence, either in the wild type back-
ground (MQD1658) or in the long-lived daf-2(e1370)
background (MQD1798). MQD1658 was constructed
by crossing LW697 ccIs4810 [lmn-1p::lmn-1::gfp::lmn-
1 3’utr + (pMH86) dpy-20(+)] with XIL97 thu7[his-
72::mCherry] and selecting for double homozygous
offspring. MQD1798 was obtained by crossing MQD1658
with CF1041 daf-2(e1370) and selecting for triple
homozygous offspring.
Genotype of MQD1658: thu7 [his-72::mCherry];

ccIs4810 [lmn-1p::lmn-1::gfp::lmn-1 3’utr + (pMH86)
dpy-20(+)].
Genotype of MQD1798: daf-2(e1370); thu7 [his-

72::mCherry]; ccIs4810 [lmn-1p::lmn-1::gfp::lmn-1 3’utr +
(pMH86) dpy-20(+)].

Image acquisition
The image acquisition method is essentially the same as
described previously [20]. Worms were cultured under
standard conditions, i.e. at 20°C on NGM plates seeded
with OP50 E. coli. Worms were anesthetized with 1 mM
levamisole on an agarose pad before being imaged using
a spinning-disk confocal microscope (UltraVIEW VOX;
PerkinElmer) equipped with a 63×, 1.4 numerical aper-
ture (NA) oil-immersion objective. LMN-1::GFP andHIS-
72::mCherry signals were excited at 488 nm and 561 nm,
and collected at 500-550 nm and n nm, respectively. The
exposure time and laser power were varied to balance the
fluorescence intensity among samples. All images were

transformed into TIF format and cropped into 1000 ×
1000 array. Figure 2 shows the examples of the images.
Our image set contains 1364 groups of images from two

C. elegans strains with different ages in days 1, 4, 6, 10, 12,
14, 16. Table 1 describes the amount of image groups of
two strains in each day. Each group includes one green-
channel image and one red-channel image. The green
channel indicates nuclear membrane and the red chan-
nel chromosome. In this work, we restrict our attention
to four types of nuclei: hypodermal, intestinal, muscle and
neuronal nuclei. Figure 3 shows the examples of four types
of nuclei in day 1 and day 16.

Nuclear segmentation
This section describes how we segment nuclei from the
background. From the examples in Fig. 2, we can see
that there is much noise from the fluorescence of neigh-
boring nuclei and some nuclei cluster closely together.
Thus the fuzzy boundary and clustered nuclei are the two
main challenges in nuclear segmentation. Considering
these challenges, we propose a method to effectively sep-
arate the nucleus from the noisy background and adjacent
nuclei. The procedure consists of four steps: two-channel
image fusion, thresholding segmentation, seed-based seg-
mentation and precise segmentation.

Two-channel image fusion
In our imaging data, green-channel images are more reli-
able than red-channel images, because the former are
clearer and have higher signal-to-noise ratio (more details
can be found in Additional file 1). Even though the green-
channel images are reliable, they have low intensity and
fuzzy boundaries. Thus, we fuse green-channel and red-
channel images to enhance the contrast of nuclei.

Fig. 2 Fluorescence images acquired using 488-, 561-nm excitation. a-d are the green-channel images, indicating nucleus membrane. e-h are the
corresponding red-channel images, indicating chromosome
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Table 1 The amount of images of different strains and ages

Strain Day1 Day4 Day6 Day10 Day12 Day14 Day16

wild type 122 116 102 72 119 105 97

daf-2(e1370) 80 114 86 61 119 79 92

First we use Otsu’s method to calculate the global bina-
rization threshold of the green-channel image (Ig) and
get the binary image (Ib). Ib is the filter kernel for the
red-channel image (Ir). These two images are merged by:

Ig × P × Wg

Pg
+ Ir · Ib × P × Wr

Pr
where P is the maximal intensity of all imaging data.
Wg and Wr are the weights of the green-channel image
and the red-channel image. We set Wg and Wr to 0.6
and 0.4, respectively. Pg and Pr are the maximal inten-
sity of Ig and Ir , respectively. An example of image fusion
is shown in Fig. 4(a-c). After that, the intensities of

nuclei in current focus plane are enhanced and those
not in current plane are diminished. Thus, the nuclear
boundaries are sharpened, allowing for more accurate
segmentation.

Thresholding segmentation
Our image fusion makes the segmentation much easier so
that a simple threshold method is efficient for binariza-
tion. We first roughly extract the nucleus from the fused
image by using Otsu’s method to obtain a suitable thresh-
old [21]. However, this method is not always effective
because of the out-of-focal-plane noise during imaging.
When Otsu’s method fails, local thresholding is applied to
binarize images by computing a threshold at every cen-
ter pixel of every 701 × 701 pixels region. The field of
view (FOV) of the region is about 72 × 72 μm, the width
of which is approximately the width of the worm body.
Generally, most of the images can be properly binarized.
Figure 4(d) shows a binary image example.

Fig. 3 Four types of C. elegans nucleus in day 1 and day 16. Images in the same row are the same nuclear types: (a-d) hypodermal nuclei,
(e-h) intestinal nuclei, (i-l) muscle nuclei and (m-p) neuronal nuclei. Images in first two columns are the green-channel and red-channel images
captured in day 1. Images in the third and fourth columns are captured in day 16
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Fig. 4 The process of nuclear segmentation methods. a The raw green-channel image. b The raw red-channel image. c The fused image of (a) and
(b). d The binary image after thresholding. e The distance map of (d) (lighter color indicates higher value). f The fused image with seeds. g The
binary image after seed-based cluster splitting (too small and dark nuclear regions are excluded). h Final result of the nuclear segmentation with
white nuclear boundaries

Seed-based segmentation
We first transform the binary image to a distance map D.
The gray level of each pixel in D is the Euclidean distance
between itself and the nearest zero pixel of binary image.
Figure 4(e) shows an example of a distance map. Then we
apply Gaussian smoothing to smooth small fluctuations in
D and adopt the local maximums as seeds, which indicate
the locations of the nuclei. But the problem is that long or
irregular regions have more than one seed, like Fig. 5(a).
So we need to merge these seeds.
To merge the seeds, we compare the lower value (m) of

two seeds (A and B in Fig. 5) and the minimal value (n)
on the line (the pink line in Fig. 5) between two seeds.
If n > m × r, these two seeds would be merged into
one seed located at their midpoint. r is a value close to
the ratio of the lowest and highest nuclear intensity. It is
set to 0.928 for our data set. Figures 4(f) and 5(d) shows
the fused image that has only one seed in each nucleus
after seeds mergence. The next step is to split the clus-
tered region based on the seeds. We compute the distance
transformation and force the value of the seed as negative

infinity. And finally we compute the watershed transform
of the modified distance map. Figure 4(g) gives the cluster
splitting results.

Precise segmentation
In this step, the rough boundaries of nuclei are modified
to be more precise. Based on the results of last step, we
construct windows for each nucleus on the fused image.
As shown in Fig. 6(a), we extract the roughly segmented
nucleus (Fig. 6(a)-ii) from fused image and combine it with
a pure intensity background (Fig. 6(a)-iii), where intensity
of all pixels is the mean intensity of the pixels on rough
boundary of the nucleus (the white line in Fig. 6(a)-i).
Then the k-means algorithm [22] is applied to cluster the
pixels in a two-dimensional space, I and B. I is the value
of pixels in the newly constructed window (Fig. 6(a)-iv)
multiplied by weight w1, which is the reciprocal of maxi-
mum value in the window. And B is the value of pixels in
binary image multiplied by weight w2, which is 0.4 in our
experiment. Figure 6(b) shows that all the pixels are clus-
tered into two groups. The red and blue circles correspond

Fig. 5 Seeds mergence process. aMore than one seeds in the nuclei. The red points indicate the seeds. The pink line is a straight line linking seed A
and B. b Distance map of binary image of (a) (the indicators are the same as (a)). c The distance map value on the line AB. The x-axis is the pixel
location on AB. The y-axis is the pixel’s value in distance map. d The image after seed mergence
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Fig. 6 Precise segmentation process. a The precise segmentation pipeline. i is the roughly segmented nucleus on the fused image. ii is the nucleus
extracted from i. iii is a pure intensity background we constructed, whose gray value is the mean intensity of the boundary (the white line in i). iv is
the image combined by ii and iii. v shows the new nuclear boundary. vi is the extracted nucleus. vii is the original background in fused image. viii is
the final result of precise segmentation. b The result of k-means clustering. The x-axis is I and the y-axis is B. The blue circles represent the
background pixels and the red ones represent the foreground pixels. The blue circle that the red arrow points to denotes all the pixels in iii. These
pixels have the same I and B values

to the background and foreground pixels. After all of the
nuclei are processed as above, the precise segmentation
is completed. Figure 4(h) shows the final segmentation
result.

Classification
Feature extraction
After nuclear segmentation, we construct a feature set for
classification. In this work, we extract geometric, inten-
sity and texture features to describe the properties of
nuclei. Geometric features are quantitative interpretations
of nuclear shapes. Figure 7 shows some of the geomet-
ric features graphically. Intensity features are derived from
the intensity histogram of each nucleus. Texture features
are extracted from the gray level co-occurrence matrix
(GLCM), a statistical measurement calculating how often
pairs of pixel with specific values and in a specified spa-
tial relationship occur in the nucleus [23]. We calculate
GLCMof nuclei at directions of 0◦, 45◦, 90◦, 135◦. The off-
set of GLCM is 7, because the mean texture scale of nuclei
in our data set is 7. To describe the GLCM features’ def-
inition properly, we define i and j as the row and column
of the co-occurrence matrix C, p(i, j) as the value in C of
row i and column j. μi, μj and σi, σj denote the means
and standard deviations of the row and column sums of
C, respectively. The details are illustrated in Table 2. All of

these features are extracted from both green-channel and
red-channel images.

Feature selection
We get a 51-dimensional feature set from the previous
section. But not all features contribute equally to the

Fig. 7 The convex hull andminimum enclosing rectangle of a nucleus.
The pure gray region is a nucleus. The convex hull is the nucleus
added to the region with stripped lines. The blue rectangle is the
minimum enclosing rectangle of the nucleus, with length a and
width b
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Table 2 Descriptions of geometric, intensity and texture features

Type Feature Description

Geometric features

area A The number of pixels on the contour as well as the pixels enclosed by the contour.

perimeter P The number of pixels on the nuclear contour.

circularity C C = 4πA/P2, indicating the roundness of the nucleus.

ellipticity 1 − b/a (a and b are the length and width of minimum enclosing rectangle, shown in Fig. 7),
measuring how much the nucleus deviates from being circular.

solidity A/Ac (Ac is the nuclear convex area measured by counting the number of pixels in the convex hull, as
shown in Fig. 7).

maximum curvature The maximum of curvatures (The curvature at each boundary point is calculated by fitting a circle to
that boundary point and the two points 10 boundary points away from it.).

minimum curvature The minimum of curvatures.

std of curvature The standard deviation of curvatures.

mean curvature The average absolute value of curvatures.

Intensity features

mean x̄ Mean intensity of all pixels in the nuclei.

variant σ 2 Variant of all pixels’ intensity in the nuclei.

skewness 1
N−1

∑N
i=1

(
xi−x̄
σ

)3
(N is the number of pixels in the nucleus). The negative or positive skewness means

that most of the pixel values are concentrated at the right or left side of the histogram, respectively.

kurtosis 1
N−1

∑N
i=1

(
xi−x̄
σ

)4
, describing whether the distribution is platykurtic or leptokurtic.

Texture features

contrast of GLCM
∑

i,j |i − j|2 p (i, j), measuring the intensity contrast between a pixel and its neighbor over the whole
nucleus.

correlation of GLCM
∑

i,j
(i−μi)(j−μj)p(i,j)

σiσj
, measuring the dependencies between the nucleus image pixels.

energy of GLCM
∑

i,j p(i, j)
2, measuring the orderliness of texture. When the image is proficient orderly, energy value is

high.

homogeneity of GLCM
∑

i,j
p(i,j)

1+|i−j| , measuring the closeness of the distribution of elements in GLCM to its diagonal.

final nucleus classification. The redundant mutual rela-
tionships also generate incorrect classification results. In
order to improve the performance of the classifiers and
better understand the data, we need to reduce the feature
dimension and find the significant features.
Since the range of feature values varies, some machine

learning algorithms would not work properly without fea-
ture scaling and normalization. To ensure each feature
contributes proportionately to the final distance metric,
we firstly normalize each feature by projecting the mini-
mum and maximum onto the range 0 and 1.
For feature selection, we first employ the minimum

Redundancy Maximum Relevance (mRMR) feature selec-
tion scheme [24] to sort these features according to two
distinct criteria. The first is “maximum relevance”, which
selects features that have the highest mutual informa-
tion with respect to the corresponding target class. The
other is “minimum redundancy”, which ensures that the
selected features have the minimum mutual information
with other features. Constrained by these two variants,
features that are highly related to the class labels and have
themaximal dissimilarity with other features are at the top
of the rank.

Then, we construct many feature subsets according to
the rank. Each subsets contains the top n features. We
input these subsets into the classifiers to discriminate the
nuclei into different classes. We want to find the feature
subset thatmakes the classifiers performwell and contains
the least amount of features. The classifiers are the same
with those in the following classification section.

Classification
The image data set of segmented nucleus includes not
only the expected nuclei (the nuclei of four target tissues
as mentioned above), but also the unexpected nuclei
(the nuclei of other tissues or those can not be identi-
fied manually). All these nuclei are measured by selected
features. These features are used in machine learning
frameworks to train the classification models. This clas-
sification section is to discriminates the expected nuclei
into the accurate tissue classes. The accuracy of unex-
pected nuclei is neglected because they are not our
interests or we do not know which tissue they belong
to certainly. All the classifiers are developed using scikit-
learn, a machine learning library in Python [25]. The
classification parameters can be found in Additional file 1.
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In this stage, several machine learning algorithms
are adopted and compared, including Support Vector
Machine (SVM), Random Forest (RF) [26], k-Nearest
Neighbor (kNN), Decision Tree(DT) and Neural
Net(NN) [27].
The training data set of the classifiers is considered

imbalanced since it exhibits an unequal distribution
among four types of nuclei. To guarantee the classifica-
tion accuracy of both the minority and majority classes,
we set the weight of each class to

√
Ntotal/Ni, where Ntotal

is the total sample amount of the training set and Ni is the
sample amount of class i.
The optimal parameters are found exhaustively in the

large grid of candidate parameter values using cross-
validation [28]. We use 3-fold cross-validation to estimate
the performance of classifiers with each parameter combi-
nation. In each estimating trial, the data set are randomly
split into three parts, two of them are the training set
Tr and the other one is the testing set Te. Tr is used to
train the classifier with this parameter set. Te is classi-
fied by the classifier and the prediction result is compared
with the true value. The final result is a score that cal-
culated by the mean dot product of class accuracy and
their weights. After testing the whole parameter set, we
adopt the parameters that achieve the highest score in the
classifiers.
An SVM classifies the data by finding an optimal hyper-

plane that separates data points of one class from other
classes. The best hyperplane for SVM is the one with the
largest margin between the classes, where margin is the
distance from the decision surface to the support vec-
tors. Our SVM classifier employs a linear kernel function
and an one-against-one approach [29] to deal with the
four-class problem.
Random Forest is a classification method that con-

structs a multitude of decision trees at training time. The
output is themode of the individual trees. During decision
trees construction, we use information gain to measure
the quality of a split and finally construct 19 trees in this
forest.
k-NN is a non-parametric method where the input con-

sists of k closest training examples in the feature space and
the object is assigned to the label that is most common
among its k nearest neighbors. We set k to 10 in our k-
NN classifier. We use Manhattan distance to measure the
distance between samples and use k-dimensional tree to
compute the nearest neighbors [30].
Decision tree is a flow-chart-like structure, where each

internal node denotes a test on an attribute, each branch
represents the outcome of a test, and each leaf node holds
a class label. Here we use Classification and Regression
Trees (CART) algorithm to create decision tree. We uti-
lize information gain to measure the quality of a split and
choose the best random split.

For a neural network model, we use a multi-layer per-
ceptron (MLP) which is a feed-forward artificial neural
network and maps sets of input data onto a set of appro-
priate outputs. An MLP consists of multiple layers of
nodes in a directed graph, where each layer fully connect
to the next one. Except for the input nodes, each node is
a neuron with a nonlinear activation function. It utilizes
a supervised learning technique called back-propagation
to train the network [31]. In our network, we have one
input layer, one output layer and one hidden layer with
15 neurons. We apply Cross-Entropy as the loss function,
tanh as the hidden layer activation function, and Softmax
as the output function. For weight optimization, we use
Adam, where the exponential decay rate for the first and
second moment vector estimation are 0.9 and 0.999, and
the value for numerical stability is 10−8. Also, we adopt
L2 regularization to reduce over-fitting, where the penalty
parameter is set to 0.001 and the learning rate is constantly
kept at 0.001.
These classifiers are used both in feature selection and

classification. In feature selection, all the classified nuclei
are included in the final results. However, in classification,
we measure the probabilities of the possible outcomes
[32] and exclude the nuclei that have low classification
probabilities (< 90%) in the final results. Because high
classification accuracy is more important than sensitivity
in our study.

Quantitative analysis
Many nuclei changes morphology during normal aging
process. The aim of biologists is to find the nuclear mor-
phological changing pathway and the differences between
the pathways of two C. elegans strains (wild type and
daf-2(e1370)). To show the effectiveness of our image
processing method, we process a set of two-channel C.
elegans nucleus-labeled fluorescence images using our
automatic image processing method and obtain the image
set of segmented and classified nuclei. As hypodermal
nuclei change the architecture obviously during aging, we
focus on hypodermal nuclei and calculate their area and
solidity to demonstrate the effectiveness. The results are
presented in the following section.

Results and discussion
Nuclear segmentation
To evaluate the segmentation performance, some nuclei
are segmented by biologists manually, which is denoted as
G. The automatic segmented nuclei by our methods are
denoted as S. We evaluate the performance by calculating
true-positive area (TP), false-positive area (FP) and false-
negative area (FN) as follow:

TP = AG ∩ AS

FP = AS − AG ∩ AS
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FN = AG − AG ∩ AS

AG is the number of pixels lying within the manual delin-
eations of the nuclei. AS is the number of pixels in the
auto segmented boundary. To evaluate segmentation out-
comes, we use precision P and sensitivity S:

P = TP
TP + FP

S = TP
TP + FN

In order to show the importance of two-channel image
fusion, we compare the segmentation results of using
fused images and using only green-channel images. For
nuclei of each different ages, we randomly select 60 nuclei,
the amount of each tissue are proportional to the over-
all proportion of the whole nuclear data set (hypodermal :
intestinal : muscle : neuronal ≈ 8 : 2 : 2 : 3). We calculate
the average sensitivity and precision for segmented nuclei
of different tissues and ages. The results are shown in
Table 3. Comparing four tissues, performance on hypo-
dermal nuclei is the best. Because hypodermal nuclei lie
near the surface of C. elegans body, the intensity and con-
trast of hypodermal nuclei in images are higher. And they
never cluster together. On the contrary, intestinal nuclei
lie deeply in the worm body and neuronal nuclei usually
cluster densely. Muscle and neuronal nuclei are smaller,
thus they are more sensitive to small errors. Seeing the
results of different ages, segmenting the old nuclei are
slightly harder than young ones due to the distortion of old
nuclei. In any case, the mean P and S of segmented nuclei

using fused images are higher than using green-channel
images. That is because red-channel images compensate
the inside intensity of nuclei in green-channel images and
enhance the contour contrast. Besides these evaluations,
the following quantities are also measured and com-
pared: total number of nuclei correctly segmented, over-
segmented and under-segmented. After all the images
are processed by our segmentation methods using green-
channel images and two channel images, the segmented
nuclei are manually classified into correctly/over/under
segmented cases. Figure 8 shows an example of three seg-
mentation cases. Table 4 shows the comparative segmen-
tation results, including nuclear amount and percentage
of each cases. 88.31% of the nuclei are correctly seg-
mented by utilizing two-channel images, which is 6.24%
higher than the single channel images. Consequently, the
proposed segmentation method using two-channel image
fusion gives a good partition of nuclei without losing the
nuclear shape characteristics.

Classification
Using mRMR, features are sorted by the combination of
the relevance to the target class and the relevance to other
features. The top one in the rank has the highest relevance
to target class and lowest relevance to other features.
According to the rank, we construct 51 feature subsets.
Each subset contains the top n features. The performance
of classifiers using the feature subsets are evaluated by
the mean class accuracy (MCA) of each classes, defined
as MCA = 1

n
∑n

k=1 CAk , where n is the number of
nuclear classes, CAk is the classification accuracy of class

Table 3 Segmentation precision and sensitivity comparison between using one (green-channel) and two channel images

Tissue Hypodermal Intestinal Muscle Neuronal

Channel One Two One Two One Two One Two

Day1 Precision 97.00% 99.19% 83.39% 99.64% 92.15% 99.02% 91.62% 98.11%

Sensitivity 86.63% 91.76% 94.50% 91.89% 71.89% 81.80% 79.91% 81.44%

Day4 Precision 99.43% 99.59% 92.16% 99.38% 94.28% 98.25% 90.08% 97.42%

Sensitivity 85.29% 89.16% 95.57% 92.83% 77.84% 85.88% 82.84% 84.94%

Day6 Precision 99.72% 97.86% 96.90% 97.43% 89.36% 96.13% 89.97% 98.37%

Sensitivity 79.37% 92.48% 80.55% 95.63% 79.48% 90.33% 81.05% 83.46%

Day10 Precision 95.48% 98.83% 95.23% 96.54% 99.73% 99.39% 97.11% 98.51%

Sensitivity 70.39% 95.30% 69.65% 94.23% 85.62% 87.45% 77.04% 92.16%

Day12 Precision 99.77% 98.59% 95.67% 95.22% 97.57% 98.02% 99.47% 98.99%

Sensitivity 69.66% 92.79% 66.52% 93.38% 77.64% 90.40% 75.58% 87.83%

Day14 Precision 99.80% 99.21% 96.15% 95.64% 91.28% 92.99% 95.77% 96.91%

Sensitivity 66.94% 93.86% 72.36% 92.22% 85.07% 89.46% 77.25% 84.00%

Day16 Precision 99.39% 99.44% 94.07% 94.34% 95.14% 95.65% 95.83% 96.81%

Sensitivity 62.16% 91.81% 72.35% 91.23% 66.79% 77.96% 73.25% 81.97%

Sum Precision 98.66% 98.96% 93.37% 96.88% 94.22% 97.06% 94.26% 97.87%

Sensitivity 74.35% 92.45% 78.79% 93.06% 77.76% 86.18% 78.13% 85.11%
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Table 4 Segmentation performance comparison between using
one (green-channel) and two channel images

Type Nuclei
Amount

Correctly
segmented

Over-
segmented

Under-
segmented

One Channel 10016 8220
(82.07%)

863
(8.62%)

933 (9.31%)

Two Channel 11154 9850
(88.31%)

330
(2.96%)

974 (8.73%)

k, calculated by Ck/Nk . Ck is the number of nuclei that
are classified correctly as class k. Nk is the total nuclear
number that are classified as class k.After sorting the features though mRMR, we use the
classifiers to filter the features further. The performances
of five classifiers with different subsets are shown in Fig. 9.
According to the figure, the line zooms up from one fea-
ture to 5 features and levels off with slight oscillations
until the end. It means that the most dominant factors
for classification are the top 5 features. They are shape
features (area, ellipticity, curvature mean and solidity) and
texture feature (the homogeneity of GLCM at 90◦ on
green-channel image). All these features agree with the
empirical classification standards. The neuronal and mus-
cle nuclei are usually smaller than the other two types.
Neuronal nuclei are circle and muscle nuclei are ellip-
tical. The intestinal nuclei typically have large area and
high homogeneity. Hypodermal nuclei are quite complex.
They have elliptical shape and smooth texture early, and
have more irregular shapes and more variation in inten-
sity distribution when they are old. Our shape and texture
features can effectively distinguish four classes.
To compare the effectiveness of five classification algo-

rithms, each classifier is evaluated by MCA and CAk .
And the nuclei that have low classification probabilities

(< 90%) are excluded, because high classification accu-
racy is more important than sensitivity in our study. The
classification results given by the five classifiers are listed
in Table 5. In Table 5, it is clear that the Random Forest
method performs better than other classifiers on our data
set with the accuracy of 96.33%, 98.44%, 100.00%, 100.00%
for hypodermal, muscle, neuronal and intestinal classes
and 98.69% for MCA. Decision tree turns out to be the
worst classifier among all, producing an MCA of 83.48%
only. The reason why decision tree performs badly is that
our features have high variance, making it difficult to find
a clear and simple separation cut for the feature points.
Beside decision tree, the other four classifiers produce
perfect results in classifying muscle and neuron nuclei
because these two types have obvious characteristics and
scarcely change during the process of aging. The accu-
racy of hypodermal class is lower than others because they
drastically change their shapes and textures when they
are old.

Quantitative analysis
The quantification results of age-dependent hypodermal
nuclear morphological changes of two C. elegans strains
are shown in Fig. 10. At 20°C, wild type worms have an
average lifespan of about 20 days, and the daf-2(e1370)
animals live twice as long the wild type [33]. From adult
day 1 to day 16, the size of wild type hypodermal nuclei
first increases and then decreases, forming a bell-shaped
trend line. At its peak on adult day 10, the nuclear area is
about twice as big as that on adult day 1. Over the same
period, the change in the size of the daf-2 hypodermal
nuclei is far less than that of the wild type. And for animals
of the same age, the daf-2 nuclei are always smaller than
those of the wild type (Fig. 10(a)). The daf-2 hypodermal

Fig. 8 Three different segmentation cases. a-c The original green-channel images. d Correctly segmented nucleus. e Over-segmented nucleus.
f Under-segmented nucleus
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Fig. 9 The performance of the classifiers with different subsets of features. The x axis, feature number, is the dimension of the feature subsets. The y
axis is MCA. Five colors represent five classifiers

nuclei are also better at maintaining a smooth, round
shape (measured as solidity) than their wild type coun-
terparts, shown as a slow solidity decrease in the former
and a faster and greater decrease in the latter (Fig. 10(b)).
We propose that the smaller size and resistance to
age-dependent changes are characteristics of the daf-2
hypodermal nuclei, and they may be positively associated
with daf-2 longevity.

Conclusions
In this paper, we proposed an integrated C. elegans
nucleus-labeled fluorescence image processing method
that consisted of nuclear segmentation, feature extraction,
feature selection and classification.
Accurate nuclear segmentation method was achieved

on fused two-channel images with seed-based cluster
splitting and k-means. It overcame the difficulties of fuzzy
nuclear boundaries and clustered nuclei segmentation and
finally produced a high precision compared with manual

segmentation result. Next, three groups of nuclear fea-
tures were extracted to describe the nuclei, among which
only five features were selected by mRMR for classifiers.
Then, several popular classification techniques were com-
pared using these features and the result indicated that
Random Forest was the best classifier for our data set
with an MCA of 98.69%. Finally, area and solidity of
hypodermal nuclei were calculated and suggested that
hypodermal nuclei in wild type were larger and more
irregular than those in daf-2(e1370). Smaller hypodermal
nuclear area and smooth shape changes may be related to
daf-2 longevity.
The nuclei are three dimensional, and their locations

and orientations vary in C. elegans body. Although some
out-of-focus nuclei were filtered by fusion of two-channel
images, we could not ensure that all the nuclei are in
their optimal focus plane. However, the error caused
by out-of-plane was most likely evenly distributed and
unlikely to alter the conclusion that can be made from the

Table 5 Accuracy of different types of nuclear classification and MCA of five classifiers (best classifier’s performances are written as
bold text)

Method Hypodermal Muscle Neuron Intestine MCA

SVM 93.77% 98.48% 100.00% 90.48% 95.68%

DT 87.27% 94.62% 85.14% 66.87% 83.48%

RF 96.33% 98.44% 100.00% 100.00% 98.69%

k-NN 96.33% 98.15% 100.00% 96.29% 97.69%

NN 94.74% 100.00% 100.00% 90.00% 96.19%
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Fig. 10 Quantification of age-dependent morphological changes for hypodermal nuclei in two strains. Area (a) and solidity (b) of wild type and
daf-2 hypodermal nuclei from adult day 1 to day 16. Data are the mean ± SD of all nuclei per time point. *P<0.0001, Welch’s t-test

comparison between time points or strains. In addition,
the bright field images contained more information about
the C. elegans strains and nuclei (for example, the size of
the C. elegans body, the location of the nuclei and so on).
In the future, we would like to capture and fusemore types
of images for image processing and aging information
mining.
C. elegans nucleus-labeled fluorescence images are very

popular materials to study nuclear morphology during
aging. Since there is no framework for this kind of images,
we implement an automatic image processing method
with segmentation, classification and quantification. Our
method frees biologists from segmenting and classifying
nuclei manually and subjectively. It reduces the quan-
tification into a simple procedure. We have applied this
method to the fluorescence image set and obtained some
promising results, demonstrating its utilities in quantita-
tive nuclear aging studies.

Additional file

Additional file 1: Segmentation and classification of two-channel C.
elegans nucleus-labeled fluorescence images. This file contains the
following sections: S1-Limitations of the existing segmentation
approaches; S2-Differences between green-channel and red-channel
images; S3-Classification parameters. (PDF 354 kb)
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