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Abstract

Background: Homology search is still a significant step in functional analysis for genomic data. Profile Hidden Markov
Model-based homology search has beenwidely used in protein domain analysis in many different species. In particular,
with the fast accumulation of transcriptomic data of non-model species and metagenomic data, profile homology
search is widely adopted in integrated pipelines for functional analysis. While the state-of-the-art tool HMMER has
achieved high sensitivity and accuracy in domain annotation, the sensitivity of HMMER on short reads declines rapidly.
The low sensitivity on short read homology search can lead to inaccurate domain composition and abundance
computation. Our experimental results showed that half of the reads were missed by HMMER for a RNA-Seq dataset.
Thus, there is a need for better methods to improve the homology search performance for short reads.

Results: We introduce a profile homology search tool named Short-Pair that is designed for short paired-end reads. By
using an approximate Bayesian approach employing distribution of fragment lengths and alignment scores, Short-Pair
can retrieve the missing end and determine true domains. In particular, Short-Pair increases the accuracy in aligning
short reads that are part of remote homologs. We applied Short-Pair to a RNA-Seq dataset and a metagenomic
dataset and quantified its sensitivity and accuracy on homology search. The experimental results show that Short-Pair
can achieve better overall performance than the state-of-the-art methodology of profile homology search.

Conclusions: Short-Pair is best used for next-generation sequencing (NGS) data that lack reference genomes. It
provides a complementary paired-end read homology search tool to HMMER. The source code is freely available at
https://sourceforge.net/projects/short-pair/.
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Background
Homology search has been one of the most widely used
methods for inferring the structure and function of newly
sequenced data. For example, the state-of-the-art profile
homology search tool, HMMER [1] has been success-
fully applied for genome-scale domain annotation. The
major homology search tools were designed for long
sequences, including genomic contigs, near-complete
genes, or long reads produced by conventional sequenc-
ing technologies. They are not optimized for data pro-
duced by next-generation sequencing (NGS) platforms.
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For reads produced by pyrosequencing or more recent
PacBio and nanopore technologies, frameshift caused by
sequencing errors are the major challenges for homol-
ogy search. For data sets produced by Illumina, short
reads will lead to marginal alignment scores and thus
many reads could be missed by conventional homology
search tools. In order to apply homology search effec-
tively to NGS data produced by Illumina, many of which
contain short reads, read mapping or de novo assembly
[2–6] is first employed to assemble short reads into con-
tigs. Then existing homology search tools can be applied
to the contigs to infer functions or structures.
However, it is not always feasible to obtain assembled

contigs from short reads. For example, complex metage-
nomic data poses serious computational challenges for
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assembly. Just 1 gram of soil can contain 4 petabase pairs
(1 × 1015 bps) of DNA [7] and tens of thousands of
species. Read mapping is not very useful in finding the
native genomes or genes of these reads as most reference
genomes are not available. De novo assembly also has lim-
ited success due to the complexities and large sizes of
these data [4, 5, 8]. Besides metagenomic data, which usu-
ally lack complete reference genomes, RNA-Seq data of
non-model species also faces similar computational chal-
lenges. Assembling short reads into correct transcripts
without using any reference genome is computationally
difficult.
Thus, in order to analyze the NGS data without refer-

ence genomes, a widely adopted method for functional
analysis is to classify reads into characterized functional
classes, such as protein/domain families in Pfam [9, 10],
TIGRFAM [11], FIGfams [12], InterProScan [13], FOAM
[14], etc. The read assignment is usually conducted by
sequence homology search that compares reads with ref-
erence sequences or profiles, i.e., a family of homolo-
gous reference sequences. The representative tools for
sequence homology search and profile homology search
are BLAST [15] and HMMER [1], respectively. Profile
homology search has several advantages over pairwise
alignment tools such as BLAST. First, the number of
gene families is significantly smaller than the number of
sequences, rendering much faster search time. For exam-
ple, there are only about 13,000 manually curated pro-
tein families in Pfam, but these cover nearly 80% of the
UniProt Knowledgebase and the coverage is increasing
every year as enough information becomes available to
form new families [10]. The newest version of HMMER
[1] is more sensitive than BLAST and is about 10%
faster. Second, previous work [16] has demonstrated that
using family information can improve the sensitivity of a
remote protein homology search, which is very important
for metagenomic analysis because many datasets con-
tain species remotely related to ones in the reference
database.
HMMER has been successfully used in genome-scale

protein domain annotation in many species. It has both
high specificity and sensitivity in identifying domains.
Thus, it is also widely adopted for profile homology search
in a number of existing NGS analysis pipelines or websites
(e.g. IMG/M [17], EBI metagenomics portal [18], CoMet
[19], HMM-FRAME [20], SALT [21], SAT-Assembler [22],
etc.). However, HMMER is not optimized for short-read
homology searches. Short reads sequenced from regions
of low conservation tend to be missed. One example is
shown in Fig. 1, which revealed the short-read align-
ments using the whole gene alignment against the protein
domain and the read mapping positions on the gene. In
this example, one end r1 can be aligned to the domain
using HMMER with filtration on. However, the other end

r2 cannot be aligned by HMMER because of its poor
conservation against the underlying protein family. In
addition, we have quantified the performance of HMMER
on several real NGS datasets. The results showed that
HMMER has much lower sensitivity when it is applied to
short reads than to complete genes or genomes.
In order to improve the sensitivity, one may consider to

use loose cutoffs such as a low score or high E-value cut-
off. However, using loose cutoffs can lead to false positive
domain alignments. In this work, we will describe a new
method to improve the sensitivity of profile homology
search for short reads without jeopardizing the alignment
accuracy. The implementation, named Short-Pair, can be
used together with HMMER to increase the homology
search performance for short reads.

Methods
In this section, we describe a short read homology
search method that incorporates properties of paired-
end read sequencing. Paired-end sequencing is the pre-
ferred sequencing mode and is widely adopted by many
sequencing projects. We have observed that for a large
number of read pairs, only one end can be aligned by
HMMER while the other end is missed. Thus, we exploit
the sequencing property of paired-end reads to rescue the
missing end.
Our probabilistic homology search model quantifies the

significance of the alignment between a read pair and a
protein domain family. The computation incorporates the
distribution of fragment lengths (or insert sizes) of paired-
end reads and the alignment scores. Similar approaches
have been applied to mapping paired-end DNA reads to
a reference genome [23, 24]. But to our knowledge, this
is the first time that an approximate Bayesian approach
has been employed to align paired-end reads to protein
families.
There are three major steps. In the first step, we will

align each end (all-frame translations) to given protein
families using HMMER under E-value cutoff 10. Note
that although GA-cutoff is the recommended cutoff by
HMMER for accurate domain annotation, only a small
percentage of short reads can pass GA cutoff. Thus, we use
E-value cutoff 10 in the first step in order to recruit more
reads. As the reads are short, this step will usually align
each read to one or multiple protein families. Not all of
the alignments are part of the ground truth. In the second
step, for all read-pairs where only one end is aligned by
HMMER, we use the most sensitive mode of HMMER to
align the other end to the protein families identified in the
first step. Although the sensitive search mode of HMMER
is slow, it is only applied to the specified protein fami-
lies that are substantially fewer than total protein families
in the dataset and thus will not become the bottleneck of
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Fig. 1 An example of a protein family, its alignment with a gene, and read mapping positions of a read pair against the gene. The Pkinase model
had annotation line of consensus structure. The line beginning with Pkinase is the consensus of the query model. Capital letters show positions of
the most conservation. Dots (.) in this line represent insertions in the target gene sequence with respect to the model. The midline represents
matches between the Pkinase model and the AT2G28930.1 gene sequence. A + represents positive score. The line beginning with AT2G28930.1 is
the target gene sequence. Dashes (-) in this line represents deletions in the gene sequence with respect to the model. The bottom line indicates the
posterior probability of each aligned residue. A 0 represents 0-5%, 1 represents 5-15%, ..., 9 represents 85-95%, and * represents 95-100% posterior
probability. The line starting with r1 and ending with r2 is read mapping regions on the gene sequence. A - indicates where the position of the read
can be mapped to the gene sequence

large-scale homology search. In the last step, the posterior
probability of the alignment between a pair of reads and a
protein domain family is calculated.
The falsely aligned domains in the first step will be

removed in the last step through the computation of the
posterior alignment probability. Figure 2 shows an exam-
ple about determining the true protein family if both
ends can be aligned to several families. In this exam-
ple, M1 is the most likely to be the native family due to
the bigger alignment scores and the higher probability of
the observed fragment length. We quantify the posterior
probability of each read pair being correctly aligned to a
protein family.
As the example in Fig. 2 shows, in order to calcu-

late the posterior probability of an alignment, we need
to know the size distribution of fragments, from which
paired-end reads are sequenced. Usually we may have the
information about the range of the fragments (shortest
and longest). However, the size distribution is unknown.
For metagenomic data and RNA-Seq data of non-models
species whose complete or quality reference genomes are
not available, it is not trivial to derive the fragment size
distribution. In this work, we take advantage of the pro-
tein alignment and the training sequences to estimate
the fragment size distribution. The next two sections will

describe the details about computing fragment size distri-
bution and the method to rank alignments using posterior
probabilities.

Constructing fragment length distribution
Paired end reads are sequenced from the ends of frag-
ments. When the reference genome is available, the frag-
ment size can be computed using the distance between the
mapping positions of the read pair. Thus, the distribution
profile can be computed [23, 24] from a large-scale of read
mapping positions. However, this method is not applica-
ble to our work because we are focusing on the homology
search of NGS data that lack reference genomes. For these
data, we propose a model-based method to estimate frag-
ment size distribution. The key observation is that if a
read pair can be uniquely aligned to a protein family, it
is very likely that this pair is sequenced from a gene that
is homologous to the member sequences of the protein
family. The homology is inferred from statistically signifi-
cant sequence similarity. Thus, we will use the alignment
positions and the homologous seed sequences to infer the
fragment size. This method is not accurate as we are not
using any reference genomes/genes. However, our experi-
mental results have shown that the estimated distribution
is very close to the true distribution.

Fig. 2 HMM alignments of a read pair. Paired-end reads r1 and r2 represented by two greyscale lines are aligned against modelsM1,M2, andM3 with
different scores of alignments. The darker lines represent bigger scores. The fragment size distribution is provided above each model. The distance
between the two alignments is computed and is used to compute the likelihood of the corresponding fragment size. In this example,M1 is most
likely to be the native family
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Figure 3 sketches the main steps of inferring a frag-
ment’s size from the alignment of a read pair against a
protein family model. A read pair r1 and r2 are uniquely
aligned to a protein family M. The alignment positions
along the modelM are from w to x and y to z, respectively.
Model M is trained on a group of homologous sequences
(“seed sequence 1” to “seed sequence N”). Note that the
actual sequence from which r1 and r2 are sequenced is not
in the training set of model M. The alignment positions
along the modelM will be first converted into the column
indices in the multiple sequence alignment constructed
by all seed sequences. Then after accounting for dele-
tions and insertions, the column indices will be converted
into positions along each seed sequence. As it is unknown
which seed sequence shares the highest sequence similar-
ity with the gene containing the fragment, we calculate
the fragment size as the average of the distances between
converted alignment positions.
Figure 3 only shows the fragment size estimation for one

read pair. In order to construct the fragment size distribu-
tion, we use the fragment sizes computed for all paired-
end reads that are uniquely aligned to protein domain
families. As shown in Fig. 1, when both ends can be
aligned uniquely to a protein family, usually these ends are
sequenced from a region with high conservation. Thus,
most of the estimations are close to the truth. However,
for protein families or domains that contain many remote
homologs, it is likely that the fragment size estimation is
very different from the true fragment size. These wrong
estimations either become outliers of the whole distribu-
tion or will slightly change the pattern of the fragment
size distribution according to our experimental results.
We will compare the inferred distribution with the ones
that are derived based on read mapping results.

Fig. 3 Calculating the fragment size for a read pair. The alignment
positions along the profile HMM can be converted into positions in
each seed sequences. The fragment size is computed as the average
size of those mapped regions

Probabilistic model
For each aligned paired-end read, an approximate
Bayesian approach [23, 24] is used to estimate the “align-
ment quality.” The quality of alignment is defined as the
probability of a pair of reads being accurately aligned to
its native protein domain family. Because a pair of reads
could be aligned to multiple domain families and some of
them might not be in ground truth, we can rank all align-
ments using computed posterior probabilities and keep
the alignments with high probability.
Let r1 and r2 be a read pair. Let A1 and A2 be the can-

didate alignment sets of r1 and r2 against one or more
protein family models. For each alignment pair a1 ∈ A1
and a2 ∈ A2 with a1 and a2 being aligned to the same pro-
tein family M, we calculate the posterior probability of a1
and a2 being the true alignments generated by the read
pair r1, r2 againstM as:

Pr (a1, a2|r1, r2) ∝ esa1/Tesa2/TPr
(
fr1,r2

)
(1)

where esa1/T is the target probability of generating an
alignment score of a1 against M [1, 25]. T is the scal-
ing factor used in E-value computation. Pr(fr1,r2) is the
probability of observed fragment size between r1 and r2.
The posterior probability depends on the fragment length
computed from a1 and a2 as well as their alignment
scores.
We compute Eq. (1) for each read pair’s alignments and

keep the alignments above a given threshold. For each
read pair, suppose the maximum posterior probability of
its alignments against all aligned models is pmax. We keep
all alignments with probabilities above pmax × τ , where τ

is 40% by default. Users can change τ to keep more or less
alignments.

Results and discussion
We designed profile-based homology search method for
NGS data lacking reference genomes, including RNA-
Seq data of non-model species and metagenomic data. In
order to demonstrate its utility in different types of data,
we applied Short-Pair to a RNA-Seq dataset and ametage-
nomic dataset. In both experiments, we choose datasets
with known reference genomes so that we can quantify
the performance of homology search. It is important to
note that the ground truth in this work is defined as
the homology search results for complete genes. We are
aware that computational protein domain annotation for
complete genes or genomes are not always accurate. But
whole-gene domain annotation has significantly higher
sensitivity and accuracy than short read homology search
and has been extensively tested in various species. Thus,
our goal is to decrease the performance gap between short
read homology search and whole-gene homology search.
HMMER can be run in different modes. In this work, we

choose the most commonly used modes: HMMER with
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default E-value, HMMERwith gathering thresholds (GAs)
cutoff, and HMMER without filtration. GA cutoff is the
recommended cutoff because of its accuracy. Turning off
filtration will yield the highest sensitivity with sacrifice of
speed.
The first dataset in our experiment is the RNA-

Seq dataset of Arabidopsis Thaliana. The second one
is metagenomic dataset sequenced from bacterial and
archaeal synthetic communities. We will first carefully
examine whether Short-Pair and HMMER can correctly
assign each read to its correct domain families. Then we
will evaluate the performance of homology search from
users’ perspective. A user needs to know the composition
of domains and also their abundance in a dataset. Thus we
will compare HMMER and Short-Pair in both aspects.

Profile-based short read homology search in Arabidopsis
Thaliana RNA-Seq dataset
The RNA-Seq dataset was sequenced from a normalized
cDNA library of Arabidopsis using paired-end sequenc-
ing of Illumina platform [21, 26]. There were 9,559,784
paired-end reads in total and the length of each read is
76 bp. The authors [26] indicated that the fragment
lengths are between 198 and 801 bps. However, the frag-
ment size distribution is unknown.

Determining the truemembership of paired-end reads
The true membership of the short reads against protein
families cannot be directly obtained by aligning the reads
against protein families because of the low sensitivity and
accuracy of short read alignment. The true membership
was determined using read mapping and domain anno-
tation on complete coding sequences. First, all coding
sequences (CDS) of Arabidopsis Thaliana genome were
downloaded from TAIR10 [27]. Second, we downloaded
3912 plant-related protein or domain models from Pfam
[9]. We notice that some of these domain families are
trained on genes of Arabidopsis. Thus, in order to con-
duct a fair evaluation of homology search performance,
we removed all genes of Arabidopsis from the domain
seed families and re-trained the Pfam profile HMMs.
Third, CDS were aligned against Pfam domains [9] using
HMMER with gathering thresholds (GAs) [1]. The align-
ment results contain the positions of domains in CDS.
Note that it is possible that several domains are partially
aligned to the same region in a coding sequence. This hap-
pens often for domains in the same clan [28] because these
domains are related in structures and functions. In this
case, we will keep all domain alignments passing the GA
cutoff in the ground truth. Fourth, paired-end reads were
mapped separately to CDS using Bowtie allowing up to 2
mismatches [29]. The positions of uniquely mapped reads
in CDS were compared to annotated domains in CDS. If
the mapping positions of read pairs are within annotated

domain regions, we assigned the reads to those Pfam
domains. The reads and their assigned domains constitute
the true membership of these reads.

Performance of fragment length distribution
We compared our estimated fragment length distribu-
tion with the true fragment length distribution in Fig. 4.
The true fragment size distribution is derived by map-
ping all paired-end reads back to the reference genome.
The comparison shows that, for a given length, the
maximum probability difference between our fragment
length distribution and the true fragment length distri-
bution is 0.02, which slightly decreases the accuracy of
the posterior probability calculation. It is worth noth-
ing that in our experiments, we strictly removed all
genes in the NGS data from the training sequences
of the protein families/domains to create the case of
no reference gene/sequence. In real applications, users
can always try conducting read mapping first because
some reference genes or genomes may exist in the
public databases. The read mapping results, if avail-
able, can be used together with model-based frag-
ment size estimation for generating more accurate size
distribution.

Short-Pair can align significantlymore reads
We applied HMMER and Short-Pair to annotate pro-
tein domains in this RNA-Seq dat set. Their alignments
can be divided into three cases. Case 1: only one end
can be aligned. Case 2: both ends can be aligned to the
corresponding protein family. Case 3: neither end can
be aligned. Case 2 is the ideal case. The results of this
experiment were shown in Table 1. HMMER missed one
end of at least half of the read pairs in the RNA-Seq
dataset.Turning off filtration does not improve the per-
centage of case 2 substantially. Using gathering thresholds
(GA) cutoff is recommended for accurate domain annota-
tion in genomes. However, near 70% of read pairs cannot

Fig. 4 Comparing fragment length distribution of Short-Pair (blue) to
fragment length distribution constructed from read mapping results
(red) for Arabidopsis RNA-Seq dataset. X-axis represents the length of
fragment in amino acids. Y-axis represents probability of the
corresponding fragment size
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Table 1 The percentages of all three cases of paired-end read
alignments by HMMER and Short-Pair for the Arabidopsis
RNA-Seq dataset

Case HMMER, HMMER, HMMER, Short-Pair
E-value 10 w/o filtration, GA cutoff

E-value 10

Case 1 34.51% 32.83% 22.51% 0.42%

Case 2 28.42% 31.58% 8.84% 62.51%

Case 3 37.07% 35.59% 68.65% 37.07%

“HMMER w/o filtration” : running HMMER by turning off all filtration steps. “HMMER
GA cutoff”: applying HMMER with gathering thresholds

be aligned under GA cutoff. By applying Short-Pair, the
percentage of case 2 (both ends) of paired-end read align-
ments increases from 28.42% to 62.51%. Importantly, the
improvement is not achieved by sacrificing specificity. As
we use the posterior probability to discard false align-
ments, the tradeoff between sensitivity and specificity is
actually improved, as shown in the next section.

Sensitivity and accuracy of short read homology search
Although GA cutoff is the recommended threshold for
domain annotation by HMMER, it yields low sensitiv-
ity for short read homology search. In order to align as
many reads as possible, the default E-value cutoff is cho-
sen. However, even for case 2, where both ends can be
aligned by HMMER, these reads may be aligned to multi-
ple domains by HMMER and not all of them are correct.
Short-Pair can be used to improve the tradeoff between
sensitivity and accuracy for both case 1 and case 2.
In this section, the performance of profile-based homol-

ogy search for each read is quantified by comparing its

true protein domain family membership and predicted
membership. For each read pair, suppose it is sequenced
from domain set TP = {TP1,TP2, ...,TPn}, which is
derived from the read mapping results. The homology
search tool aligns this read pair to domain set C =
{C1,C2, ...,Cm}. The sensitivity and false positive (FP)
rate for this read pair are defined using the following
equations:

Sensitivity = |TP ∩ C|
|TP| (2)

FP rate = |C − TP|
|TN | (3)

Note that TN represents the true negative domain set.
Let U represent all domains we downloaded from Pfam
(|U| = 3962). Then, for each read pair, TN = U − TP.
In this section, the sensitivity and FP rate for each pair of
reads are computed and then the average of all pairs of
reads is reported using ROC curves.

Performance of case 1: There are 1,025,982 paired-end
reads, where only one end can be aligned to one or
multiple domain families by HMMER with filtration on.
Figure 5 shows ROC curves of short read homology search
using HMMER under different cutoffs and Short-Pair. For
HMMER, we changed the E-value cutoff from 1000 to
10−5 with ratio 0.1. As some E-value cutoffs yield the same
output, several data points overlap completely. For Short-
Pair, each data point corresponds to different τ values
(10 to 70%) as defined in “Probabilistic model” Section.
Unless specified otherwise, all the ROC curves are gener-
ated using the same configuration.
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Fig. 5 ROC curves of profile-based short read homology search for Arabidopsis RNA-Seq data. We compared HMMER and Short-Pair on case 1,
where one end can be aligned by HMMER with default E-value. Note that HMMER with GA cutoff has one data point
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Performance of case 2: There are 844,796 paired-
end reads with both ends being aligned by HMMER
with filtration on. Some read pairs are aligned to false
families. The falsely aligned domain families can be
removed by Short-Pair. Therefore, Short-Pair have bet-
ter trade-off between sensitivity and false positive rate.
In Fig. 6, we plotted ROC curves of HMMER and
Short-Pair.
The results showed that HMMER with GA

cutoff yields low sensitivity and low FP rate. Short-
Pair has better tradeoff between sensitivity and
FP rate for both cases. We also computed other
metrics including F-score

(
2×sensitivity×PPV
sensitivity+PPV

)
and PPV

(
Positive Predictive Value, |TP∩C|

|C|
)
. Comparing all tools in

terms of F-Score and PPV under different thresholds for
case 1, Short-Pair achieves the highest F-Score 81.98%;
the corresponding PPV is 80.41%. HMMER w/o filtration
has the second highest F-Score 75.39% and its PPV is
65.17%. For case 2, Short-Pair has the highest F-score
86.33% with PPV 94.34%. HMMER with default E-value
cutoff has the second highest F-Score 76.45% with
PPV 67.50%.

Performance evaluation on domain-level
In order to assess the homology search performance
on domain-level, we focused on comparing the set of
domains found by HMMER and Short-Pair. We further
quantified the domain abundance, which is the num-
ber of reads classified in each domain by given tools.
The predicted domain set and their abundance are also
compared to the ground truth, which is derived using

the read mapping results and the whole-gene domain
annotation.
Our experimental results showed that the set of

domains reported by HMMER under the default E-value
cutoff and Short-Pair are almost identical. They only dif-
fer by 1 out of 3962 domains. Both tools can identify
almost all the ground-truth domains. The only exception
is HMMER with GA cutoff, which returns 84% of true
domains.
Although HMMER and Short-Pair reported near iden-

tical domain sets, they generated very different domain
abundance. We compared the predicted abundance to
the ground truth by computing their distance, which is
the difference of the number of reads classified to a
domain. According to the definition, small distance indi-
cates higher similarity to the ground truth. For case 1,
Short-Pair has smaller distance to the ground truth
than HMMER, with average distance being 65.39. Short-
Pair produced the same abundance as the ground truth
for 1,185 domains. The average distances of HMMER,
HMMER without filtration, and HMMER with GA cut-
off are 107.60, 126.85, and 153.64, respectively. Figure 7
shows the distance of 377 domains for which Short-Pair
has distance above 86.
Figure 8 illustrates the distance between the predicted

domain abundance and the ground truth for case 2, where
both ends can be aligned by HMMER under the default
E-value cutoff. The average distances for HMMER,
HMMER without filtration, HMMER with GA cutoff, and
Short-Pair are 121.61, 107.81, 139.56, and 96.34 respec-
tively. Figure 8 only includes 358 domains for which
Short-Pair has the distance above 30.

Fig. 6 ROC curves of profile-based short read homology search for Arabidopsis RNA-Seq data. We compared HMMER and Short-Pair on case 2,
where both ends are aligned by HMMER with default E-value. Note that HMMER with GA cutoff has one data point. Using posterior probability helps
remove false aligned domains and thus leads to better tradeoff between sensitivity and FP rate
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Fig. 7 The distance comparison between Short-Pair and HMMER on case 1 of the RNA-Seq dataset of Arabidopsis. 377 domains with the largest
distance values starting from domain index 3201 to domain index 3577 are listed in the four subplots: a, b, c, and d. X-axis shows the indices of the
domains. Smaller value indicates closer domain abundance to the ground truth. The average distances of HMMER, HMMER w/o filtration, HMMER
GA cutoff, and Short-Pair are 704.92, 781.80, 1,054.77, and 522.12, respectively

In summary, being consistent with the results shown in
Figs. 5 and 6, Short-Pair can assign reads to their native
domains with higher accuracy.

Running time analysis
We compared the running time of tested tools in Table 2.
HMMER with GA cutoff is the fastest but yields low
sensitivity. HMMER without filtration is computationally
expensive and is the slowest. We are in between as we rely

on the full Viterbi algorithm to align the missing end of a
read pair.

Profile homology search for short reads in a metagenomic
dataset from synthetic communities
In the second experiment, we tested the performance of
short read homology search in a metagenomic dataset. In
order to quantify the performance of Short-Pair, we chose
a mock metagenomic data with known composition.

Fig. 8 The distance comparison between Short-Pair and HMMER on case 2 of the RNA-Seq dataset of Arabidopsis. Three hundred fifty eight domains
(Domain index: 2901 - 3258) with the largest distances are listed in the four subplots: a, b, c, and d. X-axis shows the indices of the domains. Smaller
value indicates closer domain abundance to the ground truth. The average distances of HMMER, HMMER w/o filtration, HMMER GA cutoff, and
Short-Pair are 818.09, 704.65, 1084.50, and 558.60, respectively



The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):414 Page 85 of 131

Table 2 The running time of HMMER under different cutoffs and
Short-Pair on the Arabidopsis Thaliana RNA-Seq dataset

Case HMMER, HMMER, HMMER, Short-Pair
E-value 10 w/o filtration, GA cutoff

E-value 10

Time (m) 0.66 191.53 0.51 2.48

m: minutes. Note: The running time is the average running time of aligning
9,559,784 paired-end reads with a domain

Dataset
The chosen metagenomic data set is sequenced from
diverse synthetic communities of Archaea and Bacteria.
The synthetic communities consist of 16 Archaea and 48
Bacteria [30]. All known genomes were downloaded from
NCBI. The metagenomic dataset of synthetic communi-
ties were downloaded from NCBI Sequence Read Archive
(SRA) (accession No. SRA059004). There are 52,486,341
paired-end reads in total and the length of each read
is 101 bp. All of reads are aligned against a set of sin-
gle copy genes. These genes includes nearly all ribosomal
proteins as well as tRNA synthases existed in nearly all
free-living bacteria [31]. These protein families have been
used for phylogenetic analysis in various metagenomic
studies and thus it is important to study their compo-
sition and abundance in various metagenomic data. We
downloaded 111 domains from Pfam database [9] and
TIGRFAMs [11].

Determination of truemembership of paired-end reads
The true membership of paired-end reads is determined
based on whole coding sequence annotation and read
mapping results. First, all coding sequences (CDS) of 64
genomes of Archaea and Bacteria were downloaded from
NCBI. Second, CDS were aligned against 111 domains
downloaded from TIGRFAMs [11] and Pfam database
[9] using HMMER with gathering thresholds (GAs) [1].
The positions of aligned domains in all in CDS were
recorded. Third, paired-end reads were mapped back to
the genomes using Bowtie [29]. The read mapping posi-
tions and the annotated domain positions are compared.
If both ends are uniquely mapped within an annotated
domain, we assign the read pair to the domain family.
The true positive set contains all read pairs with both
ends being uniquely mapped to a protein domain. We will
only evaluate the homology search performance of chosen
tools for these reads.

Performance of fragment length distribution
Again, we need to examine the accuracy of our fragment
size computation. Figure 9 shows the fragment length dis-
tribution constructed from Short-Pair and the fragment
length distribution derived from the readmapping results.

Fig. 9 Comparing fragment length distribution of Short-Pair (blue) to
fragment length distribution constructed from read mapping results
(red) for the synthetic metagenomic dataset. X-axis represents
fragment length in amino acids. Y-axis represents the probability of
the corresponding fragment size

For a given length, the maximum probability difference
between Short-Pair and the ground truth is 0.01, which
slightly reduces the accuracy of posterior probability com-
putation.

Short-Pair can alignmore reads
In this experiment, the read length is longer than those
in the first experiment. Consequently, HMMER can align
more reads against their native domain families. Never-
theless, it still has one third of pairs of reads with one end
being aligned to the protein domain families. By applying
Short-Pair, the percentage of case 2 (both ends) of paired-
end read alignments is enhanced from 65.82% to 88.71%.
The percentages of three cases by Short-Pair andHMMER
are shown in Table 3.

Sensitivity and accuracy of short read homology search
Case 1: one end is aligned by HMMER There were
213,668 paired-end reads with only one end being aligned
to one or multiple domains. Figure 10 shows the ROC
curves of short read homology search using HMMER and
Short-Pair. HMMERwith GA cutoff has the lowest FP rate
(0.0). However, the sensitivity of HMMER with GA cutoff

Table 3 The percentages of all three cases of paired-end read
alignments by HMMER and Short-Pair for the synthetic
metagenomic dataset

Case HMMER, HMMER, HMMER, Short-Pair
E-value 10 w/o filtration, GA cutoff

E-value 10

Case 1 23.15% 21.63% 3.76% 0.26%

Case 2 65.82% 68.46% 2.46% 88.71%

Case 3 11.03% 9.91% 93.77% 11.03%

Case 1: only one end aligned. Case 2: both ends aligned. Case 3: no end aligned
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Fig. 10 ROC curves of profile-based short read homology search for the synthetic metagenomic dataset. We compared HMMER and Short-Pair on
case 1, where one end can be aligned by HMMER with default E-value. Note that HMMER under GA cutoff has one data point

is only 4.11%. In addition, we further computed PPV and
F-Score of each data point in ROC curves. Comparing all
tools, Short-Pair has the highest F-Score and PPV (90.87%
and 88.01%, respectively). HMMER with E-value 10 has
the next highest F-score and PPV (64.79% and 48.07%,
respectively).

Case 2: both ends are aligned by HMMER 607,558
paired-end reads were classified to case 2. We divided
data into two groups: 1

)
both ends being aligned to

one domain and 2
)
both ends being aligned to multi-

ple domains. There were 515,586 paired-end reads and
91,972 paired-end reads, respectively.When both ends are
aligned to one single domain, the classification is usually
correct. Thus, we focus on evaluating the performance of
the second group, where read pairs are aligned to more
than one domain. Figure 11 shows the average perfor-
mance comparison between HMMER and Short-Pair on
91,972 paired-end reads. Comparing all tools in term of
F-Score and PPV, Short-Pair achieves the highest F-Score
of 96.05% and its PPV is 92.42%. HMMER w/o filtra-
tion achieves the second highest F-Score 80.28% with PPV
80.45%.

Domain-level performance evaluation
For whole dataset, we compared the set of domains iden-
tified by HMMER and Short-Pair. The results showed
that every tool identified all ground truth domains (111
domains) except HMMER with GA cutoff, which only
found 26 domains.

In addition, the domain abundance was quantified and
compared to the ground truth. For each domain, we com-
pute the “distance”, which is the difference in the number
of reads classified to a domain by a tool and in the
ground truth. Smaller distance indicates closer domain
abundance to the ground truth. For case 1, the average dis-
tances of HMMER, HMMERw/o filtration, HMMERwith
GA cutoff, and Short-Pair are 272.74, 280.65, 505.56, and
178.60, respectively. Short-Pair has the same abundance
as the ground truth in 43 domains. We removed those
43 domains and showed distance of other domains in
Fig. 12.
For case 2, where both ends can be aligned, all

tools have worse domain abundance estimation. The
average distances of HMMER, HMMER w/o filtra-
tion, HMMER with GA cutoff, and Short-Pair are
702.39, 1698.79, 1831.55, and 666.96, respectively. Short-
Pair still has the closest domain abundance to the
ground truth. It has the same domain abundance as
the ground truth for 68 domains. We removed the 68
domains and plotted the distances of other domains in
Fig. 13.
Although the read lengths of this data set are longer

than the first data set, the average sequence conserva-
tion of the domain families is as low as 30%. The poorly
conserved families contain large numbers of substitu-
tions, long insertions and deletions, leading to either
over-prediction or under-prediction of the tested tools.
HMMER with E-value cutoff 10, HMMER w/o filtration,
and Short-Pair all classified significantly more reads into
the domain families than ground truth. HMMER with GA
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Fig. 11 ROC curves of profile-based short read homology search for the synthetic metagenomic dataset. We compared HMMER and Short-Pair on
case 2, where both ends are aligned by HMMER under default E-value. Note that HMMER under GA cutoff has one data point. Using posterior
probability helps remove false aligned domains and thus leads to better tradeoff between sensitivity and FP rate

cutoff significantly under-classified short reads into the
underlying families. Thus, the distances of all these tools
are large.

Running time on ametagenomic dataset of synthetic
communities
The running times of HMMER under different cutoffs and
Short-Pair are compared in Table 4. As expected, HMMER
with filtration is the fastest. Short-Pair is slower than
HMMER with filtration but much faster than HMMER
w/o filtration.

Conclusion
Homology search has been widely used for sequence-
based functional analysis in various NGS sequencing
projects. In particular, for gene-centric analysis, reads
are classified into characterized protein/domain fami-
lies using profile-based homology search. While HMMER
is the state-of-the-art tool for profile homology search,
its performance on short reads has not been systemat-
ically examined. Our test of HMMER in various NGS
data containing short reads shows that it could miss a
large number of short reads. In this work, we described

Fig. 12 The distance comparison between Short-Pair and HMMER on case 1 of the metagenomic dataset. X-axis shows the indices of the domains.
Smaller value indicates closer domain abundance to the ground truth. Domains are sorted based on the distance of Short-Pair. Due to scaling issues,
domains with the largest distances are plotted in the embedded window
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Fig. 13 The distance comparison between Short-Pair and HMMER on case 2 of the metagenomic dataset. X-axis shows the indices of domains.
Smaller value indicates closer domain abundance to the ground truth

a probabilistic homology search model for paired-end
reads. The goal is to improve the performance of short
read homology search. It is built on HMMER and can
be used as a complementary tool to HMMER for more
sensitive read classification.
One future direction is to improve the short read

homology search performance for poorly conserved fam-
ilies. Near 4000 domain families in the first experiment
have higher average sequence identity and thus lead to
reasonable domain abundance estimation. The 100+ fam-
ilies in the second experiment have low sequence identity
and the tested tools tend to either over-classify or under-
classify heavily for some families. Thus, better methods
need to be designed to align short reads to poorly con-
served protein families.
The advances of NGS technologies enable output of

longer reads. The increased length will lead to better sen-
sitivity of HMMER. However, before the reads reach the
length of near complete transcripts or genes, there is still a
need for improving short read homology search. In addi-
tion, existing sequencing projects are still heavily relying
on today’s sequencing technologies. We expect Short-Pair
can be used to improve the functional analysis.

Table 4 The running time of HMMER under different cutoffs and
Short-Pair on a metagenomic dataset of synthetic communities

Case HMMER, HMMER, HMMER, Short-Pair
E-value 10 w/o filtration, GA cutoff

E-value 10

Time (m) 3.18 1,377.15 3.41 40.25

m: minutes. Note: The running time is the average running time of aligning
52,486,341 paired-end reads against one domain family
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