
RESEARCH Open Access

Detection and quantification of
mitochondrial DNA deletions from next-
generation sequence data
Colleen M. Bosworth, Sneha Grandhi, Meetha P. Gould and Thomas LaFramboise*

From 12th International Symposium on Bioinformatics Research and Applications (ISBRA 2016)
Minsk, Belarus. 5-8 June 2016

Abstract

Background: Chromosomal deletions represent an important class of human genetic variation. Various methods
have been developed to mine “next-generation” sequencing (NGS) data to detect deletions and quantify their
clonal abundances. These methods have focused almost exclusively on the nuclear genome, ignoring the
mitochondrial chromosome (mtDNA). Detecting mtDNA deletions requires special care. First, the chromosome’s
relatively small size (16,569 bp) necessitates the ability to detect extremely focal events. Second, the chromosome
can be present at thousands of copies in a single cell (in contrast to two copies of nuclear chromosomes), and
mtDNA deletions may be present on only a very small percentage of chromosomes. Here we present a method,
termed MitoDel, to detect mtDNA deletions from NGS data.

Results: We validate the method on simulated and real data, and show that MitoDel can detect novel and
previously-reported mtDNA deletions. We establish that MitoDel can find deletions such as the “common deletion”
at heteroplasmy levels well below 1%.

Conclusions: MitoDel is a tool for detecting large mitochondrial deletions at low heteroplasmy levels. The tool can
be downloaded at http://mendel.gene.cwru.edu/laframboiselab/.
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Background
Human genetic variation takes many forms, including sin-
gle nucleotide variants, small insertions/deletions, larger
chromosomal gains and losses, and inter-chromosomal
translocations. A central pursuit in biomedical research is
to determine those variants associated with human dis-
ease. Technological advances over the past several years
have facilitated studies examining genetic variation at
ever-increasing resolution, allowing better identification of
variant-disease connections. Robust and accurate algo-
rithms to detect all forms of human genetic variation from
the ever-increasing number of large genomic data sets are
necessary.

The vast majority of human DNA variant-detection
algorithms focus exclusively on the 24 chromosomes
(22 autosomes, X, and Y) comprising the nuclear gen-
ome. Usually ignored is the mitochondrial genome,
despite the role of the mitochondrion in cellular bio-
energetics and the known importance of mitochon-
drial mutations in a number of human diseases [1–7].
The mitochondrial genome (mtDNA) has features that
distinguish it from its more commonly studied nuclear
counterpart. First, the nuclear autosomal chromosomes
are normally present in two copies per cell, while the
number of copies of the mitochondrial chromosome
varies widely from cell to cell, largely depending on tissue
type. The mitochondrial chromosome may be present at
hundreds, thousands, or tens of thousands of copies in a
cell [8]. Second, the mutation rate of the mitochondrial
genome is much higher than that of the nuclear genome
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and its repair mechanisms are far inferior to those in the
nucleus [9]. The cell therefore carries considerably more
mtDNA variants – both inherited and acquired – per base
position than nuclear variants. Third, the mitochondrial
genome is much smaller (16,569 bp) than the nuclear
genome (~3.2 billion bp) and is circular rather than linear.
Finally, mtDNA inheritance is strictly maternal. All of
these differences present opportunities and challenges
from an analytic perspective.
Since established computational tools used to identify

biologically important nuclear DNA variants are often not
adaptable to the mitochondrial genome, it is vitally im-
portant to develop new approaches to assess and quantify
mtDNA genomic variation. Robust assessment of this
variation in humans will allow identification of those vari-
ants that drive phenotypes, both benign and pathogenic.
Owing to the limitations of established methods, this
will necessitate the formulation of novel approaches
particularly suited to the unique data types and bio-
logical scenarios inherent to mitochondrial genomics.
This study focuses on detecting deletions within the

mitochondrial chromosome (Fig. 1). With the advent of
genome-wide technologies, a great deal of research has
been devoted to developing methodology to identify
sub-chromosomal gains and losses from “next-gener-
ation” sequencing (NGS) data [10–12]. Few of these
approaches have been applied to the mitochondrial gen-
ome. One of the reasons for this is the fluidity of mtDNA
abundance and content. For instance, although generally

only two haplotypes per nuclear chromosome exist in an
individual human (the exception being tumor cells), many
distinct mitochondrial haplotypes may exist within a
single individual, even in the same cell [13]. More than
one distinct mtDNA haplotype being present in a single
cell, tissue, or individual is known as heteroplasmy.
MtDNA chromosomes harboring deletions are often
present at very low heteroplasmy levels, making them
difficult to detect.
In this paper, we describe MitoDel, the computational

procedure we have developed to infer mtDNA deletions
and their abundances from NGS data. We assess the
theoretical sensitivity of our approach, and test its sensi-
tivity and specificity using simulated data. We apply
MitoDel to previously published data from sequencing
experiments involving aging human brain tissue, and to
the large public 1000 Genomes dataset [14]. We con-
clude the manuscript with discussion of the results and
future directions.
Software implementing MitoDel is available at the

LaFramboise laboratory website (http://mendel.gene.c-
wru.edu/laframboiselab/).

Methods
Acquisition of previously-published data
Courtesy of Dr. Sion Williams of the University of Miami,
we obtained raw sequence data from the Williams et al.
study [15]. Whole-genome .bam files of aligned and un-
aligned reads were downloaded from the 1000 Genomes
website [14].

Simulated data
Read data from samples harboring deletions of various
sizes and heteroplasmy levels were simulated using the
ART simulator (version ART-ChocolateCherryCake-03-
19-2015). To simulate an experiment generating R paired-
end Illumina reads from a sample with a given deletion
present in proportion p of mtDNA copies, we first modi-
fied the .fasta file containing the revised Cambridge Refer-
ence Sequence (rCRS; NC_012920.1) [16], removing a
string of bases corresponding to the desired deletion. We
then used ART to simulate (1 – p) x R reads from the
rCRS reference, and p x R reads from the deleted version.

Raw read preprocessing
All .fastq files were first aligned to a modified human
genome build hg19 using BWA [17]. Hg19 was modified
by removing the original chrM and replacing it with the
rCRS. Reads were not realigned if a .bam file was available.

MitoDel’s bioinformatic pipeline to detect mitochondrial
DNA deletions
The mitochondrial genome is described as circular
chromosome 16,569 bases in length. In the reference

Fig. 1 Depiction of a hypothetical mitochondrial genome deletion
(top). The intact genome is shown at left with deleted segment
indicated in green and a copy harboring the deletion at right. In the
cell (bottom), both intact and deletion copies are present within the
mitochondrial organelles, with per-cell abundance of the deletion at
a low percentage
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genome, the base positions are numbered in a clock-like
manner, from 5′ to 3′ on the “light” strand, from base
position 1 to base position 16,569 (Fig. 2). When a dele-
tion occurs, it has the effect of moving two base posi-
tions that are distant in the intact genome to being
adjacent. It follows that reads harboring the resulting fu-
sion point will either: i) not be deemed by the standard
NGS aligner as having come from the mitochondrial
genome, and will therefore be unaligned (Fig. 2); or ii)
only be aligned after clipping or other modifications to
the read. These modifications will be recorded in the
CIGAR string field of the resulting .sam/.bam file [18],
and the modified reads may thus be identified. Recovering
these sequences and mining them for recurrent fusion
points is the procedure that underpins our approach, as
briefly described in a published abstract [19]. Furthermore,
the relative abundance of mtDNA haplotypes harboring
the deletion may be inferred by comparing the number of
reads harboring the fusion point with the average read
depth across the mitochondrial chromosome.
Formally (notation also shown in Fig. 2), suppose that

the region from mitochondrial base position s + 1 to base
position e - 1 is deleted in proportion p of mtDNA copies,
and suppose that the NGS experiment generates reads of
length l bases. Suppose further that n reads harbor the
deletion fusion point. For the ith of these reads, let xi
(i = 1,…,n) denote the position in the read (oriented from
lower mtDNA base position to higher) harboring base
position s in the mitochondrial genome (1 ≤ xi ≤ l). Many
of these reads will not align to anywhere on the reference
genome, and will be therefore be marked as “unaligned” in
the resulting .bam file output by BWA. We extract these
unaligned reads, plus all reads with CIGAR strings indicat-
ing potential structural variants. This set of reads is then
aligned to rCRS using BLAT [20].
Unlike BWA and other aligners designed for NGS data,

BLAT is able to find splits of reads into multiple segments
that each align to separate sites in a reference genome.

This capability comes at an extremely high computational
cost, which is among the reasons that NGS aligners do
not include it. However, since the mitochondrial genome
is relatively extremely small, and since we filter out reads
that map perfectly a priori, we are able to take advantage
of BLAT without excessive computational burden (see
“Compute time considerations” subsection below).
BLAT’s output for split reads includes the start and end

read positions of each aligned segment of the read. In the
above notation, this would correspond to two segments
with (start, end) positions (1, xi) and (xi + 1, l) for read i.
BLAT’s output also includes the beginning and ending gen-
omic coordinates (mtDNA base position) to which each
segment aligns. In the above notation, this would corres-
pond to mtDNA positions (s - xi + 1, s) and (e, e + l - xi − 1)
for the two read segments. It follows that we may interro-
gate the BLAT output for a set of n split reads that:

1. each split into two segments,
2. each have both segments map to the same strand of

the mitochondrial genome,
3. all suggest the same deleted segment, and
4. collectively have the fusion point appear in at least

five different locations in the read, i.e. the set
{x1,…,xn} contains at least five unique elements.

This last requirement helps avoid false positive dele-
tions such as those that are the result of well-known
sequencing artifacts such as PCR errors or the aligner
splitting a read due to a single nucleotide substitution
difference from the reference genome.
If the number of reads suggesting precisely the same

breakpoint is sufficiently large, enough evidence is deemed
to have been produced to report the breakpoint as bio-
logically real. This number n (where a deletion is called if
at least n split reads support it) is a tuning parameter.
Clearly, higher values of n will increase specificity and
decrease sensitivity. We use n = 10 as a default value in

Fig. 2 Standard mitochondrial reference genome numbering shown in interior of the circular genome, with the deleted segment, from base
position s + 1 to base position e – 1, indicated in green, and the copy harboring the deletion shown at right. The position xi in a single
hypothetical read i (black arc) shown in circle exterior. This read may be unaligned by BWA [17], but BLAT [20] will be able to align its two
segments as a split read
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MitoDel (see “Results from simulated reads” subsection
below for justification), though this may be adjusted in the
corresponding software.
An overview of the MitoDel procedure is shown in Fig. 3.

Estimating heteroplasmy level and confidence interval
The number N of reads harboring a deletion given the total
reads in the experiment would be expected to approximately
follow a binomial distribution Bin(r, q), where r is the num-
ber of reads from the mitochondrial genome, and q is the
proportion of reads that harbor the deletion. Since there are
16,569 possible starting positions for mtDNA reads, reads
from the deleted copy of the genome will harbor the dele-
tion with probability l/16569, where l is the length of the
reads. Therefore, if we estimate q as q̂ ¼ n=r we may
estimate the heteroplasmy level as q̂ � 16569

l . The 1 – α con-
fidence intervals on qmay be computed analytically [21] as

1
1þ r−nþ1

n F2 r−nþ1ð Þ;2n;α2
;

nþ1
r−n F2 nþ1ð Þ;2 r−nð Þ;α2

1þ nþ1
r−n F2 nþ1ð Þ;2 r−nð Þ;α2

 !
;

where Fa,b,c denotes the 1 – c quantile of the F distribu-
tion with a and b degrees of freedom. We can then
transform this confidence interval on q to a confidence
interval on the heteroplasmy level.

Results
Theoretical sensitivity
As mentioned above, mtDNA deletions have typically
been observed at extremely low abundances, frequently
a fraction of 1 %. Therefore, sequencing at high read
depths is necessary to detect deletions. When designing
NGS experiments for this purpose, researchers also must
take into account the high numbers of nuclear genome
reads present in the sequencing data, which will de-
crease the average number of reads per mitochondrial
base position. Indeed, unless an mtDNA enrichment
procedure is applied in the laboratory prior to DNA se-
quencing, only approximately 0.2% of DNA is expected
to be mitochondrial [22]. Even with enrichment, the sen-
sitivity of our computational procedure clearly depends
on the number of mtDNA reads, which is a function of
the enrichment protocol’s efficiency. We and others have
performed studies developing and comparing various
mtDNA enrichment protocols [22, 23], with varying
results depending on the tissue type and other factors.
Theoretical sensitivity for a sequencing experiment there-
fore here takes into account various enrichment levels.
Given an NGS experiment with M total reads and

mtDNA enrichment level E (enrichment here is defined
as the proportion of DNA in the sample that is mito-
chondrial as opposed to nuclear), the number of reads
harboring a given mitochondrial base position is expected
to be approximately

N≈ M � E � lð Þ=16569:

Computations using the binomial distribution show,
for example, that a typical run on a standard Illumina
MiSeq of ~50 million reads from a sample subjected to
a protocol yielding 60% mtDNA enrichment would allow
for detection of deletions as low as 0.006% with 95% prob-
ability, using our default threshold of 10 reads supporting
the deletion. Sequencing experiments with higher num-
bers of reads and/or better enrichment protocols could
find even lower-level deletions.

Results from simulated reads
We simulated sequencing experiments for three different
mitochondrial deletions (small, medium, and large), gener-
ating paired-end Illumina reads of 150 bp each, with mean
300 and standard deviation 100 for the distance between
reads. The simulated deletions were 15 bp (m.700_715del),
200 bp (m.5000_5200del), and one comparable in size to
the well-known “common deletion” [24] at 4900 bp
(m.6930_11830del). For each deletion, 100 replicates of the
corresponding simulated sequencing experiment were run.
Each iteration sampled the deleted genome at 70×
coverage and the intact mitochondrial genome at 69930×
coverage, thereby simulating a heteroplasmy level of 0.1%,

Fig. 3 An overview of MitoDel, from aligned sequence files to
mtDNA deletion fusion point and abundance inferences. A sample
output table from the software is shown at bottom, where each row
is a putative deletion with read support, deleted segment
coordinates, and indication of whether it passes quality filtering
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yielding paired-end .fastq files. These files were aligned and
then run through MitoDel. We also performed 100 itera-
tions of a simulation sampling the genome with the 200 bp
deletion at 700× coverage and the intact mitochondrial
genome at 69300× coverage, thereby simulating a hetero-
plasmy level of 1%.
We used the simulations to assess the sensitivity and

the false positive rate of MitoDel, varying the number of
reads harboring a deletion necessary for it to be called
(the n parameter from above) from 1 to 50. For each
value of n, we computed the proportion of the 100 repli-
cates calling the deletion at at least that threshold. This
value was used as an estimate of MitoDel’s sensitivity.
We also tallied the average number of deletions called
(all but one of which are false positives since we only
“spiked in” one deletion at a time) across the iterations
for each threshold n. This was used to estimate the aver-
age number of false positives. These averages, (Fig. 4)
show that for a variety of deletions at very low hetero-
plasmy levels, MitoDel remains highly specific. The aver-
age number of false positive calls falls steeply with
increasing threshold n until about 10 reads, a threshold
at which all called deletions are true positives, and the
true deletion is always called. These simulation experi-
ments led us to choose 10 as the default value for n in
the MitoDel software.

Detection of low-level deletions in brain tissue
We applied MitoDel to NGS data generated from human
brain tissue for a previously-published study [15]. Using a
method with no software and few computational details
provided, the authors analyzed tissue from young (< 35 years
old) and aged (> 66 years old) individuals. The study
reported a ~ 5000 bp deletion (m.8483_13459del4977, the
well-known common deletion [24]) present in the majority
of the aged individuals but a minority of young individuals.
We acquired the raw sequencing data for 10 of these in-

dividuals directly from the authors and applied MitoDel
agnostically, without targeting the common deletion
specifically. Our presence/absence largely agreed with the
authors’ assessments, except that we found evidence for a
low-abundance deletion (0.58%) in an individual that the
Williams et al. study deemed absent of deletions (Table 1).
Manual inspection of the reads gives evidence that the
deletion is indeed present, and our simulation results
suggest that a false positive is unlikely. Generally, the
heteroplasmy levels reported in the Williams et al. study
were lower than, but were correlated with, our inferences.

MtDNA deletions in 1000 genomes data
Applying MitoDel to 10 .bam files from phase 3 of
the 1000 Genomes Project, we found a 27-bp deletion
(m.16306_16333del27) in the D-loop of individual

Fig. 4 False positive rates and sensitivity of MitoDel. Vertical axis (log scale) indicates the average number of deletions called with a least n reads
supporting the deletion, where n is indicated on horizontal axis. Each experiment simulates one actual deletion, so average positives greater than
1.0 are false positives, while average positives less than one indicate specificity. Average positives exactly 1.0 indicate perfect sensitivity
and specificity
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HG02332. A total of 96 reads were found supporting
this deletion, with 1,115,366 reads aligning to the
chrM. The estimated heteroplasmy level of the dele-
tion is therefore 0.71% with 95% confidence interval
(0.58%, 0.86%) as calculated above. This deletion has

not previously been reported, according to the mito-
chondrial deletion database MitoBreak [25]. However,
as Fig. 5 shows with a representative read, the reads
are consistent with the deletion and do not match
well to any autosomal region, and therefore the deletion
call is unlikely to be a false positive.

Compute time considerations
On a Dell PowerEdge R630 with two 2.3GHz Intel Xeon
E5–2670 v3 processors and 256 GB of RAM, a .fastq file
with 16 million 100 bp paired end reads took approxi-
mately 141 min to run. Therefore, MitoDel can easily
handle raw sequence files of the sizes that will be routinely
generated for the foreseeable future.

Discussion
MitoDel is methodologically very straightforward. It
relies on the highly accurate split-read mapping capabil-
ities of BLAT, which would be far too computationally
expensive to use in whole-genome applications. We are
able to take advantage of these capabilities by first omitting
all reads that mapped well to the human genome, thereby

Table 1 Application of MitoDel to data from [15]

Individual ID Williams et al. Reported
Heteroplasmy Level

MitoDel Heteroplasmy
Level (95% CI)

55–10 (Y11) 0% 0%

56–10 (Y12) 0.15% 1.79% (1.52%,2.10%)

57–10 (Y13) 0.015% 0.28% (0.17%, 0.44%)

58–01 (Y15) 0% 0%

59–01 (A16) 0.4% 5.15% (4.58%, 5.77%)

60–10 (A17) 0.1% 1.35% (1.11%, 1.62%)

61–10 (A18) 0.1% 1.11% (0.88%, 1.38%)

62–10 (A19) 0.15% 2.79% (2.42%, 3.21%)

77–10 (Y3) 0% 0.58% (0.33%, 0.98%)

78–10 (Y4) 0% 0%

Individual IDs beginning with Y indicate young individuals, and those
beginning with A indicate aged individuals

Fig. 5 BLAT output showing the split alignment of a read harboring a putative 27 bp deletion in 1000 Genomes individual HG02332
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greatly reducing mapping burden for BLAT. The fact that
the mtDNA reference genome is so small compared to the
nuclear genome also reduces the burden. As demonstrated
by our simulation results, the high precision of BLAT split
read mapping confers extremely favorable precision and
recall levels to MitoDel, even without more sophisticated
statistical modeling of sequencing errors, mapping errors,
and other sources of noise.
To our knowledge, there have been three methods

published that could conceivably be used to detect low-
level mtDNA deletions specifically. Mitoseek [26] is de-
signed to detect all types of mitochondrial DNA-level
variation. However, its deletion tool only reports read
pairs whose mapped distance apart exceeds a user-
specified threshold. It does not actually call the deletions
or specify their coordinates, and therefore cannot be
directly compared with MitoDel for accuracy. Delly [10]
is designed to detect structural variants in a cancer con-
text. While it allows for polyploidy when making calls, it
does not handle heteroplasmy levels below 1% as
MitoDel does. We were unable to successfully install
and run the third method, MToolBox [27].

Conclusions
Here we have presented a computational method,
MitoDel, to detect and quantify mtDNA deletions from
next-generation sequencing experiments. Our method
meets a need for software to identify aberrations present
at extremely low levels. Our results demonstrate the abil-
ity to call deletions present at well below 1% heteroplasmy
levels, with a very low false positive rate. Similar methods
for detection of chromosomal aberrations have been
developed for the nuclear genome, but these are tuned for
much higher abundances. Indeed, a deletion in the nuclear
genome will be present at at least 50% abundance in a cell.
In heterogeneous tumor samples, the level may be
lower in the overall sample, but available methods are
not suitable for the extremely low abundances (< 1%)
that MitoDel targets.
We can see a number of extensions to the work pre-

sented here. The most obvious would be to detect other
types of mitochondrial chromosomal aberrations such as
tandem duplications and inversions. Although these clas-
ses of aberration have rarely been described in mtDNA,
only newer technology can detect them when present at
low abundances, which could explain the lack of prior
studies reporting them. Even mitochondrial-nuclear trans-
locations have recently been described in cancer samples
[28]. Theoretically, the approach described here could be
easily modified to detect all of these lesion types.
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Cambridge reference sequence
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