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Abstract

Background: Predicting protein complexes from protein-protein interaction (PPI) networks has been studied for
decade. Various methods have been proposed to address some challenging issues of this problem, including
overlapping clusters, high false positive/negative rates of PPI data and diverse complex structures. It is well known
that most current methods can detect effectively only complexes of size ≥ 3, which account for only about half of the
total existing complexes. Recently, a method was proposed specifically for finding small complexes (size = 2 and 3)
from PPI networks. However, up to now there is no effective approach that can predict both small (size ≤ 3) and large
(size > 3) complexes from PPI networks.

Results: In this paper, we propose a novel method, called CPredictor2.0, that can detect both small and large
complexes under a unified framework. Concretely, we first group proteins of similar functions. Then, the Markov
clustering algorithm is employed to discover clusters in each group. Finally, we merge all discovered clusters that
overlap with each other to a certain degree, and the merged clusters as well as the remaining clusters constitute the
set of detected complexes. Extensive experiments have shown that the new method can more effectively predict
both small and large complexes, in comparison with the state-of-the-art methods.

Conclusions: The proposed method, CPredictor2.0, can be applied to accurately predict both small and large protein
complexes.
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Background
Most proteins perform biological functions by forming
complexes through protein-protein interactions [1–4].
The identification of protein complexes can benefit the
understanding of biological progresses.
In recent years, high-throughput methods have pro-

vided us huge amounts of protein-protein interaction (PPI)
data. In general, a PPI data set can be represented as a
protein-protein interaction network (PIN) where nodes are
proteins and edges signifies the interactions between pairs
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of proteins (nodes). Protein complexes can be detected
from PINs by exploiting densely connected subgraphs
using graph clustering methods. Up to now, a number of
methods for detecting complexes from PINs have been
developed.
MCODE [5] is one of the earliest computational meth-

ods to predict complexes from PINs. Each node in the
PIN is weighted according to its local neighborhood den-
sity. After initializing a cluster by a seed protein, MCODE
merges a neighboring protein into the cluster if its weight
exceeds a certain threshold. The cluster is expanded
iteratively until no more node can be added. Following
MCODE, many advanced works [6–13] were reported to
detect local dense subgraphs. In addition to exploring
densely connected subgraphs, efforts have also beenmade
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to discover clique-represented complexes in a PIN. Such
methods include Clique [14], LCMA [15], CFinder [16]
and CMC [17].
To handle the high false positive and false negative rates

of PPI data, some works detect clusters by exploiting
additional information other than solely based on topo-
logical features. Due to the fact that interacting proteins
are likely to have similar gene expression profiles, meth-
ods such as MATISSE [18], DMSP [19] and GFA [20]
presented various approaches to re-weight the PIN using
gene expression data. As it is expected that proteins in
the same complex may have high functional similarity,
SWEMODE [21] andOIIP [22] detect dense clusters while
considering functional similarity of interacting proteins.
UEDAMAlign [23] was proposed to detect conserved
protein complexes using known protein complexes and
homology information of proteins.
Other than the densely connected subgraph assumption

of protein complexes, Gavin et al. [2] proposed the core-
attachment model of complexes. Here, core stands for a
set of proteins that are densely connected and attachment
stands for the proteins that own a few links to the core.
Based on the core-attachment model, Wu et al. [24] and
Leung et al. [25] presented different algorithms to identify
core proteins from PIN. Attachment proteins are included
into the core structures to form protein complexes.
Qi et al. [26] observed various topology structures of

real complexes and proposed a supervised method to
predict protein complexes. Yong et al. [27] employed
size-specific supervised weighting (SSS) as a new edge
weighting scheme to predict small-size protein complexes
(consisting of two or three proteins). For all protein inter-
actions, a naive-Bayes maximum-likelihood model was
trained to calculate the probabilities of being small-co-
complex members.
In our previous work [28], we introduced a novel from-

function-to-interaction method CPredictor for protein
complex detection. We first cluster proteins based on
functional similarity calculated using Biology Process (BP)
terms from Gene Ontology(GO) [29], then for each group
we find the subsets of proteins that are connected in the
PIN. Experimental results have shown that the from func-
tion to interaction strategy is better than previousmethods
when predicting large-size complexes.
There are also some works on complex prediction in

dynamic PINs. As they are not quite related to the work
of this paper, we do not give more detail here. Readers
interested in this topics can refer to a recent survey [30].
In summary, existing methods have demonstrated their

abilities to detect protein complexes from protein interac-
tion networks. Yet, methods, which can accurately predict
protein complexes of different sizes from PINs under a
unified framework, have not been reported. In the pro-
tein complex dataset of MIPS [31], there are 61 size-two

complexes, 42 size-three complexes and 170 larger com-
plexes. And in CYC2008 [32], there are 156 size-two
complexes, 66 size-three complexes and 127 larger com-
plexes. Small complexes and large complexes both account
for a large proportion of the total complexes. In a PIN,
a size-two complex is represented as a single edge, and
a size-three complex consists of three proteins with two
or three protein interactions. Traditional graph cluster-
ing method is not applicable to detecting such small-size
complexes. Therefore, it is challenging to detect protein
complexes of all sizes.
In this paper, we propose a novel complex prediction

method, which is an advanced version our previous work
CPredictor [28]. So we call the new method CPredic-
tor2.0. Concretely, by using CYGD [33] functional anno-
tations, proteins of similar functions are first grouped
together. Then, a network is built from each group, where
nodes are group members (proteins) and edges indicate
the interactions between proteins. Following that, clusters
are detected from each network, and are further merged
if necessary. Finally, the derived clusters are treated as
protein complexes.
Compared to CPreditor [28], CPredictor2.0 is more

effective in grouping proteins to different clusters in terms
of functions, and thus can predict more small protein
complexes. Note that in CPreditor, the similarity between
any two proteins is evaluated by GO terms, and with the
calculated similarity values, all proteins are grouped into
disjoint clusters. Obviously, CPredictor2.0 employs a finer
clustering of proteins than CPreditor.
Experiments are conducted on three PPI datasets, and

the predicted results are benchmarked with two ground
truth datasets, MIPS and CYC2008. In comparison with
several existing methods, CPredictor2.0 can more effec-
tively identify both small and large protein complexes.

Methods
In this section, we first give a brief introduction to
the functional annotation provided by CYGD [33], then
present the details of our method CPredictor2.0.

Functional annotations
The Comprehensive Yeast Genome Database (CYGD) at
the Munich Information Center for Protein Sequences
(MIPS) [31] provides the information of budding yeast
Saccharomyces cerevisiae, including sequence and func-
tional annotations. A hierarchically-structured controlled
vocabulary, the Functional Catalogue (FunCat) [34] was
developed to annotate genome. Current FunCat annota-
tion scheme 2.1 consists of 27 main categories that cover
general features likemetabolism, energy, transcription etc.
Each main functional branch is organized as a hierarchi-
cal structure, and each functional category is assigned to a
unique double-digit number. Different levels of categories
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are separated by dots. For example, “01” stands for the
main category metabolism and “01.01.03.01.01” stands for
one of its most specific levels, biosynthesis of glutamine.
Usually, a protein can perform multiple functions, and
thus can be annotated with a set of functional categories.
For example, the functions of YAL007C are described
as “14.04” (protein targeting, sorting and translocation)
and “20.09.07.03” (ER to Golgi transport). In summary,
all functional annotations make up a hierarchy (or tree),
where lower levels are more specific and higher levels are
more general.

The CPredictor2.0 method
The workflow of CPredictor2.0 is shown in Fig. 1. It con-
sists of three major steps: (1) Grouping proteins of similar
functions; (2) Detecting preliminary protein clusters; (3)
Merging clusters.
Algorithm 1 outlines the procedure of our method

CPredictor2.0. Lines 1-2 preprocess functional annota-
tions and cluster proteins of similar functions into groups.
Lines 3-12 detect the preliminary clusters from the pro-
tein groups using PPI data. Thus, proteins in a cluster
should first have similar functions, and then interact
closely. Lines 13-23 merge highly-overlapping preliminary
clusters and derive the final protein complexes.
In what follows, we present the detail of each major step

of CPredictor2.0.

(1) Grouping proteins of similar functions
According to the Funcat scheme, protein functions are
annotated by terms of various levels in a hierarchy.

In order to evaluate the functional similarity among
proteins and to group proteins, we first preprocess all
function annotations. We extract the functional annota-
tions specified by the terms of the first N levels in the
hierarchy, where N is an input parameter. If N is larger
than the height of the annotation hierarchy, we use all
annotations. Then, proteins are grouped together if they
have similar functional annotations.
Please note that, as a protein usually possesses multi-

ple functions, therefore it may lie in multiple groups. For
example, say protein A has function “1.1.1” and protein B
has function “1.1.2”. If we use the first two levels (i.e.,N=2),
then the two function terms are both shortened to “1.1”.
Therefore, the two proteins are grouped together. How-
ever, if we use the first three levels (i.e., N=3), then their
function terms are different, therefore the two proteins
belong to different groups. In essence, grouping proteins
is equivalent to cutting the annotation hierarchy, each
resulting branch corresponds to a group, consisting of the
proteins annotated by terms under this branch.

(2) Detecting preliminary protein clusters
We first build a network upon each protein group
obtained in last step (Line 5 of Alg. 1). Node set represents
proteins in the group, and edge set indicates interac-
tions between proteins. Then in each network, Markov
Clustering Algorithm (MCL) [35] is employed to detect
preliminary clusters (Line 6 of Alg. 1).
To get clusters, MCL simulates randomwalks in the net-

work while repeating two steps called expansion and infla-
tion. The network is firstly treated as an adjacent matrix,

Fig. 1 The workflow of CPredictor2.0



The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):419 Page 22 of 131

Algorithm 1 The CPredictor2.0 algorithm
Input:

PPI data
Functional annotations of proteins
N : the number of used levels of functional annotations

Output:
Cands: the set of predicted protein complexes

1: Collect functional annotations by extracting terms of
the first N levels

2: Assign proteins of similar trimmed functional anno-
tations into a set of groups Groups

3: Initialize the set of clusters PClusters = ∅
4: for all group in Groups do
5: Build protein interaction network G = (V ,E),

V is proteins in group and E is the set of edges
representing the interactions

6: Detect dense Subgraphs from G by the MCL algo-
rithm

7: for all subgraph in Subgraphs do
8: if |subgraph| ≥ 2 then
9: Add subgraph as a cluster into PClusters

10: end if
11: end for
12: end for
13: Build the overlapping network Gol for PClusters,

where nodes are preliminary clusters and each
edge connects two clusters with overlapping rate ≥
Thresholdolr (0.8 in this paper)

14: Detect Cliques from Gol
15: for all pc in PClusters do
16: if pc not in any Cliques then
17: Add pc as a complex into Cands
18: end if
19: end for
20: for all clique in Cliques do
21: Put all distinct proteins in clique as a complex into

cand
22: Add cand into Cands
23: end for

where the elements indicate whether pairs of nodes are
linked or not. At the expansion step, the matrix is updated
by taking the power of itself using normal matrix prod-
uct. At the inflation step, the matrix is normalized after
taking the Hadamard power of itself. After a certain itera-
tions of the procedure above, the derived matrix presents
the probabilities of nodes belonging to different clusters.
After obtaining clusters by using MCL, we discard these

clusters containing only one protein. All the remaining
clusters detected from different protein groups are col-
lected together for the following merge step. These are
described in Lines 7-11 of Alg. 1.

Table 1 The numbers of proteins and interactions in the three
PPI datasets

PPI dataset #Proteins #Interactions

Gavin et al. 1855 7669

Krogan et al. 2674 7075

Collins et al. 1622 9074

(3) Merging clusters
To avoid redundancy, highly overlapping clusters are
merged.
We adopt a similar procedure like ClusterONE [11] to

merge clusters (Line 13 of Alg. 1). Concretely, an over-
lapping graph Gol is built to describe the overlapping rate
between clusters. InGol, nodes represent clusters detected
in the previous step. For each pair of nodes (clusters), if
the overlapping rate between them exceeds 0.8, then they
are linked in Gol. The overlapping rate (olr) between two
clusters C1 and C2 is calculated as

olr = |C1 ∩ C2|2
|C1||C2| (1)

where | · | is the cardinality of a set.
We detect cliques in Gol, and each clique is composed

of clusters that are highly overlapping with one another.
For those nodes (preliminary clusters) not belonging to
any clique, they are regarded as protein complexes with-
out merging (Lines 15-19 of Alg. 1). For each detected
clique composed of multiple preliminary clusters, all dis-
tinct proteins from these clusters make up a predicted
complex (Lines 20-23 of Alg. 1).

Performance evaluation metrics
We used recall, precision and F-measure to evaluate our
approach. Let BC = {bc1, bc2, · · · , bcm} and PC =
{pc1, pc2, · · · , pcn} be the sets of benchmark complexes
and predicted complexes, respectively. We calculated the
overlapping degree w of a real complex bci ∈ BC and a pre-
dicted complex pcj ∈ PC. If w ≥ 0.2, we consider that the
predicted complex matching with the real one.
LetMbc be the number of benchmark complexes match-

ing at least one predicted complex, and Mpc be the
number of predicted complexes matching at least one
benchmark complex. Recall is defined as

recall = Mbc
|BC| (2)

Table 2 The numbers of small and large complexes in the two
benchmark datasets

Complex dataset #Small complexes #Large complexes

MIPS 103 170

CYC2008 222 127
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Fig. 2 Recall and precision using MIPS dataset as benchmark. a PPI dataset of Gavin et al., b PPI dataset of Krogan et al., c PPI dataset of Collins et al.

where |BC| stands for the size of benchmark set. Precision
is defined as follows:

precision = Mpc
|PC| (3)

where |PC| is the total number of predicted complexes.
The F-measure considering both recall and precision is

defined as follows:

F − measure = 2 × recall × precision
recall + precision

. (4)

Fig. 3 Recall and precision using CYC2008 dataset as benchmark. a PPI dataset of Gavin et al., b PPI dataset of Krogan et al., c PPI dataset of Collins et al.
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Fig. 4 Performance comparison. Protein complexes are detected from three PPI datasets and MIPS is used as benchmark

Results and discussion
Datasets
We used three PPI datasets of Saccharomyces cerevisiae,
including Gavin et al. [2], Krogan et al. [36] and Collins
et al. [37].
In the dataset of Gavin et al. [2], socio-affinity scoring

metric was proposed to measure the confidence of PPI
from TAP-MS experimental data. In our study, only pairs
with socio-affinity scores above 5 were considered.
In the dataset of Krogan et al. [36], a machine learning

method was employed to assign probabilities to the exper-
imental protein-protein interactions. In our study, the
core set, which contains only highly-reliable interactions,
was used.
The dataset of Collins et al. [37] combined the purifi-

cation data from the above two studies. They introduced

purification enrichment (PE) score to analyze the raw
data. In our study, we used the interactions with high
confidence as suggested.
Table 1 gives the numbers of proteins and interactions

in the three PPI datasets.
Protein complex datasets MIPS [31] and CYC2008 [32]

were used as benchmark datasets, which contain 273 and
349 complexes of size ≥ 2, respectively. Protein com-
plexes with two or three members are considered as small
complexes, and those with at least four members are con-
sidered as large complexes. Table 2 gives the numbers of
small complexes and large complexes in the two datasets.

Parameter selection
We first tested the effect of using different levels of func-
tional annotations. The height of the lowest functional
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Fig. 5 Performance comparison. Protein complexes are detected from three PPI datasets and CYC2008 is used as benchmark

annotations in CYGD is 6 and the highest is 1. Pro-
tein complexes are detected from the three PPI datasets
in Table 1, which are denoted briefly as Gavin et al.,
Krogan et al. and Collins et al respectively. The perfor-
mance is evaluated by recall and precision, which are cal-
culated usingMIPS andCYC2008 as ground truth. Results
are shown in Figs. 2 and 3. Please note that results of small
complexes and large complexes are shown separately.
From Figs. 2 and 3, it is obvious that both recall and

precision show almost similar trends in most cases. For
example, in Fig. 2a, complexes are detected from Gavin
et al., and they are benchmarked by MIPS. For small
complexes, recall increases first and then becomes sta-
ble when three or more levels of functional annotations
are used, while precision is relatively stable for all lev-
els used. For large complexes, both recall and precision

increase first and then become stable when three or more
levels of functional annotations are used. Thus, three lev-
els annotation is enough for predicting protein complexes.
As more levels of functional annotations are used, func-
tions of proteins can be described more specifically with
those annotations, therefore the proteins can be well sep-
arated into different groups. In the following experiments,
we use the most specific functional annotations by setting
the level height to 6.

Comparison with existing methods
We compared our method with several existing meth-
ods including MCODE [5], RNSC [7], DPClus [9], CORE
[25], ClusterONE [11] and CPredictor [28]. These meth-
ods were proposed to predict protein complexes with at
least three protein members, and can be tuned to predict
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Table 3 Performance comparison. Here, protein complexes are detected from three PPI datasets and MIPS is used as benchmark

Methods
Small Large Total

Recall Precision F1 Recall Precision F1 Recall Precision F1

(a) Gavin et al.

MCODE 0.058 0.143 0.083 0.371 0.411 0.390 0.311 0.392 0.347

RNSC 0.184 0.071 0.102 0.524 0.393 0.449 0.487 0.221 0.304

DPClus 0.165 0.114 0.135 0.529 0.331 0.408 0.495 0.267 0.347

CORE 0.291 0.109 0.159 0.135 0.452 0.208 0.330 0.245 0.281

ClusterONE 0.087 0.276 0.133 0.488 0.481 0.485 0.403 0.492 0.443

CPredictor 0.117 0.212 0.150 0.506 0.421 0.459 0.458 0.437 0.447

CPredictor2.0 0.350 0.146 0.206 0.553 0.627 0.588 0.56 0.418 0.479

(b) Krogan et al.

MCODE 0.039 0.120 0.059 0.288 0.511 0.368 0.234 0.431 0.304

RNSC 0.408 0.063 0.110 0.394 0.390 0.392 0.549 0.147 0.233

DPClus 0.369 0.074 0.123 0.418 0.352 0.382 0.549 0.169 0.258

CORE 0.456 0.088 0.147 0.047 0.250 0.079 0.377 0.165 0.229

ClusterONE 0.184 0.088 0.119 0.441 0.132 0.203 0.495 0.176 0.259

CPredictor 0.233 0.132 0.169 0.453 0.425 0.438 0.513 0.338 0.407

CPredictor2.0 0.417 0.158 0.229 0.488 0.610 0.543 0.604 0.391 0.475

(c) Collins et al.

MCODE 0.058 0.139 0.082 0.459 0.560 0.504 0.388 0.532 0.449

RNSC 0.398 0.139 0.206 0.471 0.533 0.500 0.590 0.298 0.396

DPClus 0.350 0.146 0.206 0.512 0.440 0.473 0.579 0.313 0.407

CORE 0.388 0.141 0.206 0.247 0.605 0.351 0.451 0.298 0.358

ClusterONE 0.350 0.187 0.244 0.553 0.431 0.484 0.586 0.346 0.435

CPredictor 0.272 0.212 0.238 0.524 0.509 0.516 0.546 0.430 0.481

CPredictor2.0 0.427 0.200 0.272 0.588 0.665 0.624 0.634 0.466 0.537

Each bold value means the largest performance measure among the compared methods on the given PPI dataset

size-two complexes. Protein complexes are detected from
the aforementioned PPI datasets. The performances of
all these methods was evaluated by recall, precision and
F-measure.
Experimental results using MIPS dataset as benchmark

are shown in Fig. 4. It is obvious that our method domi-
nates other methods in terms of F-measure. When detect-
ing small complexes, all other methods shows obvious
trade-off between recall and precision, while our method
always achieves competitive and balanced recall and pre-
cision. As for large complexes, our method achieves the
best recall and precision.
The results using CYC2008 as benchmark are illus-

trated in Fig. 5. Again it is clearly shown that our
method achieves the best F-measure in most cases,
except when detecting large complexes from Krogan
et al. and Collins et al, the F-measure of CPredictor2.0
is sightly lower than but comparable to that of CPredic-
tor. Both recall and precision of our method are quite

competitive and balanced, comparing to the existing
methods.
For comparison in detail, we present all results in

Tables 3 and 4.

Conclusion
In this paper, we aimed at effectively detecting both small
and large complexes from protein interaction networks.
To this end, we first group proteins of similar functions
according to their functional annotations. Upon each pro-
tein group, a network is built where nodes are proteins and
edges are interactions between proteins. Then, we apply
the MCL algorithm over each network to detect dense
subgraphs, each of which is a protein cluster. Finally, we
merge highly-overlapping clusters. The derived clusters
are considered to be complexes.
Ourmethod has been evaluated on three PPI datasets by

takingMIPS and CYC2008 as benchmark datasets. Exper-
imental results have shown that, comparing with several
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Table 4 Performance comparison. Here protein complexes are detected from three PPI datasets and CYC2008 is used as benchmark

Methods
Small Large Total

Recall Precision F1 Recall Precision F1 Recall Precision F1

(a) Gavin et al.

MCODE 0.023 0.143 0.039 0.457 0.558 0.502 0.255 0.577 0.354

RNSC 0.234 0.208 0.221 0.567 0.453 0.504 0.453 0.356 0.399

DPClus 0.162 0.198 0.178 0.622 0.425 0.505 0.438 0.399 0.418

CORE 0.239 0.186 0.209 0.134 0.484 0.210 0.312 0.360 0.334

ClusterONE 0.072 0.517 0.127 0.567 0.580 0.574 0.347 0.707 0.465

CPredictor 0.095 0.365 0.150 0.575 0.517 0.545 0.384 0.624 0.475

CPredictor2.0 0.342 0.273 0.304 0.535 0.649 0.587 0.481 0.562 0.518

(b) Krogan et al.

MCODE 0.023 0.200 0.040 0.291 0.681 0.408 0.146 0.653 0.239

RNSC 0.491 0.163 0.244 0.465 0.550 0.504 0.599 0.272 0.374

DPClus 0.414 0.179 0.250 0.520 0.512 0.516 0.564 0.306 0.397

CORE 0.414 0.172 0.243 0.079 0.357 0.129 0.444 0.283 0.346

ClusterONE 0.176 0.186 0.180 0.528 0.181 0.269 0.499 0.308 0.381

CPredictor 0.243 0.282 0.261 0.488 0.549 0.517 0.447 0.516 0.479

CPredictor2.0 0.410 0.295 0.343 0.441 0.657 0.528 0.516 0.535 0.525

c) Collins et al.

MCODE 0.027 0.167 0.047 0.512 0.733 0.603 0.258 0.712 0.379

RNSC 0.401 0.315 0.353 0.575 0.707 0.634 0.556 0.499 0.526

DPClus 0.369 0.329 0.348 0.591 0.595 0.593 0.547 0.513 0.530

CORE 0.401 0.313 0.351 0.315 0.791 0.450 0.473 0.512 0.491

ClusterONE 0.320 0.392 0.352 0.614 0.549 0.580 0.550 0.587 0.568

CPredictor 0.257 0.449 0.327 0.598 0.652 0.624 0.473 0.657 0.550

CPredictor2.0 0.437 0.356 0.392 0.559 0.699 0.621 0.556 0.644 0.597

Each bold value means the largest performance measure among the compared methods on the given PPI dataset

existing methods, in most cases our method achieves
higher F-measure in detecting small complexes (size=
2 and 3) and large complexes (size ≥ 4) as well as all
complexes as a whole. This result shows that our method
is more effective in detecting complexes from PPI net-
works than the existing methods.
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