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approach to classify genes and genera
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Abstract

Background: Geminiviruses infect a broad range of cultivated and non-cultivated plants, causing significant
economic losses worldwide. The studies of the diversity of species, taxonomy, mechanisms of evolution, geographic
distribution, and mechanisms of interaction of these pathogens with the host have greatly increased in recent
years. Furthermore, the use of rolling circle amplification (RCA) and advanced metagenomics approaches have
enabled the elucidation of viromes and the identification of many viral agents in a large number of plant species.
As a result, determining the nomenclature and taxonomically classifying geminiviruses turned into complex tasks. In
addition, the gene responsible for viral replication (particularly, the viruses belonging to the genus Mastrevirus) may
be spliced due to the use of the transcriptional/splicing machinery in the host cells. However, the current tools
have limitations concerning the identification of introns.

Results: This study proposes a new method, designated Fangorn Forest (F2), based on machine learning
approaches to classify genera using an ab initio approach, i.e,, using only the genomic sequence, as well as to
predict and classify genes in the family Geminiviridae. In this investigation, nine genera of the family Geminiviridae
and their related satellite DNAs were selected. We obtained two training sets, one for genus classification,
containing attributes extracted from the complete genome of geminiviruses, while the other was made up to
classify geminivirus genes, containing attributes extracted from ORFs taken from the complete genomes cited
above. Three ML algorithms were applied on those datasets to build the predictive models: support vector
machines, using the sequential minimal optimization training approach, random forest (RF), and multilayer
perceptron. RF demonstrated a very high predictive power, achieving 0.966, 0.964, and 0.995 of precision, recall, and
area under the curve (AUC), respectively, for genus classification. For gene classification, RF could reach 0.983, 0.983,
and 0.998 of precision, recall, and AUC, respectively.

Conclusions: Therefore, Fangorn Forest is proven to be an efficient method for classifying genera of the family
Geminiviridae with high precision and effective gene prediction and classification. The method is freely accessible at
www.geminivirus.org:8080/geminivirusdw/discoveryGeminivirus.jsp.
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Background

Geminiviridae is one of the largest and most successfully
plant virus families. This family comprises viruses with
single-strand DNA genome encapsulated in twinned icosa-
hedral particles. Geminiviruses infect several species of
cultivated and ornamental plants as well as weeds, causing
significant economic losses in agriculture and food safety
worldwide [1]. The family Geminiviridae comprises nine
genera: Begomovirus, Mastrevirus, Becurtovirus, Curtovirus,
Turncurtovirus, Eragrovirus, Topocuvirus, Capulavirus, and
Graglovirus [2—-4]. Geminivirus genomes are comprised of
a genomic component called DNA-A. Viruses of the Bego-
movirus genus are exceptions. Their genomes can present
only the component DNA-A (monopartite), similarly
to other geminiviruses, or two components: DNA-Aand
DNA-B (bipartite). The component DNA-A may be trans-
mitted by the silverleaf whitefly (Bemisia tabaci of
biotypes A or B), particularly for begomoviruses; by leaf-
hoppers (mastreviruses, becurtoviruses, and curtoviruses),
and by treehoppers (topocuviruses) [1, 2, 5, 6]. The genera
Eragrovirus and Turncurtovirus have no known vector yet.
The genomes of bipartite Begomovirus are mostly
found in the New World, while monopartite ones
(made up of only DNA-A) are commonly found in the
Old World [7-9].

Recent studies report the first occurrence of monopartite
geminivirus (begomoviruses) infecting tomatoes in Peru
and Ecuador [10]. Conversely, bipartite begomoviruses
have been identified in the Old World (Madagascar) infect-
ing Asystasia gangetica and associated with mosaic disease
in Coccinia grandis in India [11-13]. Overall, diseases
caused by geminiviruses have had economic and social im-
pacts in several continents. For example, in Europe, tomato
plants have been infected by the tomato yellow leaf curl
virus disease (TYLCD) and wheat has been severely
inflicted by the wheat dwarf virus disease (WDVD)
[14—16]. In Africa, the cassava mosaic disease (CMD)
and the maize streak disease (MSD) have been reported
[17, 18]. There have also been occurrences of the
cotton leaf curl disease (CLCuD) and the chickpea
chlorotic dwarf disease in Asia, as well as the bean golden
mosaic disease (BGMD) in the Americas [19-21].

The genomic organization of geminiviruses is highly
conserved. However, the species are genetically divergent,
encoding two to seven genes, with long and short inter-
genic regions and a common region between DNA-A and
DNA-B [2]. DNA-A encodes CP (capsid proteins), Rep (a
protein associated with replication), TrAP (transcriptional
activator protein and gene silencing suppressor), REn (rep-
lication enhancer protein), Reg (gene regulator), Sd (or
AC4, symptom determinant and gene silencing suppres-
sor), and AC5 (recently studied and functionally described
as a determinant of pathogenicity that suppresses antiviral
defenses based on RNA silencing) [2, 22]. Furthermore,
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monopartite geminiviruses in the Old World contain a
pre-coat protein (V2) related to movement and transport
of viral genome in the plant.

DNA-B (reported for begomovirus) is responsible for
the transport and movement of viral DNA in the plant
and codes two proteins, MP (movement protein) and
NSP (nuclear transport protein). NSP facilitates the
intracellular transport of viral DNA from the nucleus to
the cytoplasm and acts in concert with MP to move the
viral DNA to the adjacent, uninfected cells [23]. In some
cases, geminiviruses may be associated with beta satellite
(DNA-Beta) or alpha satellite DNA (DNA-Alpha) [24].
Beta satellites are DNA molecules with approximately
1.35 kb, and code a single ORF betaCl (pathogenicity
determinant protein), which acts in the development of
symptoms, modulation of virus host range, and host
defense response [25-27]. In contrast, alpha satellites are
capable of autonomous replication but are dependent on
geminiviruses for systemic infection and vector transmis-
sion [28, 29]. The genome of alpha satellites contains
approximately 1.37 kb and codes a single Rep protein.

Recent researches have shown the high diversity of
geminivirus species, multiple hosts, and geographic
distribution in various regions of the Old and New
Worlds [2, 30-32]. Currently, high-throughput sequen-
cing methods, advanced metagenomics approaches, and
different bioinformatics tools have enabled elucidating
viromes and identifying many viral agents in a large
number of plant species. In addition, using the rolling
circle amplification (RCA) approach [33], thousands of
sequences or complete genomes have been amplified,
sequenced, and made available in public databases (Gen-
Bank NCBI, geminivirus.org). Currently, geminiviruses are
classified based on the type of insect vector, host range,
phylogenetic reconstruction, and genomic organization
[2]. Therefore, geminivirus classification requires know-
ledge of taxonomy and bioinformatics since different
computational tools and algorithms can be used. For
example, the algorithms Muscle, MAFFT, ClustalW, and
BLAST are often used for alignment of sequences
[34-37]. Methods, including neighbor-joining, max-
imum parsimony, maximum likelihood, and Bayesian
inference, are also used to obtain phylogenetic reconstruc-
tion [3, 4, 38]. Other approaches using pairwise sequence
comparisons are also widely employed. Those compari-
sons are used by the software SDT [39] and analyzed ac-
cording to the taxonomic criterion of each genus. Several
previous works have applied those computational tools to
provide taxonomic reviews [2—4, 30-32, 40]. Guidelines
and protocols have been proposed to demarcate and clas-
sify species for Becurtovirus, Eragrovirus, and Turncurto-
virus [2]. Similarly, criteria have also been proposed for
begomoviruses and mastreviruses [30, 31]. In order to
evaluate the genomic organization, the Open Reading
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Frames (ORFs) and their respective positions in the gen-
ome must be first obtained. In this step, ORFs are pre-
dicted by the ORF finder tool (https://
www.ncbinlm.nih.gov/orffinder/), which, although widely
used, has limitations in identifying introns of this family.
Other consolidated tools, such as AUGUSTUS (http://
augustus.gobics.de/), Geneid (http://genome.crg.es/soft-
ware/geneid/index.html) and Prodigal (https://github.-
com/hyattpd/Prodigal), are still limited to identify all
OREFs that are encoded by the geminivirus genomes. Even
though the computer programs cited above are robust
and help taxonomic classification, they are of general pur-
pose, i.e., they were not designed taking the peculiarities
of geminivirus genomes into account. Furthermore, they
often use databases with non-standardized, non-curated
sequences with frequent annotation errors. Still, in gen-
eral, the required methods are not integrated. Such inte-
gration would facilitate automating the data analysis
process and decision-making.

We hereby present an in silico prediction approach,
called Fangorn Forest (F2), capable of classifying genera
and genes in the Geminiviridae family based on machine
learning (ML) methods. F2 uses only genomic characteris-
tics common to any viral genome to build classification
models. In this research, all genera (nine) of the family
Geminiviridae and their related satellite DNAs were con-
sidered. The proposed method is proven to be highly accur-
ate, as the machine learning models used yielded very high
values of precision, recall, and area under the ROC curve
(AUC) for the classification tasks. F2 integrates the set of
computational tools of the data warehouse www.geminivir
us.org:8080/geminivirusdw/discoveryGeminivirus.jsp [41].

Methods

Data source

Initially, genome sequences of plant viruses were retrieved
from the GenBank database for composing the negative
class (non-geminiviruses) of the training set for family clas-
sification.The non-geminivirus class is composed by DNA
sequence of different families of plant viruses. This class
consists of double-stranded DNA sequences (Caulimovi-
dae), double-stranded RNA viruses (Amalgaviridae, Fijivir-
idae, Oryzaviridae), single-stranded DNA (Nanoviridae),
negative sense single-stranded RNA viruses (Ophioviridae)
and positive sense single-chain RNA viruses (Benyviridae,
Bromoviridae, Closteroviridae, Luteoviridae, Potyviridae,
Tombusviridae, Virgaviridae) (http://viralzone.expasy.org/).
This class was intended to distinguish genomic sequences
of geminiviruses from other plant viruses.

Complete genome sequences of species from eight genera
in the Geminivividae family as well as satellite DNAs were
used to create the positive class of the training set
instances for Geminiviridae family classification (men-
tioned before) and genus classification. All sequences
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were obtained from the geminivirus.org curated repository
[40]. The sequences of Begomovirus, Mastrevirus, Becurto-
virus, Curtovirus, Turncurtovirus, Eragrovirus, Capulavirus,
and Graglovirus were defined according to taxonomic
reviews [2—4, 30-32, 41, 42]. Additionally, the complete
genomes of betasatellites were chosen in conformity with
the study of Briddon et al. [31], while sequences of alphasa-
tellites and DNA-B were randomly selected from the
geminivirus.org repository. The genus Topocuvirus was not
selected because has only one sequence deposited in Gen-
Bank database.

A family test set was also created using sequences of
GenBank database. These sequences. Which were not
present in the training set, were used only for the nega-
tive class. The sequences used in the positive class were
retrieved from geminivirus.org. Also a genus test set was
also created using sequences of geminivirus.org, which
were not present in the training set. Therefore, four
datasets were created. Two datasets (for training and
test) comprised of instances of two classes (gemini-
viruses and non-geminiviruses) and two resultant data-
sets (for training and test) were comprised of instances
of ten classes: begomoviruses/DNA-B, mastreviruses,
becurtoviruses, curtoviruses, turncurtoviruses, eragro-
viruses, capulaviruses, grabloviruses, alphasatellites, and
betasatellites.

After creating datasets related to genus classification,
we also built training and test sets for gene (ORF) classi-
fication. To make up the ORF training set, we selected
OREFs contained in the genomes and used in the afore-
mentioned genus training set. In the same way, the ORF
test set was composed of ORFs extracted from the same
sequences considered to build the genus test set
mentioned above. The instance classes of the resultant
datasets related to ORF classification are: betaCl,
alphaRep, Rep, TrAP, REn, Sd/p.sd, AC5, CP, pre-coat,
Reg, MP, and NSP.

As could be noted, we perform a multi-class classifica-
tion in both genus and ORF classification. Figure 1 shows
a phylogenetic tree built with the genomic sequences used
in the training sets. Notice that DNA-A and DNA-B are
from the genus Begomovirus, i.e., both DNA-A and DNA-
B sequences give rise to instances from this genus. The
number of instances in each class, composing the train-
ing/test sets for family, genus and ORF classification, is
shown in Additional file 1: Table S1. Additional file 2
shows the accession numbers of the complete genomes
used to create the datasets.

Data quality

The data available in public databases may contain
non-standardized, non-curated sequences, with possible
annotation errors, and, consequently, may be inappro-
priate to build training sets. The sequences used for the
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Fig. 1 Phylogenetic reconstruction of the Geminiviridae family and satellite DNAs. To perform the phylogenetic reconstruction of geminiviruses,
all genomic sequences belonging to the genus training set were used. Sequences were aligned using the MAFFT algorithm. The phylogenetic
reconstruction was obtained through the program FastTree version 2.1.7. The phylogenetic tree was visualized and edited using the program
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training and test sets should fit into the following
criteria, which were established and implemented in
www.geminivirus.org:

(i) The genomic sequences must start with the
conserved 5" end nucleotides (AC) of the Rep
cleavage site;

(ii) the last seven nucleotides have to be the conserved
sequence TAATATT that corresponds to the initial
nucleotides of the replication origin TAATATTAC
[43]. Notice that we standardized all genome
sequences, which are circular, cutting them between
TAATATT and AG;

(iii) the sequence length must be a value within an
interval predefined for each genus (Table 1);

(iv) the ORFs must contain a start codon as well as a
stop codon, and must not be truncated (no
additional stop codon in between);

(v)ORF annotation errors, including wrong acronym as
well as start and end positions, are corrected.

In particular, the quality and reliability of the training
instances generated from the already-mentioned taxo-
nomic reviews have a high level of confidence, because
they are manually curated by a specialized team. Such
confidence is fundamental to create good datasets.

Attribute extraction

The family Geminiviridae comprises plant virus spe-
cies distributed across nine genera. Interestingly, the
genomic organization is highly conserved among those
genera. For example, the genes Rep (coded in the
virion-complementary strand) and CP (coded in the
virion-sense strand) are common to all genera, and
their coordinates in different genomes are approxi-
mately equivalent regarding their replication origin
[2]. Despite the high conservation of the genomic

Table 1 Minimum and maximum sizes of each genus

Genus Minimum size Maximum size
Begomovirus 2411 2959
Mastrevirus 2425 2982
Eragrovirus 2845 2854
Turncurtovirus 3044 3081
Curtovirus 3011 3180
Becurtovirus 2939 2960
Capulavirus 2550 2872
Grablovirus 3105 3205
Unclassified 2483 3308
Betasatellites 731 1552
Alphasatellites 955 1579
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structure and particularities of the family Geminiviri-
dae, we selected attributes common to any viral gen-
ome so that our considerations could be possibly used
in other studies with different species involving the
same kind of classification tasks.

The attributes selected to build the family and genus
classification models include the proportions of deoxynu-
cleotides. Inspecting the complete genomic sequence, the
proportions of adenine (A), thymine (T), cytosine (C), and
guanine (G) are calculated. Next, the genomic sequence is
split into four equal (or nearly equal) regions (R1, R2, R3,
and R4) and, for each one, the proportions of A, T, C, and
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G as well as the GC content are calculated (Fig. 2a). As a
result, we consider 24 attributes for classifying family and,
genus, which are presented in Additional file 3: Table S2
and Additional file 4: Table S3, respectively.

To build the gene classification models, the attributes
were obtained from each coding DNA sequence (CDS)
and its respective amino acid sequence. First, attributes
such as ORF orientation in the genome (forward/com-
plement), CDS length, and proportion of nucleotides of
the CDS in relation to the complete genome (CDS
length/genome length) are extracted. Also, the A, T, C,
and G proportions of the CDS itself are calculated.

A Region (R4)

Features Rep
proportion_a_R4
proportion_c_R4
proportion_g R4
proportion_t_R4
proportion gc R4

Region (R3)
Features
proportion_a_R3
proportion_c_R3
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proportion_t_R3
_proportion ge R3

= pre-coat

: REn
I’ TrAP

Rep Region 1 (R1)

Region (R1)
Features
proportion_a_R1
proportion_c_R1
proportion_g R1
proportion_t_R1
proportion gc R1
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proportion_g_R2
proportion_t_R2
_proportion ge¢ R2

AC5

Whole sequence Region 2 (R2)
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Features Features

pre-coat
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proportion t R1
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proportion_Aspartic_Acid
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Length
Sense
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proportion_Methionine
proportion_Adenine
proportion_Cytosine
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proportion_nucleotides_genome
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proportion_Phenylalanine
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proportion_Tryptophan
proportion_Tyrosine
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proportion_c_R2

proportion_g_R2
_proportion t R2

Fig. 2 Attributes used for the classification tasks. a The circular genome is divided into four genomic regions of the same (or nearly same) size.
For each region, the following attributes are extracted: proportion of adenine, thymine, cytosine, guanine, and GC content. b Each ORF contained
in the genome is divided into two regions of equal (or nearly equal) size. Then, a series of attributes concerning the constituent nucleotides and
amino acids of the translated sequence are considered in these regions and the whole ORF sequence
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Moreover, the CDS is split into two equal (or nearly
equal) regions and, for each of these regions, the propor-
tions of A, T, C, and G are also considered. In addition
to those attributes, the proportion of each of the 20
primary amino acids is obtained from the CDS trans-
lated sequence (Fig. 2b). Consequently, 35 attributes
(see Additional file 5: Table S4) are taken into account.

Attribute evaluation

Evaluating the attributes extracted from genomic se-
quences enables identifying which ones help differentiate
one genus from another in the classification process. In
the same way, measuring the relevance of ORF attributes
enables verifying how such attributes contribute to the
classification of genes.

Thus, in order to evaluate the importance of each attri-
bute in the training sets, two ranking methods were used:
information gain (IG) and RELIEFF [44, 45]. The 1G
method is based on the shannon entropy and is largely
used in many bioinformatics studies [46, 47]. This method
assesses the attributes by measuring the information gain
they provide in relation to the class attribute. The IG
method is defined by 1G(Attribute) = Entropy(Class) -
Entropy(Class|Attribute), where the entropy is given by -X
pilogp;, and p; is the probability of class i.

RELIEFF is an extension of RELIEF [48]. RELIEF was
coined for binary classification and builds a weight
vector (W) of length p (the number of attributes) to
represent the relevance of the attributes. This vector
starts with zeros and is updated considering the attribute
vector (X) of a random instance as well as the attribute
vectors H and M, representing the closest instance of
the same class (hit) and the closest instance of the other
class (miss), respectively, using the following update
formula:

w; = wi(x,»—h,»)z + (x,'—m])z

Therefore, differences between X and H contribute to
diminish the relevance of the attributes, while differences
between X and M contribute to augment the weight of at-
tributes. This process is repeated m times (for m sampled
instances), and the final values in W are the average of all
iterations (at the end, the values in W are divided by m).
Kononenko proposed RELIEFF to overcome some issues
of RELIEF [48]. The main improvements were that the
update step is made for all instances, not for a sample;
instead of taking only one neighbor of each class, k neigh-
bors of each class are taken into account and their contri-
bution is averaged; the algorithm adapts the calculation of
W for multiple classes.

To complement the attribute analysis, descriptive sta-
tistics and exploratory data analysis were performed.
Boxplots, histograms and density plots were created to
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visualize the distribution of attribute values in each class
(Additional file 6).

Defining candidate ORFs

To predict genes using ML algorithms, we need first to
extract candidate ORFs from the input sequence. To this
end, we developed an algorithm based on a greedy ap-
proach implemented as part of the F2 method, hereby
designated Viaduc de Millau (VM) (Fig. 3). Initially, the
algorithm identifies all start codons [ATG (5" — 3") and
CAT (3" — 5')] and the reading phase in the sense or
anti-sense sequence. In the same way, all stop codons
[TAA, TAG, TGA (5" — 3’) and TTA, CTA, TCA
(3" — 57)] are located. In addition, our procedure deter-
mines the coordinates where the start codon and stop
codon are located in the genome. Each start codon of
the sequence in a given sense is paired with stop codons
in the same sense. Next, two steps are performed to
check some requirements concerning the consistency of
each possible ORF (in 5" — 3" or 3" — 5'): (i) whether
the sequence is in frame; and (ii) whether the translated
amino acid sequence is not truncated, and has size
greater or equal to 33 amino acids.

However, genes that code different splicing forms in
the 3' — 5 orientation of genomic sequences of maize
streak virus (MSV) have been reported in the family
Geminiviridae [49]. In order to find such genes, an algo-
rithm different from previously proposed procedures
was performed. To find these ORFs, basic rules of the
biological process of mRNA excision were employed in
order to precisely identify splicing regions [50]. In this
approach, the start and stop codons may or may not be
in the same reading phase in the 3" — 5’ sense. After
obtaining sequences of possible ORFs in 3" — 5" con-
taining start and stop codons in equal or different sense,
the following steps are applied to check some basic re-
quirements as well as typical characteristics of ORFs
with introns in genimiviruses: (i) all stop codons in the
3" — 5’ sense are inspected to verify whether their posi-
tions are greater than the position of the respective start
codons; (ii) the existence of excision sites (CT and AC)
is checked; (iii) each candidate CT excision site is paired
with all possible AC sites; (iv) the sizes of the two exons
(exon 1: minimum 204 nt and exon 2: minimum 148 nt)
and the intron (minimum 67 nt, maximum 102 nt) are
checked; (v) it is inspected whether the amount of py-
rimidines is greater than the amount of purines at 50 pb
upstream of the AC excision sites; (vi) the minimum
length (1000 nt) of the ORF is verified and whether the
sequences are in the correct reading phase; (vii) the re-
verse complement of the sequence is obtained, the can-
didate CDS is translated, and it is verified if it is not
truncated. The restrictions to exon, intron, and sequence
sizes were determined in view of the structure of the
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Fig. 3 Schematic representation of the VM Algorithm. Initially, the user submits a putative genomic sequence (a). Then, the algorithm scans the
full-length sequence identifying all initiation codons [ATG (5" — 3') and CAT (3" — 5')], which are highlighted in blue boxes and odd numbers,
and stop codons [TAA, TAG, TGA (5" — 3') and TTA, CTA, TCA (3' — 5], denoted in red and identified by even numbers. The initiation and stop
codons are clustered separately and organized according to their numbering scheme (b, e, c). Each initiation codon is tested with all stop codons
to verify whether each pair can form a full-length ORF (d). All possible splicing sites GT and AG are located in the ORF (highlighted in green).
Filters are applied to evaluate the consistency of candidate ORFs and to certify that they are not truncated (e)

genes of this family, particularly Mastrevirus, which has
an intron in the gene C1:C2 [49].

Choosing the machine learning algorithm

The Fangorn Forest method embeds two ML models
built with the previously described training sets. The
genus model classifies complete genomes of the nine
genera in the family Geminiviridae and related satellite
DNAs, using 24 attributes. The ORF model was trained
to classify genes of all the above types of genomes, using
35 attributes.

In this study, three ML algorithms were tested in
order to select the one that suits the classification tasks:
Sequential Minimal Optimization (SMO), Random For-
est (RF), and Multilayer Perceptron (MLP). Those algo-
rithms are implemented in the suite Weka v3.8.1 [51],
whose API is used in our system. The experiments per-
formed with those methods employed the Weka API
using programs in the Java programming language.

The SMO algorithm is a largely used method to solve
the quadratic programming problem upon which the
SVM approach is based to find the maximum-margin
hyperplane for separating two classes [52]. The RF algo-
rithm is a classification method based on decision trees,

which is able to perform regression and classification. The
classification of a new instance occurs by the classification
of multiple trees, resulting in a consensus of those classifi-
cations through a voting procedure (ensemble) [53].

The MLP algorithm is a type of neural network that is
widely used for its high predictive power in non-linear
systems. Several studies report the benefits of neural net-
works compared to traditional statistical modeling tech-
niques [54]. MLP features three types of artificial neuron
layers: an input layer, one or more hidden (or intermedi-
ate) layers, and an output layer. Each neuron in a layer
may only connect to neurons in the subsequent layer (feed-
forward connections). Those connections have weights
(calculated in the training procedure) that define how the
input data values will be processed to generate the final
output. Backpropagation is the most common learning
(weight adjustment) method of MLPs [54].

Those ML algorithms were run with the Weka de-
fault parameters. The generality of the resulting
models was evaluated using three different techniques:
(i) the use of a completely independent test set, (ii)
10-fold cross validation, and (iii) leave-one-out (which
is an n-fold cross validation, where # is the number of
instances in the training set) [55, 56]. For each test,



Silva et al. BMC Bioinformatics (2017) 18:431

the following measures were obtained for evaluating
the model performance: accuracy, precision, recall, F-
measure, MCC (Matthews correlation coefficient) [57]
(Additional file 7: Equation S1), and AUC [58]. After
performing all tests, the F-measure (harmonic mean of
precision and recall), MCC and AUC were analyzed to
support our choice for the ML algorithm to be in-
cluded in our system.

Fangorn Forest method

The Fangorn Forest method is composed of four funda-
mental parts: the family ML model, genus ML model,
the VM algorithm, and the ORF ML model, as illustrated
in Fig. 4. The family model classifies a complete genome
as belonging to the Geminiviridae family (Fig. 4a). The
genus model classifies a complete genome among eight
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genera of the family Geminiviridae as well as related sat-
ellite DNAs (alpha or beta satellite) (Fig. 4b). For gene
prediction, the VM algorithm is first used to select can-
didate ORFs contained in the input genome, and, next,
the ORF model classifies them within one of the classes:
pre-coat, Reg, CP, AC5, REn, TrAP, Rep, Sd/p.sd, NSP,
MP, alphaRep, and betaCl. Once those classifiers are
executed, their results are combined to provide an inter-
active visualization of the genomic organization, simi-
larly to the structures suggested by Varsani et al. [2].
Notice that the VM algorithm is not infallible, i.e., a
spurious ORF might be given as input to the ORF
model. F2 detects such cases by analyzing the probability
distribution, across the twelve classes, yielded by the
ORF model. If all probabilities are low (less than a pre-
defined threshold — default: 0.8), then the putative ORF
is marked as unknown (gray circle in Fig. 4f and gray

Complete genome

~
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ML model
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ATG TAG
Genus D or
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F l ] ATG GU AG TAG
. A ) l LT~ . ’ ' . \ )
Candidate L Candidate ORFs donor site branch-point  “acceptor site
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- =
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Fig. 4 Flowchart of the Fangorn Forest method. First, the complete genome is given as input to the family classification model (a). If it is
classified as a geminivirus the sequence is given as input for the genus classification model (b) and to the VM algorithm (c). This algorithm
selects putative genes (ORFs) (d). These candidates are then given as input to the ORF classification model (e). Finally, the output of the genus
model (f) and the output of the ORF model (g) are combined so that the virus genomic organization can be visualized (h). Additional analysis
may be optionally performed (i). Based on the class determined by the genus model, a BLAST search with specific sequences may be performed.
Furthermore, species demarcation analyses (SDT) and phylogenetic analyses may be carried out. If in the step A, the sequence is classified as non-
geminivirus or if the replication origin is missing, the genomic sequence is given as input for the VM (j) algorithm. The result of the prediction (I)
is presented in a table (m)
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piece in Fig. 4g). DNA sequence classified as belonging
to the family Geminiviridae is verified by a filter for the
existence of the replication origin of geminivirus, before
being fed to the second model composed of 10 classes
(Fig. 4b). If the origin of replication is not found, the
sequence is not submitted to the genus and gene classifi-
cation model but is submitted to the VM algorithm to
predict ORFs and other analysis tools (Fig. 4j). The same
procedures are taken for a genomic sequence classi-
fied as a non-geminivirus sequence in the first model
(Fig. 4j). If a totally unraleted genome is submitted to
the method, it will be classified as non-geminivirus.

Optionally, F2 allows additional analyses using the
complete genomic sequence: (i) BLASTn with e-value
1.0E107°, aiming to identify the closest species; (ii)
phylogenetic reconstruction (BLASTn with e-value
1.0E107°, sequence alignment with Muscle, tree build-
ing with FastTree [59], and phytools package for tree
visualization [60]); and (iii) species demarcation using
the SDT software.

Results and discussion

The number of scientific studies on the family Gemini-
viridae has significantly increased in the last ten years
(geminivirus.org:8080/geminivirusdw/statistics.jsp). The
broad diversity of species, the large number of complete
sequences, and the discovery of new geminiviruses have
increased the complexity in determining the nomencla-
ture and providing the taxonomic classification of gemini-
viruses [3, 30-32, 61-63]. Another issue in the family
Geminiviridae concerns some particular genes in some
species of the genus Mastrevirus, post-transcriptional
changes may occur in primary gene transcripts, such as
for MSV, whose genome holds gene C1:C2 [49]. Post-
transcriptional processing of genes is common in eukary-
otes and rare in prokaryotes. It occurs through a series of
reactions catalyzed by the host spliceosome or self-
splicing mechanisms [64]. The traditional tools to predict
OREFs, such as ORF Finder, have not been adapted for the
possibility of splicing. Other consolidated tools, such as
AUGUSTUS, Geneid (both adapted for Eukaryote) and
Prodigal (adapted for Prokaryotes), are still limited to
identify all ORFs encoded by a given genome sequence of
geminivirus species. These tools consider common fea-
tures for organisms that have larger genomes with more
complex promoters.

To mitigate all these issues, the present study devel-
oped the family and genus classification model along
with the VM algorithm, for ORF extraction, associated
with an ORF classification model so that a geminivirus
genome sequence could be classified into one of genera
in the Geminiviridae family, and the genes in this se-
quence could be easily identified. The results to validate
our method are presented below. Notice that we do not

Page 9 of 14

provide here a comparison between methods, as, to our
knowledge, there is no known approach, with similar
intent, proposed specifically to geminiviruses, and that
works in an ab initio manner (i.e., only the input se-
quence itself is analyzed). Thus, no homology analysis
procedure, which is the usual approach in general, is
used in our case.

Attribute analysis results
Additional file 3: Tables S2, Additional file 4: Table S3
and Additional file 5: Table S4 show the results of the
attribute analysis using IG and RELIEFF. Both methods
agreed on the relevance of some top and low-ranked
attributes, although the evaluation of many others attri-
butes presented highly dissimilar rank positions compar-
ing the outputs of those algorithms. Most importantly,
none of the attributes presented null relevance in both
ranks. In fact, we tried to remove some low-ranked attri-
butes for all processes, family, genus and ORF model
training. It turns out that all attempts to eliminate any
of the attributes caused a decrease in performance of the
resultant models

The relevance of all proposed attributes for building
both models was corroborated by histograms, density
plots and boxplots. An example is provided in Fig. 5 for
the attribute ‘length’ used in ORF classification. The
histogram and density plot demonstrate diverse distribu-
tions of that attribute across the classes. Additionally,
the boxplot shows very distinct means and standard
deviations of the same attribute when the classes are
compared. Additional file 6 shows these plots for all at-
tributes in both training sets (genus and ORF). The same
conclusions about the distribution diversity across the
classes can be drawn for the other attributes in both
classification tasks. Based on these analyses, we decided
to keep all proposed attributes in the training sets used
to construct the F2 models.

Performance of the ML models

Tables 2, 3 and 4 show the performance of the models
for family, genus and OREF classification, which were built
with MLP, SMO, and REF, using the default parameters of
Weka (see Additional file 8: Table S5 for more details). It
can be seen that MLP and RF are superior than SMO for
genus classification. For ORF classification, on the other
hand, all methods performed well. Inspecting the F-meas-
ure, it is difficult to choose between MLP and RF. MLP
was slightly better for genus classification, while RF pre-
sented slightly superior values for ORF classification.
However, based on the results shown in Tables 2, 3 and 4,
we chose RF as the classifier for both genus and ORF for
two reasons: (i) RF presented the greatest AUC value in all
tests for both classification tasks, which means more
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Table 2 Performance of the family classification model using default parameters of Weka
Type of evaluation ML algorithm Weighted average among all classes
Accuracy Precision Recall F-Measure MCC AUC
Using a test set MLP 0.9444 0.946 0.944 0.944 0.891 0.969
SMO 0.8107 0815 0811 0.810 0625 0.810
RF 0.9542 0.955 0.954 0.954 0.909 0.988
10-fold cross validation MLP 0.9369 0.937 0.937 0.937 0.871 0.972
SMO 0.8568 0.861 0.857 0.855 0.709 0.844
RF 0.9601 0.960 0.960 0.960 0919 0.992
Leave-one-out MLP 0.944 0.944 0.944 0.944 0.886 0.975
SMO 85.597 0.860 0.856 0.854 0.707 0.843
RF 96.228 0.963 0.962 0.962 0.923 0.992
Mean performance MLP 0.9420 0.9430 0.9417 0.9417 0.8843 0.9700
SMO 0.8411 0.8433 0.8413 0.8339 0.6803 0.8323
RF 0.9588 0.9533 0.9586 0.9586 0917 0.9906
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Table 3 Performance of the genus classification model using default parameters of Weka

Type of evaluation ML Weighted average among all classes
algorithm Accuracy Precision Recall F-Measure MCC AUC
Using a test set MLP 0.941 0.963 0.941 0951 0.8940 0971
SMO 0.835 0.865 0.835 0.795 0.6340 0816
RF 0934 0941 0.934 0.936 0.8750 0.988
10-fold cross validation MLP 0.970 0.970 0.971 0.970 0.9610 0.991
SMO 0.920 0.901 0.920 0.906 0.8850 0.962
RF 0.966 0.966 0.966 0.965 09510 0.997
Leave-one-out MLP 0,971 0,971 0972 0,960 0.9920 0.995
SMO 0.944 0.938 0.945 0.939 0.8810 0.946
RF 0.991 0991 0.991 0.991 0.9550 0.999
Mean performance MLP 0.966 0.974 0.967 0.970 0.9490 0.986
SMO 0.900 0.901 0.900 0.880 0.8800 0.908
RF 0.964 0.966 0.964 0.964 0.9238 0.995

coherent output probabilities; and (ii) the training time for
RF is much shorter compared with the other methods.

Most importantly, RF demonstrated a very high pre-
diction power. For the classification model of the family
Geminividae, the RF algorithm achieves mean perform-
ance of 0.9588. 0.9533, 0.9586, 0.9586, 0.917, 0.9906 of
accuracy, precision, recall, F-measure, MCC and AUC,
respectively. The mean performance of RF for genus
classification was 0.964, 0.966. 0.964, 0.964, 0.923, 0.995
of accuracy, precision, recall, F-measure, MCC and
AUC, respectively. For ORF classification, RF achieved
the mean values 0.977, 0.978, 0.978, 0.978, 0.975, 0.997
of accuracy, precision, recall, F-measure, MCC and
AUC, respectively.

To evaluate the overall pipeline, a set of sequences
of plant viruses, sequences from the Circoviridae

Family (circular single-stranded DNA animal virus)
and artificially generated sequences were submitted
manually to the web interface of the pipeline method.
The method was adjusted with the threshold of 0.5
(default) for family and ORF classifications. In this
test, F2 achieved accuracy, precision, recall and F-
Measure of 0.9343, 0.9343, 0.9343, and 0.9343, re-
spectively, for the correct identification of genomes of
non-geminiviruses or geminiviruses and their genus
(Additional file 9). In addition, a partial begomovirus
sequence (EF591125-begomovirus), which does not
encode a protein, was not classified as geminivirus.
Likewise, a defective KT099181 sequence of betasatel-
lites was not cataloged as a geminivirus-related DNA
satellite. These examples demonstrated that defective
begomovirus genomes, which did not display the

Table 4 Performance of the gene classification model using default parameters of Weka

Type of evaluation ML algorithm Weighted average among all classes
Accuracy Precision Recall F-Measure MCC AUC
Using a test set MLP 0972 0973 0973 0972 0.968 0.985
SMO 0976 0977 0976 0976 0973 0.995
RF 0.981 0.982 0.982 0.982 0.979 0.998
10-fold cross validation MLP 0.970 0.971 0.971 0.971 0.967 0.994
SMO 0972 0973 0973 0973 0.969 0.994
RF 0.976 0.977 0977 0.977 0.974 0.997
Leave-one-out MLP 0.970 0.970 0.970 0.970 0.966 0.994
SMO 09727 0973 0973 0973 0.969 0.994
RF 0.9759 0.976 0.976 0.976 0.973 0.997
Mean performance MLP 0.9707 09713 09713 0.9710 0.9670 0.9910
SMO 09736 09743 0.9740 0.9740 09703 0.9943
RF 09776 0.9783 0.9783 0.9783 0.9753 0.9973




Silva et al. BMC Bioinformatics (2017) 18:431

genomic structure of geminivirus were not recognized
as geminiviruses.

Some geminivirus genomes exhibit considerable simi-
larity with the genomic structure of different families of
ssDNA viruses (i.e. circoviruses and parvoviruses)
(Additional file 9). Thus, genomic sequences of Family
Circovidae and Parvoviridae were confronted to F2 and
three of 20 sequences were classified as geminiviruses
with low probability. Furthermore, the predicted ORFs
were not classified as geminivirus ORFs within the estab-
lished limit as default. Random sequences with gemini-
virus origin of replication were created and compared
against the F2 method. Neither of these sequences were
classified as geminiviruses nor the predicted ORFs were
classified as geminiviral ORFs.

In addition to predicting family and gender, the F2
method can predict ORFs and classify sequences of
geminivirus-specific ORFs (genes). Some species encode
two to seven genes only in the component A. Most
sequences are short and important to complete the in-
fectious cycle of the virus. Like the ORF finder, some
other tools can identify ORFs; however, they did not
identify introns and hence they fail to annotate some
genes. The AUGUSTUS tool is widely consolidated and
widely used in genome projects to perform a prediction
of eukaryotic genes. We confronted AUGUSTUS and
OREF finder by performing a gene prediction for the most
common begomovirus sequences (AF416742, AF448058,
AF241479, AF126406, DQ026296). For each of these se-
quences, the AUGUSTUS algorithm only identified two
OREFs, whereas these genomes encode six to seven genes.
Mastervirus sequences (KY618115, KF806701, KJ187748,
KC172663, HQ113104) were also used, however, few
genes and no introns were identified. The ORF finder
identified almost all geminivirus genes, except the ones
with introns. The methodology proposed by the F2
method can complement these tools, as it is efficient to
annotate all geminivirus genes.

Conclusion

Geminiviridae is an important plant virus family, as it
represents a serious threat to agriculture and food secur-
ity. Identifying genera of this family requires caution and
has become a challenge due to a large number of se-
quences available in databases. Moreover, advanced
knowledge in taxonomy and bioinformatics analyses is
currently required.

As a result of this research, a new method based on ma-
chine learning techniques, called Fangorn Forest, is pro-
posed to automatize the identification of genera and genes
of the family Geminiviridae. This method is composed of
four fundamental parts. The family and genus classification
module is able to classify a complete genome within one of
eight genera of the family Geminiviridae or associated
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satellite DNAs (alpha or beta satellite). Another important
component is the algorithm for ORF identification, called
here Viaduc de Millau (VM), created for the specific pecu-
liarities of the family Geminiviridae, which are not covered
by other general-purpose ORF predictors, such as ORF
finder. VM is used in conjunction with the third important
part of our system. This is the ORF classification procedure
that classifies the ORFs extracted by VM according to the
typical gene types encountered in geminiviruses. Both clas-
sifiers, for genus and OREF, are highly accurate, as could be
seen in the presented results.

It is also worth mentioning the additional stages that
can be performed with the input sequence. Our system
may optionally use the SDT tool for species-demarcation,
and perform phylogenetic analyses, which greatly facilitate
the study under consideration. To this purpose, F2 is
adapted to act autonomously based on the genus classifi-
cation, whose result redirects the analysis to specific data-
bases for the identified genus, so that an appropriate set of
sequences can be used to perform the analyses.

We stress the importance of automatizing genus and
OREF classification, with high accuracy, with a special focus
on geminiviruses, resulting in a powerful customized sys-
tem for this type of virus that causes expressive economic
impacts. The method is freely accessible at http://gemini-
virus.org:8080/geminivirusdw/discoveryGeminivirus.jsp.

Additional files

Additional file 1: Table S1. Number of instances (sequences) of
each family, genus, and respective ORFs, contained in the datasets.
(DOC 78 kb)

Additional file 2: This file presents the accession numbers of the
complete genomic sequences that make up the training and test sets.
(XLS 1650 kb)

Additional file 3: Table S2. The IG, RELIEFF ranks of attributes in the
family training set. Attributes are sorted by the IG rank. (DOC 53 kb)

Additional file 4: Table S3. The IG, RELIEFF ranks of attributes in the
genus training set. Attributes are sorted by the IG rank. (DOC 52 kb)

Additional file 5: Table S4. The IG, RELIEFF ranks of attributes in the
ORF training set. Attributes are sorted by the IG rank. (DOC 62 kb)

Additional file 6: This file shows plots (histogram, density and boxplot)
related to the attributes of the ORF and genus training sets.
(PDF 8536 kb)

Additional file 7: Equations S1. Model assessment measures.
(DOCX 16 kb)

Additional file 8: Table S5. Performance results of the tests (performed
with the Weka) for the models of family, genus and gene classification.
(DOC 147 kb)

Additional file 9: This file presents the pipeline evaluation with
geminiviruses sequences, plant viruses, circoviruses and fake sequences.
(XLS 44 kb)
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