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Abstract

Background: Metagenomics sequencing provides deep insights into microbial communities. To investigate their
taxonomic structure, binning assembled contigs into discrete clusters is critical. Many binning algorithms have been
developed, but their performance is not always satisfactory, especially for complex microbial communities, calling
for further development.

Results: According to previous studies, relative sequence compositions are similar across different regions of the
same genome, but they differ between distinct genomes. Generally, current tools have used the normalized
frequency of k-tuples directly, but this represents an absolute, not relative, sequence composition. Therefore, we
attempted to model contigs using relative k-tuple composition, followed by measuring dissimilarity between
contigs using dS2. The dS2 was designed to measure the dissimilarity between two long sequences or Next-
Generation Sequencing data with the Markov models of the background genomes. This method was effective in
revealing group and gradient relationships between genomes, metagenomes and metatranscriptomes. With many
binning tools available, we do not try to bin contigs from scratch. Instead, we developed dS2Bin to adjust contigs
among bins based on the output of existing binning tools for a single metagenomic sample. The tool is taxonomy-
free and depends only on k-tuples. To evaluate the performance of dS2Bin, five widely used binning tools with
different strategies of sequence composition or the hybrid of sequence composition and abundance were selected
to bin six synthetic and real datasets, after which dS2Bin was applied to adjust the binning results. Our experiments
showed that dS2Bin consistently achieves the best performance with tuple length k = 6 under the independent
identically distributed (i.i.d.) background model. Using the metrics of recall, precision and ARI (Adjusted Rand Index),
dS
2Bin improves the binning performance in 28 out of 30 testing experiments (6 datasets with 5 binning tools). The

dS
2Bin is available at https://github.com/kunWangkun/d2SBin.

Conclusions: Experiments showed that dS2 accurately measures the dissimilarity between contigs of metagenomic
reads and that relative sequence composition is more reasonable to bin the contigs. The dS2Bin can be applied to
any existing contig-binning tools for single metagenomic samples to obtain better binning results.
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Background
Metagenomics sequencing provides deep insights into
microbial communities [1]. A key step toward investigat-
ing their taxonomic structure within metagenomics data
involves assigning assembled contigs into discrete clus-
ters known as bins [2]. These bins represent species,
genera or higher taxonomic groups [3]. Therefore, effi-
cient and accurate binning of contigs is essential for
metagenomics studies.
The binning of contigs remains challenging owing to

repetitive sequence regions within or across genomes,
sequencing errors, and strain-level variation within the
same species [4]. Many studies have reported on
binning, essentially highlighting two different strategies
[5]: “taxonomy-dependent” supervised classification
and “taxonomy-independent” unsupervised clustering.
“Taxonomy-dependent” studies are based on sequence
alignments [6], phylogenetic models [7, 8] or oligonucleo-
tide patterns [9]. “Taxonomy-independent” studies extract
features from contigs to infer bins based on sequence
composition [10–14], abundance [15], or hybrids of both
sequence composition and abundance [4, 5, 16–18].
Therefore, these approaches can be applied to bin contigs
from incomplete or uncultivated genomes. Some hybrid
binning tools, such as COCACOLA [5], CONCOCT [4],
MaxBin2.0 [18] and GroopM [16], are designed to bin
contigs based on multiple related metagenomic samples.
Contigs with similar coverage profiles are more likely to
come from the same genome. Previous studies showed
that co-varying coverage profiles across multiple related
metagenomes play important roles in contig binning
[4, 5]. The multiple related samples should be tem-
poral or spatial samples of a given ecosystem [16]
composed of similar microbial organisms, but different
abundance levels. However, in many situations, mul-
tiple related samples may not be available in the re-
quired numbers, and as a result, contig-binning based
on single metagenomes is still important.
Contig binning tools based on a single sample generally

follow one of three strategies. 1) Sequence composition. It
is usually denoted as frequencies of k-tuples (k-mers) with
k= 2–6 as genomic signatures of contigs. MetaWatt [12]
and SCIMM [11] built multivariate statistics and/or inter-
polated Markov models of background genomes to bin
the contigs. Metacluster 3.0 [14] clustered the contigs
using k-tuple frequency and Spearman correlation be-
tween the k-tuple frequency vectors. LikelyBin [10] uti-
lized Markov Chain Monte Carlo approaches based on 2-
to 5-tuples. 2) Abundance. AbundanceBin [15] estimated
the relative abundance levels of species living in the same
environment based on Poisson distributions of 20-tuples
with an Expectation Maximization (EM) algorithm. The
MBBC [19] package estimated the abundance of each gen-
ome using the Poisson process. All tools based on

abundance are designed to bin short or long reads instead
of assembled contigs. 3) Hybrid of composition and abun-
dance. Maxbin1.0 [17] combined 4-tuple frequencies and
scaffold coverage levels to populate the genomic bins
using single-copy marker genes and an Expectation
Maximization (EM) algorithm. MyCC [20] combined gen-
omic signatures, marker genes and optional contig cover-
ages within one or multiple samples.
Contig binning using k-tuple composition is based on

the observation that relative sequence compositions are
similar across different regions of the same genome, but
differ between distinct genomes [21, 22]. The frequency
vector of k-tuples is one of the representation of se-
quence composition. In general, current tools use the
frequency of k-tuples directly, but this represents abso-
lute, not relative, sequence composition. Here, “absolute”
frequency refers to the number of occurrences of a k-
tuple over the total number of occurrences of all k-
tuples. On the other hand, “relative” frequency refers to
the difference between the observed frequency of a k-
tuple and the corresponding expected frequency under a
given background model. Contigs in the same bin are
from the same taxonomic group, such as one class, spe-
cies or strain. Therefore, contigs from the same bin are
expected to obey a consistent background model. Several
sequence dissimilarity measures based on relative fre-
quencies of k-tuples have been developed such as
CVTree, d�

2 and dS
2; and recent studies [23–27] have

shown that dS
2 is superior to other dissimilarity measures

for the comparison of genome sequences based on rela-
tive k-tuple frequencies. Therefore, in the present study,
we attempted to model the relative sequence compos-
ition and measure dissimilarity between contigs with dS

2

for a single metagenomic sample. The dS
2 was designed

to measure the dissimilarity between two sequences or
next generation sequencing data by modeling the back-
ground genomes [23] using Markov and interpolated
Markov chains. Previous studies verified the effective-
ness of dS

2 in revealing group and gradient relationships
between genomes [24, 25], metagenomes [28] and meta-
transcriptomes [26, 27]. However, binning of contigs
directly using dS

2 is computationally expensive and im-
practical for large metagenomics studies due to the need
to construct Markov background models for sequences
and to calculate the expected counts of k-tuples. On the
other hand, many binning tools based on absolute k-tuple
frequencies and the results from such methods are rea-
sonable. Still, these tools and methods can be improved by
using dS

2 dissimilarity. Therefore, in the present study, we
do not bin the contigs from scratch. Instead, we attempt
to adjust contig bins based on the output of any existing
binning tools. We model each contig with a Markov chain
based on its k-tuple frequency vector. The bin’s center is
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represented by the averaged k-tuple frequency vectors of
all contigs in this bin and is also modeled with a Markov
chain. Then, dS

2 measures dissimilarity between a contig
and a bin’s center based on relative sequence composition,
as represented by the Markov chains. Finally, a K-means
clustering algorithm is applied to cluster the contigs based
on the dS

2 dissimilarities, where K is the number of clus-
ters. Such an approach, on the one hand, overcomes the
issue of extensive computational complexity directly using
dS
2 and, on the other hand, further improves the initial

binning results. The method is developed as an open
source package, termed dS

2Bin , which is available at
https://github.com/kunWangkun/d2SBin.
We selected six synthetic and real datasets that had

originally been used to evaluate existing tools as testing
datasets. dS

2Bin was applied to adjust the binning results
of five representative binning tools using sequence com-
position (MetaCluster3.0 [14], MetaWatt [12] and
SCIMM [11]) and the hybrid of sequence composition
and abundance (MaxBin1.0 [17], MyCC [20]) based on a
single metagenomic sample. Tuple length k = 6 and the
independent identically distributed (i.i.d.) background
model (i.e., Markov order r = 0) are frequently the opti-
mal parameters for dS

2Bin to achieve the best perform-

ance for metagenomics contig binning. dS
2Bin improved

the binning results in 28 out of 30 testing experiments
for 6 datasets using 5 binning tools, giving significantly
better performance in terms of recall, precision and ARI
(Adjusted Rand Index).

Methods
The framework of dS

2Bin is shown in the flowchart of
Fig. 1. Any existing contig binning tool is applied with
its default settings to bin the contigs in a single metage-
nomic sample. Each contig is modeled with a Markov
chain based on its k-tuple frequency vector. For each
bin, the bin’s center is also modeled with a Markov chain
based on the averaged frequency vector of all contigs in
this bin. The dS

2 measures the dissimilarity between a con-
tig and a bin’s center based on the background probability
models. Assuming that contigs in the same bin come from
an identical background model, the dS

2 dissimilarity be-
tween contigs from the same bin should be smaller than
that between contigs from different bins under correct
binning. The K-means algorithm is then applied to adjust
the contigs among different bins to minimize the within-
bin sum of squares based on dS

2 dissimilarity.

The dS
2 dissimilarity measure between two contigs based

on k-tuple sequence signature

The dS
2 is a normalized dissimilarity measure for two se-

quences based on either long genomic sequences or

NGS short reads in which expected word counts are sub-
tracted from the observed counts for each sequence. The
background adjusted word counts are then compared
using correlation to measure the dissimilarity between
the two sequences [25]. Let cX ¼ ðcX;1; cX;2;⋯; cX;4k Þ and
cY ¼ ðcY ;1; cY ;2;⋯; cY ;4k Þ be the k-tuple frequency vectors
from two sequences X and Y, respectively, where cX , i is
the occurring times of the ithk-tuple in sequence X
and i = 1⋯ 4k. At each base in the tuple, there are four
possible nucleotides, that is A, C, G, and T, for nucleotide
sequences. So there are 4k combinations when tuple
length is k.
The dS

2 dissimilarity is defined as

dS
2ð~cX ; ~cY Þ ¼

1
2

1−
DS

2 ~cX ;~cYð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i¼1
~c2X;iffiffiffiffiffiffiffiffiffiffiffiffiffi

~c2X;iþ~c2Y ;i
p

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP4k

i¼1
~c2Y ;iffiffiffiffiffiffiffiffiffiffiffiffiffi

~c2X;iþ~c2Y ;i
p

r
0
BB@

1
CCA;

ð1Þ
where

DS
2ð~cX ;~cY Þ ¼

X4k
i¼1

~cX;i~cY ;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~c2X;i þ ~c2Y ;i

q ; ð2Þ

~cX;i ¼ cX;i−nXpX;i; ~cY ;i ¼ cY ;i−nYpY ;i; ð3Þ

where p• , i is the probability of the ithk-tuple under the
Markov model with order r = 0 − 3 for one long se-

quence or set of reads and n• ¼
P4k

i¼1c•;i , • = X or Y is

the sum of occurrences of all k-tuples. The value of dS
2 is

between 0 and 1. The pX , i is the probability of the ithk-
tuple under the background sequence for X. The pX , i

can be the probability under the i.i.d. model, or under
the Markov chain of different orders. The ithk-tuple is
denoted as w =w1w2⋯wk. Under the rth order Markov
chain Mr, the probability of the k-tuple w, namely the ex-
pected frequency, can be computed as

p wjMrð Þ ¼

Yk
j¼1

p wj
� �

r ¼ 0

p w1w2…wrð Þ
Yk−r
j¼1

p wjþrjwjwjþ1…wjþr−1
� �

1 ≤ r ≤ k − 1

8>>>><
>>>>:

ð4Þ
where p(wj) is the probability of wj estimated by the
ratio of the number of occurrences of wj over the
number of all nucleotides. The value of p(w1w2⋯wr)
is estimated by the ratio of the number of occur-
rences of w1w2⋯wr over all the number of r-tuple oc-
currences. The value of p(wj + r| wjwj + 1⋯wj + r − 1) is
estimated by the fraction of occurrences of wj + r condi-
tional on the previous occurrences of wjwj + 1⋯wj + r − 1.
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dS
2Bin: Contig binning based on the dS

2 measure
Let S = {S1, S2,⋯Sl} be the partition of all contigs into l
bins. Contig X is represented as cX ¼ ðcX;1; cX;2;⋯; cX;4k Þ,
the occurrence vector of k-tuples within the contig. The
center of bin Sj is represented as the average frequency
vector,

cSj ¼
1
nj

X
Xi∈Sj

CXi ; ð5Þ

where Xi is the contig currently in Sj and nj is the num-
ber of contigs in Sj. The value of dS

2ðceX ; ceSjÞ quantifies
the dissimilarity between contig X and bin Sj.
In our study, when the number of bins is fixed, the

metrics of binning call for minimizing the within-bin
sum of squares based on dS

2 dissimilarity, that is,

argmin
s

Xl

j¼1

X
X∈Sj

ds
2ð~cX ;~cSjÞ: ð6Þ

Fig. 1 Flowchart contig binning with dS2Bin
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We then used the K-means clustering algorithm to
optimize Eq. (6).

Experimental design
The purpose of our study is to improve binning results
using dS

2Bin based on the output of current existing bin-
ning tools. Therefore, we adopted both synthetic and
real testing datasets generated, or used, by previous bin-
ning tools in order to test the performance of dS

2Bin, as

shown in Table 1. The dS
2Bin was applied to the binning

results of five contig-binning tools, respectively, to
evaluate its performance in improving their binning
results.

Selection of contig binning tools

The dS
2Bin was applied to adjust the contig-binning re-

sults from MaxBin1.0 [17], MetaCluster3.0 [14],
MetaWatt [12], MyCC [20] and SCIMM [11] to evaluate
its performance. These five widely used contig-binning
tools use different binning strategies to bin the contigs
for single metagenomic sample: 1) Sequence composition:
MetaCluster3.0 [14] measures the Spearman distance be-
tween 4-tuple frequency vectors and bins contigs with the
K-median algorithm. The MetaCluster4.0 [29] and 5.0
[30] were designed to bin the reads from metagenomics
samples of different abundance characteristics. MetaWatt
[12] and SCIMM [11] build interpolated Markov models
of the background genomes and assign the contigs to bins
with maximum likelihood. 2) Hybrid of abundance and
sequence composition: MaxBin1.0 [17] measures the
Euclidean distance between 4-tuple frequency vectors of
contigs and assigns them with an EM algorithm, taking
scaffold coverage levels into consideration. MyCC [20]
combines genomic signatures, marker genes and optional
contig coverages within one or multiple samples.

Five synthetic testing datasets with 10 genomes and 100
genomes
MaxBin1.0 [17] used these five datasets to evaluate its
performance. Here we used the same five datasets to
evaluate the performance of dS

2Bin: Short reads were
simulated by MetaSim [31] and assembled to contigs by

Velvet [32]. The contigs and their labels are available for
downloading from the MaxBin1.0 paper [17]. For the
metagenomes containing 10 genomes, 5 million and 20
million paired-end reads were sampled as 20× and 80×
average coverage, respectively. For the metagenomes
containing 100 genomes, 100 million paired-end reads
were sampled with three settings to create simLC+,
simMC+ and simHC+. The three datasets represent mi-
crobial communities with different levels of complexity,
which mimicked the setting of the previous study [33]:
simLC simulates low-complexity communities domi-
nated by a single near-clonal population flanked by low-
abundance ones. Such datasets result in a near-complete
draft assembly of the dominant population in, for ex-
ample, bioreactor communities [34]. simMC resembles
moderately complex communities with more than one
dominant population, also flanked by low-abundance
ones, as has been observed in an acid mine drainage bio-
film [35] and Olavius algarvensis symbionts [36]. These
types of communities usually result in substantial assem-
bly of the dominant populations according to their
clonality. simHC simulates high-complexity communities
lacking dominant populations, such as agricultural soil
[37], where no dominant strains are present and min-
imal assembly results. In addition, the empirical 80-bps
error model, which incorporates different error types
(deletion, insertion, substitution) at certain positions
with empirical error probabilities for Illumina, was pro-
duced by MetaSim [31] and used in simulating all meta-
genomes [17].

One real testing dataset, Sharon
This dataset was applied to test the binning tools
COCACOLA [5] and CONCOCT [4]. The dataset is
composed of a time-series of 11 fecal microbiome
samples from a premature infant [38], denoted as
‘Sharon’. All metagenomic sequencing reads from the
11 samples were merged together, and 5579 contigs
were assembled. The contigs were annotated with
TAXAassign [39], and 2614 contigs were unambigu-
ously aligned to 21 species [5].
The above datasets cover various species diversity, spe-

cies dissimilarity, sequencing depth, and community

Table 1 Synthetic and real testing datasets for contig binning

Testing datasets Tools tested previously Tools tested in this study

Synthetic 10 genomes: 20×
10 genomes: 80×

Maxbin 1.0 [17] MaxBin 1.0 [17] +dS2Bin

MetaCluster 3.0 [14]

100 genomes:simLC+
100 genomes:simMC+
100 genomes:simHC+

MetaWatt3.5.3 [3]

SCIMM 0.3.0 [11]

Real Sharon COCACOLA [5]
CONCOCT [4]

MyCC_2017 [20]
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complexity. They include synthetic and real data. There-
fore, testing on these datasets would yield a comprehen-
sive evaluation of dS

2Bin.

Evaluation criteria

To evaluate the performance of dS
2Bin, three commonly

used criteria in binning studies [4, 5, 17], recall, precision
and ARI (Adjusted Rand Index), were applied in our
study. As described in COCACOLA [5], the binning re-
sult is represented as a K × S matrix A = (aks) with K bins
on S species where aks indicates the shared number of
contigs between the kth bin and the sth species. Each
contig binning tool filters out low-quality contigs; there-
fore, N is the total number of contigs passing through
the filter and binned by the tools.
Recall: For each species, we first find the bin that con-

tains the maximum number of contigs from the species.
We then sum over the maximum number of all species
and divide by the number of contigs.

recall ¼ 1
N

X
s
maxk aksf g ð7Þ

Precision: For each contig bin, we first find the species
with the maximum number of contigs assigned to the
bin. We then sum the maximum numbers across all bins
and divide by the number of contigs.

precision ¼ 1
N

X
k
maxs aksf g ð8Þ

ARI (Adjusted Rand Index): ARI is a unified measure
of clustering results to determine how far from that per-
fect grouping a bin result falls. ARI focuses on whether
pairs of contigs belonging to the same species can be
binned together or not. The detailed descriptions can be
found in [4, 5].

ARI ¼
P

k;s

aks
2

� �
−t3

1
2 t1 þ t2ð Þ−t3 ð9Þ

where t1 ¼
P

k
ak ∙
2

� �
, t2 ¼

P
s

a∙s
2

� �
, t3 ¼ 2t1t2

N
2

� � and

ak∙ = ∑s aks, a∙s = ∑k aks .

Results
In the calculation of dS

2 dissimilarity, the setting of tuple
length for k-tuple and Markov order for the background
sequences are required. Based on previous studies [4, 5],
for dS

2 , tuple length k was generally set to 4–7 tuples,
and the order of Markov chain was generally set as 0–2,
as in previous applications, to analyze metagenomic and
metatranscriptomic samples [25, 26]. Therefore, we

extended the testing range of tuple length and Markov
order as 4–8 and 0–3 to assess the effect of tuple length
and Markov order for dS

2Bin on contig binning. As
shown in Table 2, for the binning results of MaxBin on
10genome-80×, the i.i.d. (that is 0-order Markov) model
obtained the highest three indexes at almost all tuple
lengths. The models based on tuple length k = 6 repre-
sent superior performance. The best performance was
achieved under the i.i.d. background model of 6-tuples.
All three criteria dropped suddenly at k = 8. The experi-
ment offered initial guidance for the selection of tuple
length and Markov order.

Length selection of k-tuple in dS
2Bin

According to Table 2, we calculated dS
2 with 4-8 bp

tuples under the i.i.d. model based on the output of the
existing binning tools. These tools were run under their
default tuple length and mode. The datasets 10genome
80× and 100genome-simHC+ were selected to test the ef-
fect of tuple length on the performance of dS

2Bin . For

both datasets, dS
2Bin based on 6-tuples achieved the best

performance on precision, recall and ARI for all five

Table 2 Initial assessments of the effects of tuple length and
Markov order of the background sequences on the performance
of MaxBin+ dS2Bin in terms of recall, precision and ARI for dataset
10genome-80×

10genome-80× Recall(%) Precision(%) ARI(%)

MaxBin 93.48 93.48 90.96

MaxBin+dS2Bin k = 4 r = 0 96.42 96.42 95.57

r = 1 93.99 93.99 90.86

r = 2 86.35 86.35 76.18

k = 5 r = 0 96.83 96.83 96.03

r = 1 95.40 95.40 93.19

r = 2 92.53 92.53 87.72

r = 3 59.71 60.91 37.18

k = 6 r = 0 96.93 96.93 96.05

r = 1 96.01 96.01 94.57

r = 2 94.24 94.24 91.40

r = 3 81.28 83.77 71.56

k = 7 r = 0 94.41 94.41 92.08

r = 1 93.26 93.26 91.92

r = 2 92.42 92.42 90.67

r = 3 65.88 77.73 50.48

k = 8 r = 0 88.26 82.94 80.04

r = 1 87.17 88.09 84.78

r = 2 87.19 87.12 82.73

r = 3 60.08 73.08 46.46

The optimal numbers with respect Markov order are in bold
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tools. Figures 2 and 3 only plot the curves of tuple length
k = 4–6 because the severe dropping in performance with
k = 7, 8 led to an excessively wide Y-axis coordinate range,
and the curves of k = 4–6 appeared to aggregate, making
it hard to display the superiority of k = 6. Therefore, we
set k = 6 with dS

2 in the rest of our study.

Order selection for Markov chain in dS
2Bin

To obtain the most suitable Markov order for the back-
ground genome, we fixed the tuple length k = 6 and ap-
plied 0-2nd order Markov chain to calculate dS

2 for
datasets 10genome 80× and 100genome-simHC+ on the
output of five contig-binning tools. As shown in Figs. 4
and 5, for both datasets, dS

2Bin under the i.i.d. model of
6-tuple achieves the best performance for Precision, Recall
and ARI on all five tools. According to our previous stud-
ies about applying dS

2 to compare metagenomic [28] and

metatranscriptomic samples [26], dS
2 under the i.i.d. model

always achieved best results for all the 12 testing datasets,
which illustrated that the i.i.d. model works well for the
study of microbial communities. This is probably due to
the fact that each bin is a mixture of several genomes and
no Markov chain models with fixed order greater than 0
can describe the bin better. Therefore, we set tuple length
k = 6 and the i.i.d. model in dS

2Bin.

Experiments on contig binning
The contig-binning tools Maxbin [17], Metacluster 3.0
[14], Metawatt [3], SCIMM [11] and MyCC [20] were
applied to bin the contigs from the six synthetic and real
datasets with their original running modes. Based on the
results from these tools, dS

2Bin was further applied to ad-

just the contigs among bins. dS
2Bin did not change the

number of bins obtained by the original tools. The bar
graphs in Fig. 6 illustrate the Recall, Precision and ARI
of the output of the five existing tools and after the ad-
justment of dS

2Bin for the six datasets. In most cases, the
three criteria were improved by 1%–22%. Additional file 1:
Table S1 presents the numerical values of the three in-
dexes and offers more detailed information on all experi-
ments, including the number of total&binned contigs
and actual&clustered bins, providing more comprehen-
sive view about the scale of dataset, complexity and ori-
ginal binning performance.

Contig binning on synthetic dataset 10 genome 80× coverage
From Fig. 6a, it is easy to see that the three criteria were
improved for all five tools. As shown in Additional file 1:
Table S1, 8022 contigs were assembled from simulated
metagenomic reads. The best results were obtained on
MyCC where dS

2Bin increased recall, precision and ARI

Fig. 2 The effect of tuple length on the binning of contigs with different binning algorithms (MaxBin, MaxCluster, MetaWatt, SCIMM and MyCC)

further modified by dS2Bin under the i.i.d. background model for dataset 10genome 80×. a-e are the Recall, Precision and ARI of 4–6 tuples dS2Bin

on the five contig-binning tools. From the figures, it can be clearly seen that 6-tuple dS2Bin achieves the best performance in almost all cases
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from 97.21%, 97.21%, and 95.58% to 97.75%, 97.75% and
96.16%, respectively. MaxBin, MetaCluster and MyCC
assigned the contigs into 10 bins. MetaWatt and
SCIMM obtained 27 and 8 bins, respectively, but dS

2Bin
still adjusted contigs among these bins to achieve better
performance.

Contig binning on synthetic dataset 10 genome 20×
coverage
Compared with 20 million reads in 10 genome 80× data,
10 genome 20× data have only 5 million reads for the 10
genomes. Fig. 6b shows that dS

2Bin improved the binning
of MaxBin, MetaWatt, SCIMM and MyCC. As shown in
Additional file 1: Table S1, both MaxBin and MetaCluster
only produced three bins, and most contigs belonged to
the three genomes with highest abundances because most
contigs from the seven low-abundance genomes were dis-
carded during preprocessing by having short length [17].
However, the dS

2Bin only improved precision, but not re-
call or ARI, on MetaCluster. In order to have a deep
insight on the deterioration of binning performance, we
list the number of contigs from the 10 genomes in each
bin, as shown in Additional file 1: Table S2–2 for

MetaCluster and MetaCluster+ dS
2Bin . Each row of the

table is one genome defined by its genome ID and corre-
sponding genome name in NCBI and each column is the
clustered bin, so the element is the number of contigs
from one genome inside the current bin. Among the 1217
contigs assigned by MetaCluster, there are 1209 contigs
from four dominant genomes: Flavobacterium branchio-
philum, Halothiobacillus neapolitanus, Lactobacillus casei
and Acetobacter pasteurianus with at least 100 contigs.
But MetaCluster only output three bins: the contigs from
Flavobacterium branchiophilum, Halothiobacillus neapo-
litanus and Lactobacillus casei are dominant in the three
bins, and the contigs from Acetobacter pasteurianus are
scattered into the three bins. After adjustment by dS

2Bin,
the contigs from Acetobacter pasteurianus were merged
into the same bin as Halothiobacillus neapolitanus. Aceto-
bacter pasteurianus and Halothiobacillus neapolitanus are
both from the phylum Proteobacteria. Therefore, Aceto-
bacter pasteurianus is phylogenetically closer to Halothio-
bacillus neapolitanus than to the other two genomes.
From this point of view, dS

2Bin indeed improved the bin-
ning of MetaCluster although the performance index did
not show improvement. Additional file 1: Table S2 also
gives the details of contigs’ assignments in bins before and

Fig. 3 The effect of tuple length on the binning of contigs with different binning algorithms (MaxBin, MaxCluster, MetaWatt, SCIMM and MyCC)

further modified by dS2Bin under the i.i.d. background model for dataset 100genome simHC+. a-e are the Recall, Precision and ARI of 4–6 tuples dS2
Bin on the five contig-binning tools. From the figures, it can be clearly seen that 6-tuple dS2Bin achieves the best performance in almost all cases
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after dS
2Bin for the other four tools. For MyCC in

Additional file 1: TableS2–5, before using dS
2Bin , MyCC

produced 5 bins and the contigs from Halothiobacillus
neapolitanus were assigned to bin 1 and bin 4 and bin 1
included Halothiobacillus neapolitanus and Lactobacillus
casei, which lead to the low ARI index as 24.76%. After
using dS

2Bin, most contigs from Halothiobacillus neapoli-
tanus were assigned to bin 4, and bin 1 mainly included
contigs from Lactobacillus casei. The ARI was increased
to 70.48%. The result demonstrates that dS

2Bin tends to as-
sign contigs with consistent or similar background models
to the same bin.

Contig binning on synthetic dataset 100 genome-simHC+
simHC+ has evenly distributed species abundance levels
with no dominant species. According to Fig. 6c, the
three criteria were all improved for the five tools. Ac-
cording to Additional file 1: Table S1, among a total of
407,873 contigs, 13,919 were clustered into 87 bins by
MaxBin with 80.23%, 76.69 and 64.58% recall, precision
and ARI, respectively. After dS

2Bin , the three indexes
were improved to 90.67%, 80.14% and 74.03%, respect-
ively, showing overall superior performance. MetaCluster,

MetaWatt, and MyCC produced 97, 129 and 94 bins, re-
spectively, and recall, precision and ARI were improved
for all of them by dS

2Bin. SCIMM only clustered 19 bins,

which led to low precision and ARI, but dS
2Bin still im-

proved the three metrics.

Contig binning on synthetic dataset 100 genome-simMC+
According to Fig. 6d, the three criteria were improved
by dS

2Bin for MaxBin, MetaCluster, SCIMM and MyCC.
Owing to the poor assembly quality of simMC+ [17],
only ~10,000+ contigs of the 795,573 passed the mini-
mum length threshold, among which a small portion
came from low-abundance genomes. Therefore, only
high-abundance genomes were binned, and 11 bins were
generated for MaxBin and MetaCluster, and 15 bins for
MyCC. The large disparity between the number of real
species and bins led to low precision and ARI. However,
dS
2Bin still greatly improved recall, precision and ARI.

The exception was MetaWatt. Among the 11,987 clus-
tered contigs, MetaWatt isolated 41 bins. In this case,
extracting contigs from the dominant genome from each
bin would leave only 7978, meaning that one-third of
the contigs would remain to interfere with the modeling

Fig. 4 The effect of the order of Markov chain on the binning of contigs with different binning algorithms (MaxBin, MaxCluster, MetaWatt, SCIMM

and MyCC) further modified by dS2Bin for 6-tuples on dataset 10genome 80×. a-e are the Recall, Precision and ARI of 0–2 order of Markov chain to

calculate dS2Bin on the five contig-binning tools. From the figures, it can be clearly seen that dS2Bin calculated on 0-order Markov chain achieves
the best performance in all cases
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of the 41 dominant genomes, in turn leading to de-
creased performance for precision and ARI.

Contig binning on synthetic dataset 100 genome-simLC+

dS
2Bin improved the binning performance for all tools.

All three metrics were also significantly improved by dS
2

Bin . For SCIMM, dS
2Bin increased recall, precision and

ARI from 70.99%, 46.29% and 32.64% to 76.42%, 65.46%
and 55.24%, respectively, which represents the best per-
formance among the five tools.

Contig binning on real dataset Sharon
For this real dataset, the ground truth of binning was not
available. The following two evaluations were imple-
mented: (1) We only binned the 2614 contigs with unam-
biguous labels belonging to 21 species, and the
annotations were considered as the ground truth. MaxBin,
MetaCluster, MetaWatt, SCIMM and MyCC isolated 11,
10, 23, 19 and 16 bins for Sharon originally. As shown in
Fig. 6f, based on their binning outputs, dS

2Bin adjusted the
contig binning and increased Recall, Precision and ARI for
all tools. (2) We applied CheckM [40] to estimate the

approximate contamination and genome completeness of
the contigs in the bins free from ground truth. Figure 7a
shows the number of recovered genome bins by each
method in different recall (completeness) threshold with
precision (lack of contamination) > 80%. Although the
tools identified 10–23 bins among the 21 species in the
Sharon dataset, only 4–6 genome bins were recovered
with precision > 80%. dS

2Bin did improve recall and preci-

sion. For MetaWatt and MyCC, dS
2Bin increased the num-

ber of bins with precision > 80%. For MetaCluster and
SCIMM, dS

2Bin not only increased the number of bins
with precision > 80% but also increased the number of
bins with recall > 90%. The dS

2Bin also increased the re-
call of each bin for MaxBin and MyCC. Figure 7b shows
the number of recovered genome bins at different preci-
sion thresholds with recall > 80%. For all tools, dS

2Bin in-
creased the number of bins with recall > 80%. For MaxBin
and MyCC, the number of bins with precision > 90% is
also increased by dS

2Bin.
Testing on these synthetic and real datasets showed

that dS
2Bin could achieve obvious improvement on the

original outputs of the five testing tools.

Fig. 5 The effect of the order of Markov chain on the binning of contigs with different binning algorithms (MaxBin, MaxCluster, MetaWatt, SCIMM

and MyCC) further modified by dS2Bin for 6-tuples on dataset 100genome simHC+. a-e are the Recall, Precision and ARI of 0–2 order of Markov chain

to calculate dS2Bin on the five contig-binning tools. From the figures, it can be clearly seen that dS2Bin calculated on 0-order Markov chain achieves
the best performance in all cases
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Convergence of K-means iteration on dS
2Bin

In order to evaluate the convergence of K-means iter-
ation on dS

2Bin , we plotted the performance curves of
the three indexes on randomly selected tools and data-
sets, as shown in Fig. 8. During our experiments with
ten iterations, the three indexes increased significantly
on the first iteration and reached steady state quickly.
The “0” in the horizontal ordinate indicates the perform-
ance of the original binning tool. Therefore, in dS

2Bin ,
the iterations of contig binning with K-means will stop
when no contigs is adjusted or the number of iterations
reaches 5.

Software implementation and running

The code of dS
2Bin was implemented with Python and

Cython running under the Linux system. Cython is a
superset of the Python language that additionally

supports calling C functions, and the code can be com-
piled into a sharing library called by python directly.
Tested on a server with 128G memory and Intel(R)
Xeon(R) CPU E5–2620 v2 @ 2.10GHz with 6 CPU cores
at 2.10 GHz, it takes 16 min to finish the adjustment of
contig binning for dS

2Bin on 6-tuples for 8022 contigs of
10 bins with 4000 bp length on average and the peak
memory is 6.7GB. The source code of dS

2Bin is available
at https://github.com/kunWangkun/d2SBin.

Discussion
Our experiments demonstrate dS

2 can measure the simi-

larity between contigs more accurately. However, dS
2 re-

quires to build the background Markov model for each
contig, which bring heavy computation burden. There-
fore, in our study, instead of de novo binning from
scratch, we attempt to adjust contig bins based on the

Fig. 6 Contig binning on the six testing datasets. a-f are the results of six synthetic and real datasets for the five tools. The blue-, green- and
red-colored bars are recall, precision and ARI, respectively. The bars without border are the criteria of the original outputs of the five tools. The

bordered bars are the criteria after using dS2Bin. It is obvious that performance increases in each case after adjustment by dS2Bin
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output of any existing binning tools for the single meta-
genomic sample. The computational issue can be over-
come using this strategy. When there are multiple
related samples available, the sequence composition
contribute less than the co-varying coverage profiles
across samples for contig binning and dS

2Bin can not
improve the contig binning for multiple metagenomic
samples. The tools designed for multiple samples, like
COCACOLA, GroopM, Concoct, MaxBin2.0, can achieve

satisfactory results if multiple metagenomic samples are
available.
Currently, dS

2Bin does not merge, or split, the bins. In
some situations that there may be large differences be-
tween the numbers of clustered bins and ground truth,
merging and splitting the bins would improve the re-
sults. However, the algorithms to adjust the clustering
number, such as ISODATA [41], require the inputs of
the minimum threshold of between-class dissimilarity

Fig. 7 Evaluation of recall and precision of the Sharon dataset with CheckM. a The plot shows the number of recovered genome bins (X-axis) by
each method (Y-axis) at different recall (completeness) thresholds (gray scale) with precision (lack of contamination) ≥ 80%. b The plot shows the
number of recovered genome bins (X-axis) by each method (Y-axis) at different precision thresholds (gray scale) with recall ≥ 80%. It is clear that
dS
2Bin improved the recall and precision of each bin compared with the original tools. The number “0” shown on the border means that one or

more value intervals were skipped because no genome was recovered in the intervals

Fig. 8 Curves of the three indexes with the K-means iterations. The “0” in the horizontal ordinate reflects the output performance of the original
binning tool, MetaCluster in (a) and SCIMM in (b). The three indexes increase significantly on the first iteration, followed by slight adjustment to
reach steady values
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and the maximum threshold of within-class dissimilarity.
These thresholds depend on the detailed taxonomic level
which the investigators are interested in. Once these
thresholds are given, we can combine the algorithms for
merging and splitting bins with dS

2Bin to further improve
the binning results.

Conclusions
The ability of dS

2Bin to achieve improved binning per-
formance is based on the idea that contigs clustered into
one bin will come from the same genome and that rela-
tive sequence compositions will be similar across differ-
ent regions of the same genome, but differ between
genomes [21, 22]. dS

2 measures the dissimilarity between
contig and the bin’s center based on the Markov model
of k-tuple sequence compositions.
Our experiments demonstrate that dS

2Bin significantly
improves binning performance in almost all cases, thus
giving credence to the relative sequence composition
model over the direct application of absolute sequence
composition. We applied dS

2Bin to five contig-binning
tools with different binning strategies. Irrespective of the
different strategies employed by the contig-binning
tools, dS

2Bin was able to achieve better performance for

all tools tested. Finally, the optimal results for dS
2Bin are

always obtained on steady tuple length k = 6 under the
i.i.d. model with no need to search for the optimal
parameters.

Additional file

Additional file 1: Table S1. The file gives the numerical values of three
criteria of contig binning on the experiments of the six testing datasets.
Table S2. Detailed binning results of the contigs before and after dS2Bin
for dataset 10genome-20× based on the five testing tools. (DOCX 38 kb)
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