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Abstract

Background: Computational fusion approaches to drug-target interaction (DTI) prediction, capable of utilizing
multiple sources of background knowledge, were reported to achieve superior predictive performance in multiple
studies. Other studies showed that specificities of the DTI task, such as weighting the observations and focusing the
side information are also vital for reaching top performance.

Method: We present Variational Bayesian Multiple Kernel Logistic Matrix Factorization (VB-MK-LMF), which unifies the
advantages of (1) multiple kernel learning, (2) weighted observations, (3) graph Laplacian regularization, and (4)
explicit modeling of probabilities of binary drug-target interactions.

Results: VB-MK-LMF achieves significantly better predictive performance in standard benchmarks compared to
state-of-the-art methods, which can be traced back to multiple factors. The systematic evaluation of the effect of
multiple kernels confirm their benefits, but also highlights the limitations of linear kernel combinations, already
recognized in other fields. The analysis of the effect of prior kernels using varying sample sizes sheds light on the
balance of data and knowledge in DTI tasks and on the rate at which the effect of priors vanishes. This also shows the
existence of “small sample size” regions where using side information offers significant gains. Alongside favorable
predictive performance, a notable property of MF methods is that they provide a unified space for drugs and targets
using latent representations. Compared to earlier studies, the dimensionality of this space proved to be surprisingly
low, which makes the latent representations constructed by VB-ML-LMF especially well-suited for visual analytics. The
probabilistic nature of the predictions allows the calculation of the expected values of hits in functionally relevant sets,
which we demonstrate by predicting drug promiscuity. The variational Bayesian approximation is also implemented
for general purpose graphics processing units yielding significantly improved computational time.

Conclusion: In standard benchmarks, VB-MK-LMF shows significantly improved predictive performance in a wide
range of settings. Beyond these benchmarks, another contribution of our work is highlighting and providing estimates
for further pharmaceutically relevant quantities, such as promiscuity, druggability and total number of interactions.
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Background
Drug-target interactions (DTI) or compound-protein
interactions (CPIs) have become a focal point in chemo-
and bioinformatics. There are many factors behind this
trend, such as the direct, quantitative nature of bioactiv-
ity data [1], its unprecedented amount, public availability
[2, 3], and variety including also phenotypic and content-
rich assays and screenings [4]. Further factors are the
semantic, linked open nature of the data [5, 6], collabo-
rative initiatives in the pharmaceutical policy [1] and the
construction of DTI benchmarks [7–13].
An additional factor is the varying granularity and mul-

tiple facets of the DTI task: it was already attacked in
the 90’s in single target scenarios, e.g. by using neural
networks of that time [14] and subsequently by kernel
methods [15, 16]. A series of similarity-based meth-
ods were also developed for virtual screening [17–19];
in the early 2000’s molecular docking became popular
[20, 21]; from the late 2000’s matrix factorization meth-
ods were developed [7, 22, 23]. As the importance of data
and knowledge integration in drug discovery was further
emphasized [1, 24–26], the incorporation of prior knowl-
edge in DTI became mainstream and indeed improved
predictive performance [23, 27–29].
Computational data and knowledge fusion approaches

in the DTI problem seem to be especially relevant, as the
growth of DTI datasets is limited by experimental and
publication time and cost, while the cross-linked reper-
toire of side information expands at an enormous rate.
This grand pool of information complementing the DTI
data and the full scope of the DTI fusion challenge is
best illustrated by the drug repositioning problem [30, 31].
In repositioning, i.e. in the finding of a novel indication
for an already marketed drug, extra information sources
could also be used, such as off-label drug usage pat-
terns, patient-reported adverse-effects and official side-
effects [32]. Notably, this information pool can be linked
back to early stage compound discovery [33].
In this paper we investigate the multiple kernel-based

fusion approach to the DTI task from a computational
fusion perspective, by adopting widely used benchmark
datasets, implementations and evaluation methodologies
from Yamanishi et al. [7], Gönen [22], Pahikkala et al. [8]
and Liu et al. [34]. Our contributions are as follows:

1. VB-MK-LMF: We present a Bayesian matrix
factorization method with a novel variational
Bayesian approximation, which unifies multiple
kernel learning, importance weight for (positive)
observations, network-based regularization and
explicit modeling of probabilities of drug-target
interactions.

2. Effect of multiple kernels: We report the results of a
comparison against three leading solutions using two

benchmark datasets, in which VB-MK-LMF achieved
significantly better performance in most settings. We
systematically investigate factors behind its
performance, such as the type of the kernels, the role
of neighborhood restriction and Bayesian averaging.
Finally, we evaluate the effect of priors using varying
sample sizes highlighting the regions where using
side-information improves predictive performance.

3. Posteriors for promiscuity and druggability: We show
that probabilistic predictions from VB-MK-LMF can
be used to quantify the expected values for
promiscuity or the number of hits in a DTI task.

4. Dimensionality of the unified “pharmacological”
space: We investigate the learned unified latent
representations of drugs and targets, and contrary to
many studies we argue that drastically smaller
dimensions are sufficient. We discuss the possibility
that this low dimension, around 10, could be utilized
in visual analytics and exploratory data analysis.

5. Accessibility: We report the adaptation of the
developed variational Bayesian approximation to
general purpose graphics processing units
(GP-GPU). Evaluations show that 30× speed-up can
be achieved using a standard GP-GPU environment.
To support the development of current DTI
benchmarks towards “computational DTI fusion”, we
release the applied kernels, code and parameter
settings for academic use.

Figure 1 shows the overview of Variational Bayesian
Multiple Kernel Logistic Matrix Factorization (VB-MK-
LMF).

Related works
To give an overview about related, earlier works
[7, 27–29, 35–54], we summarize the main properties
of their applied datasets, side information, methods and
evaluation methodologies in Additional file 1).

DTI data
Drug-target interaction data has become a fundamen-
tal resource in pharmaceutical research, which can be
attributed to its public availability in an open linked for-
mat, see e.g. [1, 5, 6, 55–58]. The relative objectivity of
interaction activities and the side information about drugs
and targets renders a unique status to the comprehen-
sive tabular DTI data, even compared to media and e-
commerce data [59], despite the issues of quality [60, 61],
duality of commercial and public repositories [62–64]
and selection bias related to the lack of negative sam-
ples [12] and promiscuity [65]. However, at present
the heterogeneous, real-valued activity data are usually
treated as binary relations, even though the use of raw
data together with information about the measurement
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Fig. 1 Overview of the VB-MK-LMF workflow. A priori information (left) are combined with DTI data through a Bayesian model (middle). Learning is
carried out using a Variational Bayesian method which approximates the latent factors and optimal kernel weights. The model provides quantitative
predictions of interaction probabilities and estimates of drug promiscuity (right). Finally, VB-MK-LMF supports the visualization and exploration of the
unified “pharmacological” space. Gray indicates functionalities which may also be utilized in the VB-MK-LMF model but not explored in this paper

context is expected in more realistic DTI prediction sce-
narios [8, 46, 52]. Another largely overlooked property of
the binary drug-target interaction data is its possibly indi-
rect nature, which influences the applicable target-target
similarities, e.g. in the indirect case protein-protein net-
works may have relevance (for the explicit treatment of
direct and indirect relations, see e.g. RBM [45]).

DTI prior knowledge
The molecular similarity property principle [66, 67], the
drug-likeliness of a compound [68, 69] and druggabil-
ity of proteins [70] are essential concepts in the broader
drug discovery context, together with molecular docking
[20, 21] and binding site, pocket predictors [71], if struc-
ture information is available. However, their use as priors
in the computational DTI task is still largely unexplored.
If the goal is the discovery of indirect drug-target interac-
tions, possibly including multiple paths, which are espe-
cially relevant in polypharmacology [72], then the use of
molecular interaction and regulatory networks alongside
protein-protein similarities is another open issue.
Chemical similarity, the most widespread source of

prior knowledge in DTI, was the basis of many “guilt-
by-association” approaches in chemo- and bioinformatics.
Earlier investigations helped to understand the use ofmul-
tiple, heterogeneous representations, similarity measures
and introduced the concept of fusion methods in ligand-
based virtual screening [17, 18, 73–75]. Beyond chemical
similarities, target-based similarities can also be used to
exceed activity cliffs [32]; moreover, side-effect based and

off-label usage based similarities can be constructed for
compounds using FDA-approved drugs as canonical bases
in a group-representation [33].
Target-target similarities are another diverse and volu-

minous source of prior information, which can be defined
using sequence similarities, commonmotifs and domains,
phylogenetic relations or shared binding sites and pock-
ets [71]. In case of indirect drug-target interactions, a
broader set of target-target similarities could be based
on relatedness in pathways, protein-protein networks and
functional annotations, e.g. from Gene Ontology [76].
We concentrate on predicting presumably direct activ-

ities in this paper, thus we demonstrate the capability of
the developedmethod and the effect multiple information
sources using multiple chemical similarities, although the
method can incorporate symmetrically multiple target-
target similarities. Furthermore, the method can also
incorporate separate prior expectations about the success
rates of drugs in a given DTI, which could be combined
with drug-likeliness [77], promiscuity prediction [78] and
decoy prediction in case of their use [79]. Symmetrically,
it can also incorporate separate prior expectations about
the success rates of targets in a given DTI, which could be
combined with druggability predictions [70, 80, 81] and
the presence of pockets [82]. For an overview of available
resources relevant for the DTI task, see e.g. [83, 84].

DTImethods
The rapid growth, especially the public availability of tab-
ular (dyadic) DTI data in the last decade caused a dramatic



Bolgár and Antal BMC Bioinformatics  (2017) 18:440 Page 4 of 18

shift of the applied statistical methods. For an overview
of classical single prediction oriented machine learning
and data mining in drug discovery, especially in DTI and
ADME predictions, see e.g. [85], for large-scale, compre-
hensive applications of DTI data, see e.g. [86]. The tabular
nature of the DTI data called for new methods not only
handling this type of data natively, but also capable of
using side information. Transfer learning and multitask
learning paradigms addressed this challenge [8, 87, 88],
but in the DTI context, two groups of methods, the
pairwise conditional methods and the matrix factoriza-
tion based generative methods proved to be particularly
successful.
Pairwise conditional approaches or pairwise kernel

methods flatten the dyadic structure of the DTI data
and use drug and target descriptors, optionally even
explanatory descriptors about the drug-target relations
to predict interaction properties of drug-target pairs (for
the assumptions behind the conditional approach, see
e.g. [89], for its early DTI application, see e.g. [90]).
Classification and regression methods, such as MLPs,
decision trees and SVMs remain directly applicable in
this conditional approach (not modeling the distribution
of the drug-target pairs), however, the high number of
drug-target pairs is challenging for kernel based meth-
ods [51, 91], but recent developments in deep learning
show promising results [92]. Using multiple representa-
tions for drugs and targets is directly possible in this
pairwise approach, but the construction of an aggregate
pair-pair (interaction-interaction) similarity or an effi-
cient set of pair-pair similarities from drug-drug and
target-target similarities is an open problem. In the case
of single drug-drug and target-target similarities, the
Kroneckerian combination was proposed in the work of
van Laarhooven [91] with corresponding computational
simplifications to maintain scalability. Additionally, ker-
nel techniques were extended to use multiple kernels,
which are potentially derived from heterogeneous repre-
sentations and similarities [51]. Recent extensions include
non-linear kernel fusion in the RLS-KF system [50] and
using boosting to learn from unscreened controls [54].
Matrix factorization (MF) methods differ from pair-

wise approaches in multiple properties crucial in the DTI
task. The central operation of these methods is the con-
struction of a joint space with latent factors for drugs
and targets and modeling their interactions based on
the inner product of the respective vectorial represen-
tations. Contrary, pairwise approaches, such as kernel
methods or deep learning cannot directly exploit the tab-
ular prior constraint of the data. The MF approach also
allows the direct incorporation of drug-drug similari-
ties and target-target similarities. Additionally, the low
dimensionality of the latent space supports data visual-
ization, although its interpretation is still in its infancy.

Finally, probabilistic MF methods construct a distribu-
tion over the latent representations of drugs and tar-
gets, which in fact means that they are full-fledged
generative models.
Matrix factorization methods were adopted early in

gene expression data analysis [93, 94]. They were used for
dimensionality reduction and the construction of a unified
space for ligands and receptors [95], applied in biomedical
text-mining and [96] and chemogenomics [97]. Later in
the 2000’s media and e-commerce recommendation appli-
cations dominated the research of matrix factorization
methods [98] and many developments were motivated
and reported in these contexts, such as solutions for new
items without interactions, selection bias, model regular-
ization, automated parameter selection and incorporation
of side information from multiple sources. An early work
from Srebro et al. addressed the problems of using weights
to represent importance or trust in the observations and
the use of logistic regression as a non-linear transforma-
tion to predict probabilities of binary observations [99]. A
special weighting of observations compared to unknowns
were investigated in [100]. Salakhutdinov introduced
Bayesian matrix factorization, which addressed regular-
ization and automated parameter selection by Bayesian
model averaging, also indicating the principled and
flexible options for prior incorporation [101]. Severinski
demonstrated the advantages of the full Bayesian
approach versus aMaximum a Posteriori based alternative
in this context [102]. Zhou introduced Gaussian process
priors over the latent dimensions to enforce two kernels
over row and column items [103]. Lobato et al. reported
a variational Bayesian approach for logistic matrix
factorization [104].
In the DTI context, an early kernel regression-based

method (KRM) was reported in [7], and emphasized
the advantages of a unified “pharmacological space”.
Gönen introduced a kernelized Bayesian matrix factor-
ization (KBMF) [22], which applies kernel-based averag-
ing over the latent vectorial representations of rows and
columns. The paper also introduced an efficient varia-
tional Bayesian approximation and indicated the inter-
pretability of the latent space. Zheng et al. proposed
a non-probabilistic multiple kernel learning approach,
which achieved superior performance [23]. Multiple ker-
nel learning was also realized in KBMF [27] and was also
extended towards regression [105]. Special non-missing-
at-random DTI data models were proposed in [52],
which applied Gaussian priors to incorporate multi-
ple kernels and used Gibbs sampling to approximate
the posteriors. In an integrative work, Liu et al. proposed
the combination of special neighborhood restricted ker-
nels, network-based regularization, importance weights
for the observations and logistic link functions in a non-
Bayesian framework [48]. A recent extension applied a
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nonlinear kernel diffusion technique to boost relevant,
complementary information in similarity matrices [49].

DTI benchmarks
The most widely used DTI benchmark from Yamanishi
et al. [7] defined DTI prediction as a binary prediction
problem with a single source of drug-drug and a target-
target similarity, which induced the development of variety of
methods and datasets (see Additional file 1). These datasets
are still in the range of 1000 × 1000 and contain 10k inter-
actions, but they inherit the problem of the selection bias
present in the DTI repositories [11, 12, 65, 83, 106, 107].
Pahikkala et al. stressed the importance of fully observed
bioactivity values in benchmarks [8], such as from
Davis [9], to avoid misleading results because of
selection bias, indirect interactions and the binary
nature of the interactions. Liu et al. [48] reported a
comprehensive evaluation of methods and released a
corresponding benchmark implementation, the pyDTI
package. For real, experimental evaluation of DTI meth-
ods, see e.g. [108, 109].

Methods
Our work directly builds upon Gönen’s work on kernel-based
matrix factorization using twin kernels (KBMF-
MKL), which applied variational Bayesian approxima-
tions [27]. Another direct predecessor of our work is
Liu et al’s neighborhood regularized logistic matrix
factorization [48].

Materials
To maintain consistency with earlier works, we eval-
uated the methods on the data sets provided by
Yamanishi et al. [7] and Pahikkala et al. [8]. While
the latter comes with multiple similarity matrices based
on various molecular fingerprints, the former is one-
kernel and therefore needed to be extended to properly
test the MKL performance. We used the RDKit pack-
age [110] to compute additional MACCS and Morgan
fingerprints for the molecules and used these in con-
junction with the Tanimoto and Gaussian RBF simi-
larity measures. Target similarities were obtained from
Nascimento et al. [51] which utilized sequential, GO- and
PPI-based similarities.

Probabilistic model
Let R ∈ {0, 1}I×J denote the matrix of the interactions,
where Rij = 1 indicates a known interaction between the
ith drug and jth target. In order to formulate a Bayesian
model, we put a Bernoulli distribution on each Rij with
parameter σ

(
uTi vj

)
where σ is the logistic sigmoid func-

tion and ui, vj are the ith and jth columns of the respective
factor matrices U ∈ R

L×I and V ∈ R
L×J . One can think

of ui and vj as L-dimensional latent representations of the

ith drug and jth target, and the a posteriori probability of
an interaction between them is modeled by σ

(
uTi vj

)
.

Similarly to NRLMF, we utilize an augmented version of
the Bernoulli distribution parameterized by c ≥ 1 which
assigns higher importance to observations (positive exam-
ples). NRLMF also uses a post-training weighted average
to infer interactions corresponding to empty rows and
columns in R (i.e. these would have to be estimated with-
out using any corresponding observations). We account
for them by introducing variablesmu,mv ∈ {0, 1} indicat-
ing whether the row or column is empty. In these cases,
only the side information will be used in the prediction.
The conditional on the interactions can be written as

p(R | U,V, c,mu,mv) ∝
∏

i

∏

j

[(
σ

(
uTi vj

))cRij
(1)

(
1 − σ

(
uTi vj

))1−Rij
]mu

i m
v
j
.

Specifying priors onU andV presents an opportunity to
incorporate multiple sources of side information. In par-
ticular, we can use a Gaussian distribution with a weighted
linear combination of kernel matrices Kn, n = 1, 2, . . . in
the precision matrix, which corresponds to a combined
L2-Laplacian regularization scheme [36]

p(U |αu,γ u,Ku)∝
∏

i

∏

k
exp

{

−1
2

∑

n
γ u
n Ku

n,ik ‖ui − uk‖2
}

·
∏

i
exp

{
−αu

2
‖ui‖2

}
. (2)

The prior on V can be written similarly. To automate
the learning of the optimal value of kernel weights γ u

n ,
we introduce another level of uncertainty using Gamma
priors:

p(γ u
n | a, b) = ba(γ u

n )a−1e−bγ u
n

�(a)
. (3)

Variational approximation
In the Bayesian approach, the combination of the data
R and prior knowledge through kernel matrices Kn and
hyperparameters defines the posterior

p(U,V, γ u, γ v|R,Ku
n, au, bu,Kv

n, av, bv,αu,αv, c).

In the variational setting [111], we approximate the pos-
terior with a variational distribution q(U,V, γ u, γ v). Sup-
pressing the hyperparameters for notational simplicity,
the expectation

p(R)=
∫
p(R |U,V)p(U|γu)p(V |γv)p(γu)p(γv)dUdVdγudγ v,
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can be decomposed as

ln p(R) = L(q) + KL (q || p) ,
and, since the left hand side is constant with respect to q,
maximizing the evidence lower bound L(q) with respect
to q is equivalent to minimizing the Kullback–Leibler
divergence KL (q || p) between the variational distribu-
tion and the true posterior. In the mean field variational
approach, maximization of L(q) is achieved by using a
factorized variational distribution

q
(
U,V, γ u, γ v) = q(U)q(V)q

(
γ u) q

(
γ v) .

In particular, the evidence lower bound takes the
form [112]

L(q)=
∫
q(U)q(V)q(γ u)q(γ v) ln

{
p

(
R,U,V, γ u, γ v)

q(U)q(V)q (γ u) q (γ v)

}

dUdVdγudγv.

The optimal distribution q∗(U) satisfies

ln q∗(U)=EV,γ u ,γ v
[
ln

{
p(R | U,V)p

(
U | γ u) p

(
V | γ v)p

(
γ u)p

(
γ v)}]

+ const.

which is non-conjugate due to the form of p(R | U,V)

and therefore the integral is intractable. However, by using
Taylor approximation on the symmetrized logistic func-
tion (Jaakkola’s bound [104, 113])

σ(z)≥ σ̃(z,ξ)=σ(ξ) exp
{
z − ξ

2
− 1
2ξ

(
σ(ξ)− 1

2

)
(
z2 − ξ2

)
}
,

we can lower bound p(R | U,V) at the cost of introduc-
ing local variational parameters ξij, yielding a new bound
L̃ which contains at most quadratic terms. Collecting the
terms containing U gives (see the proof in Additional
file 2):

ln q∗(U)=− 1
2
tr

(
UTQuU

)
+

∑

i
uTi

⎛

⎝
∑

j
R̂ijξ̂ijE

[
vjvTj

]
⎞

⎠ui

+
∑

i
uTi

⎛

⎝
∑

j
R′

ijE
[
vj

]
⎞

⎠

where

Qu = E [γu]
2

(
KuT1 − Ku

)
+ αu

2
I,

ξ̂ij = − 1
2ξij

(
σ(ξij) − 1

2

)
,

R̂ij = mu
i mv

j
(
(c − 1)Rij + 1

)
,

R′
ij = mu

i mv
j cRij + 1

2
R̂ij.

Since this expression is quadratic in vec(U), we conclude
that q∗ is Gaussian and the parameters can be found by
completing the square. In particular,

q∗(vec(U)) = N (vec(U) | φ,�−1)

� = Qu ⊗ I − 2 · blkdgi
⎛

⎝
∑

j
R̂ijξ̂ijE

[
vjvTj

]
⎞

⎠ ,

(4)

φ = �−1veci

⎛

⎝
∑

j
R′

ijE
[
vj

]
⎞

⎠ , (5)

where blkdgi denotes the operator creating an L · I × L ·
I block-diagonal matrix from I L × L-sized blocks. The
variational update for q(V) can be derived similarly. The
most computationally intensive operation is computing

E
[
vjvTj

]
= Cov(vj) + E

[
vj

]
E

[
vj

]T (6)

which requires the inversion of the precision matrix, per-
formed using blocked Cholesky decomposition.
The optimal value of the local variational parameters ξij

can be computed by writing the expectation of the joint
distribution in terms of ξ and setting its derivative to zero.
In particular,

L̃(ξ) =
∑

i

∑

j
R̂ij

(
ln σ(ξij) − ξij

2
− 1

2ξij

(
σ(ξij) − 1

2

)

×
(

ξ2ij − E
[(

uTi vj
)2]))

,

from which [104, 112]

ξ2ij = E
[(

uTi vj
)2]

=
(
E [ui]T E

[
vj

])2 +
∑

l
E [Uli]2 V

[
Vlj

] + V [Uli]E
[
Vlj

]2

+ V [Uli]V
[
Vlj

]
.

(7)

Since the model is conjugate with respect to the kernel
weights, we can use the standard update formulas for the
Gamma distribution

q∗(γ u
n ) = Gamma(γ u

n | a′, b′)

a′ = a + I2

2
(8)

b′ = b + 1
2
EU

[
∑

i

∑

k
Ku
n,ik ‖ui − uk‖2

]

= b + 1
2

∑

i

∑

k
Ku
n,ik

(
E

[
uTi ui

]
− 2E

[
uTi uk

]

+E
[
uTk uk

])
, (9)

which also requires the explicit inversion of �. Figure 2
shows the pseudocode of the algorithm.
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Fig. 2 Pseudocode of the VB-MK-LMF algorithm

Results
We present the results of a systematic comparison with
KBMF-MKL [27], NRLMF [48] and KronRLS-MKL [51]
using their provided implementations. Subsequently, our
results show the effect of prior knowledge fading with
increasing data size.

Experimental settings
Predictive performance was evaluated in a 5× 10-fold
cross-validation framework. Tomaintain consistency with
the evaluations in earlier works, we utilized the CVS1-
CVS2-CVS3 settings as presented in [48] and calculated
the average AUROC and AUPRC values in each scenario.
In particular, CVS1 corresponds to evaluating predictive
performance after randomly blinding 10% of the interac-
tions and using them as test entities. CVS2 corresponds
to random drugs (entire rows blinded) and CVS3 corre-
sponds to random targets. We used the same folds as the
PyDTI tool to maximize comparability.
In the single-kernel setting, we compared the per-

formance of the proposed method to KBMF, NRLMF
and KronRLS. The optimal parameters for NRLMF were
obtained from the original publication [48]. KBMF and
KronRLS were parameterized using a grid search method.
VB-MK-LMF was used with 3 neighbors in each kernel,
αu = αv = 0.1, au = av = 1, bu = bv = 103 and
c = 10. The number of latent factors was set to L = 10
in the Nuclear Receptor dataset and L = 15 in the oth-
ers, and a more detailed investigation of this parameter
was also conducted. The number of iterations was chosen
manually as 20 since the variational parameters usually
converged between 20 − 50 iterations.
In the multiple-kernel setting, we compared the per-

formance of the proposed method to KBMF-MKL and
KronRLS-MKL using MACCS and Morgan fingerprints
with RBF and Tanimoto similarities. Target kernels pro-
vided by KronRLS-MKL did not improve the results in

either case, thus only the ones computed by Yamanishi et
al. were utilized.We also investigated the weights assigned
to the kernels and tested robustness by introducing ker-
nels with random values.

Systematic evaluation
Single-kernel results are shown in Table 1. In most cases,
VB-MK-LMF significantly outperforms NRLMF and one-
kernel KBMF in terms of AUROC and AUPRC according
to a pairwise t-test. Overall, the improvement is more
modest on the Enzyme dataset, although still significant
in some cases. This can be attributed to the fact that this
dataset is by far the largest, which can mitigate the bene-
fits of Bayesian model averaging and side information. On
average, VB-MK-LMF yields 4.7% higher AUPRC values
in the pairwise cross-validation setting than the second
best method. In the drug and target settings, this is 2% and
7.6%, respectively. The lower AUROC and AUPRC values
in these scenarios are explained by the lack of observations
for the test drugs or targets in the training set, resulting in
a harder task than in the pairwise scenario.
Following earlier investigations, we examined the num-

ber of latent factors, which has a crucial role from compu-
tational, statistical and interpretational aspects. Contrary
to earlier works [44], which recommend 50 − 100 as the
number of latent factors, we found that these values do
not yield better results; in fact, the AUPRC values quickly
become saturated. Conceptually, it is unclear what is to
be gained going beyond the rank of the original matrix,
which corresponds to perfect factorization with respect
to the Frobenius norm when using SVD, and is also
known to lead to serious overfitting in unregularized cases
[99, 101]. Although overfitting is usually less of an issue
with variational Bayesian approximations, a large num-
ber of latent factors significantly increases computational
time. Figure 3 depicts the AUPRC values on the smaller
datasets with varying number of latent factors. The
Enzyme and Kinase datasets were not included in this
experiment due to the rapidly increasing runtime.
Multi-kernel AUPRC values are shown in Table 2.

Compared to the previous Table, it is clear that both
VB-MK-LMF and KBMF benefits from using multiple
kernels. Moreover, there is also an improvement in pre-
dictive performance when one combines instances of the
same kernel but with different neighbor truncation values.
However, advantages of using both of these combination
schemes simultaneously are unclear as the results usually
do not improve or even get worse (except for the Kinase
dataset). This is a known property of linear kernel com-
binations, i.e. using large linear kernel combinations may
not improve predictive performance beyond that of the
best individual kernels in the combination [114].
Table 3 shows the normalized kernel weights in each of

the datasets. For illustration purposes, we also included a
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Table 1 Single-kernel results on gold standard data sets (maximum values are denoted by bold face)

VB-MK-LMF NRLMF KBMF

AUROC (CV1)
Nuclear Receptor 0.957 ± 0.010 0.949 ± 0.011 0.860 ± 0.024

GPCR 0.976 ± 0.003 0.960 ± 0.004 0.911 ± 0.004

Ion Channel 0.989 ± 0.001 0.984 ± 0.002 0.941 ± 0.003

Enzyme 0.987 ± 0.001 0.976 ± 0.002 0.887 ± 0.003

Kinase 0.921 ± 0.002 0.919 ± 0.001 0.916 ± 0.001

AUPRC (CV1)
Nuclear Receptor 0.773 ± 0.030 0.723 ± 0.042 0.533 ± 0.047

GPCR 0.777 ± 0.016 0.703 ± 0.023 0.541 ± 0.012

Ion Channel 0.916 ± 0.007 0.863 ± 0.012 0.763 ± 0.009

Enzyme 0.890 ± 0.006 0.876 ± 0.007 0.656 ± 0.008

Kinase 0.850 ± 0.003 0.845 ± 0.003 0.844 ± 0.003

AUROC (CV2)
Nuclear Receptor 0.939 ± 0.021 0.896 ± 0.023 0.845 ± 0.023

GPCR 0.878 ± 0.014 0.883 ± 0.012 0.847 ± 0.018

Ion Channel 0.812 ± 0.026 0.800 ± 0.026 0.785 ± 0.021

Enzyme 0.851 ± 0.021 0.811 ± 0.024 0.718 ± 0.028

Kinase 0.894 ± 0.004 0.891 ± 0.004 0.838 ± 0.004

AUPRC (CV2)
Nuclear Receptor 0.593 ± 0.058 0.547 ± 0.053 0.447 ± 0.048

GPCR 0.368 ± 0.023 0.363 ± 0.023 0.365 ± 0.024

Ion Channel 0.345 ± 0.035 0.343 ± 0.033 0.287 ± 0.035

Enzyme 0.349 ± 0.042 0.360 ± 0.041 0.269 ± 0.037

Kinase 0.803 ± 0.009 0.797 ± 0.010 0.735 ± 0.009

AUROC (CV3)
Nuclear Receptor 0.917 ± 0.026 0.847 ± 0.029 0.735 ± 0.050

GPCR 0.941 ± 0.009 0.920 ± 0.014 0.839 ± 0.020

Ion Channel 0.966 ± 0.007 0.958 ± 0.008 0.911 ± 0.012

Enzyme 0.962 ± 0.005 0.947 ± 0.006 0.859 ± 0.012

Kinase 0.767 ± 0.018 0.763 ± 0.018 0.740 ± 0.022

AUPRC (CV3)
Nuclear Receptor 0.601 ± 0.081 0.456 ± 0.079 0.352 ± 0.070

GPCR 0.596 ± 0.040 0.553 ± 0.040 0.437 ± 0.047

Ion Channel 0.826 ± 0.021 0.788 ± 0.028 0.695 ± 0.024

Enzyme 0.794 ± 0.017 0.808 ± 0.018 0.573 ± 0.028

Kinase 0.608 ± 0.039 0.597 ± 0.038 0.594 ± 0.039

CV indicates the cross-validation setting (pairwise, drug and target, respectively). AUROC and AUPRC values were averaged over 5 × 10 runs and 95% confidence intervals
were computed. In most cases, VB-MK-LMF significantly outperforms the other methods using t-test

unit-diagonal positive definite kernel matrix with random
values. In the first four datasets, the algorithm assigned
more or less uniform weights to the real kernels and a
lower one to the random kernel. In the Kinase dataset,
the random kernel is almost zeroed out. This underlines
the validity of VB-MK-LMF’s kernel combination scheme.

Setting L to I (the rank of the kernels) yields an almost
zero weight to the random kernel, i.e. allowing larger
dimensions also allows sufficient separation of the latent
representations, which makes spotting kernels with erro-
neous values easier for the algorithm. This property might
also justify increasing the number of latent factors beyond
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Fig. 3 AUPRC values on the three smallest datasets with varying number of latent factors. The results become saturated around 10 dimensions

Table 2 Multiple Kernel AUPRC values on gold standard data sets in the pairwise cross-validation setting (maximum values are
denoted by bold face (maximum values are denoted by bold face)

Neighbors MrgRbf MrgTan McsRbf McsTan Orig All

Nuclear Receptor (KBMF-MKL: 0.566, KronRLS-MKL: 0.522)

2 0.749 0.758 0.742 0.735 0.754 0.779

3 0.744 0.771 0.761 0.734 0.773 0.775

5 0.732 0.757 0.739 0.724 0.755 0.756

2+3 0.750 0.765 0.754 0.736 0.757 0.758

2+3+5 0.760 0.765 0.740 0.738 0.764 0.760

GPCR (KBMF-MKL: 0.622, KronRLS-MKL: 0.696)

2 0.743 0.759 0.754 0.762 0.764 0.793

3 0.755 0.774 0.772 0.780 0.777 0.802

5 0.762 0.787 0.782 0.783 0.787 0.796

2+3 0.763 0.782 0.781 0.786 0.785 0.802

2+3+5 0.777 0.798 0.793 0.789 0.796 0.800

Ion Channel (KBMF-MKL: 0.826, KronRLS-MKL: 0.885)

2 0.909 0.911 0.910 0.911 0.910 0.909

3 0.911 0.914 0.915 0.914 0.912 0.916

5 0.915 0.914 0.913 0.916 0.916 0.917

2+3 0.912 0.914 0.916 0.914 0.913 0.909

2+3+5 0.912 0.915 0.915 0.915 0.916 0.906

Enzyme (KBMF-MKL: 0.704, KronRLS-MKL: 0.893)

2 0.885 0.887 0.879 0.883 0.888 0.884

3 0.885 0.890 0.885 0.882 0.890 0.895

5 0.883 0.886 0.880 0.881 0.884 0.883

2+3 0.888 0.889 0.880 0.881 0.888 0.881

2+3+5 0.887 0.889 0.881 0.878 0.888 0.875

Kinase (KBMF-MKL: 0.846, KronRLS-MKL: 0.561)

Neighbors - 2D 3D ECFP All

2 0.850 0.849 0.849 0.850

3 0.850 0.848 0.850 0.851

5 - 0.850 0.849 0.850 0.851

2+3 0.850 0.850 0.850 0.853

2+3+5 0.851 0.851 0.850 0.854

The table headers indicate the best AUPRC values obtained using the KBMF-MKL and KronRLS-MKL tools, utilizing all kernels and a grid search method for parameterization.
The table bodies show AUPRC values from the VB-MK-LMF method in a cumulative manner. In particular, rows correspond to the cut-off value of the number of closest
neighbors and the combinations of the resulting truncated kernels. Columns correspond to individual kernels. The last column was obtained by combining all kernels
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Table 3 Normalized kernel weights with an extra positive definite, unit-diagonal, random valued kernel matrix

MrgRbf MrgTan McsRbf McsTan Orig Random

Nuclear Receptor 0.175 0.176 0.175 0.175 0.175 0.123

GPCR 0.173 0.173 0.172 0.172 0.172 0.138

Ion Channel 0.176 0.176 0.176 0.176 0.176 0.120

Enzyme 0.176 0.176 0.176 0.176 0.176 0.119

- 2D 3D ECFP Random

Kinase - 0.300 0.283 0.398 0.019

The number of latent factors was not altered in this experiment. Setting the number of latent factors to I (the rank of the kernel matrix) zeroes out the weight of the random
kernel

the rank of the interaction matrix in the multi-kernel
setting.
To understand the effect of priors behind the signif-

icantly improved performance, which is especially pro-
nounced at smaller sample sizes, we investigated the
difference in AUPRC and AUROC values while using and
ignoring kernels, at varying training set sizes. The results
suggest the existence of a “small sample size” region where
using side information offer significant gains, and after
which the effect of priors gradually vanishes. Figure 4
depicts the learning curves.

Discussion
VB-MK-LMF introduces a matrix factorization model
incorporating multiple kernel learning, Laplacian regular-
ization and the explicit modeling of interaction probabil-
ities, for which a variational Bayesian inference method

is proposed. The algorithm maps each drug and target
into a joint vector space and interaction probabilities are
derived from the inner products of the latent represen-
tations. Despite the suggested applicability of the unified
“pharmacological space” [7], its semantics is still unex-
plored (for an early application in a ligand-receptor space,
see [95], for a proof-of-concept illustration, see [22]).
To facilitate a deeper understanding, we provide visual
analytics tools alongside the factorization algorithm and
allow arbitrary annotations to be mapped onto the latent
representations.
We demonstrate this on the Ion Channel dataset. Using

L = 2, the resulting latent representations can be visu-
alized in a 2D Cartesian coordinate system as shown in
Fig. 5. Drugs are colored on the basis of their respec-
tive ATC classes, where only the classes with more than
5 members were used. Targets are colored according to

Fig. 4 The effect of priors on predictive performance with varying sample sizes. The difference between the values using and not using kernels
gradually vanishes as the training size increases. 95% confidence intervals are indicated by gray ribbons
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Fig. 5 Latent representations of drugs and targets in the Ion Channel dataset using 2 latent dimensions. Drugs are colored on the basis of their
respective ATC classes and targets are colored according to their ion transporter activity as obtained from the Gene Ontology. Known interactions
are represented as edges

their ion transporter activity as obtained from the Gene
Ontology. Known interactions are represented as edges.
Even in this low-dimensional case, drugs in the same class
tend to cluster together. The only exception is the “Other
antiepileptics” class, which is easily explained by its het-
erogeneity, also indicated by the name. Targets also cluster
fairly nicely, albeit with somewhat more outliers. It can be
also observed that the targets exhibiting potassium and
sodium transporter activity are placed halfway between
the sodium and potassium groups.
Similarly, Fig. 6 depicts the joint space using a parallel

coordinates visualization with L = 10, where ion trans-
porter activity is denoted by different colors. Most of the
dimensions tend to separate at least one class from the
others and many of them seem to distinguish between
more than two classes. This indicates that the algorithm
manages to find biologically meaningful latent dimen-
sions, possibly encoding pharmacophore properties and

the properties of binding sites, but we leave it for further
exploration.
From a more practical viewpoint, it is important to

touch on the issue of drug promiscuity and polypharma-
cology. This refers to the observation that some drugs tend
to act on multiple targets leading to distinct pharmaco-
logical effects, which is often considered an undesirable
property [86], although partly unavoidable and potentially
utilizable [115]. In either case, predicting the expected
number of interactions in a restricted set of targets is
a unique property of probabilistic DTI predictors, e.g.
compared to ranking approaches. To illustrate this abil-
ity of VB-MK-LMF, we computed the expected value of
the total number of interactions for every drug in all
datasets, treating them independently, shown in Fig. 7
together with the number known targets. Overall, the
expected value of further hits approximates the number
of interactions already discovered rather closely, although
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Fig. 6 Parallel coordinates visualization of 10 latent dimensions in the Ion Channel dataset. Each curve corresponds to a latent representation of a
drug or a target. Targets are colored on the basis of their ion transporter activity

Fig. 7 Drug promiscuity vs. the expected number of interactions. The number of targets of each drug in the datasets are depicted on the horizontal
axis. The expected number of interactions as predicted by VB-MK-LMF are depicted on the vertical axis
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it tends to over-estimate, especially when only one or
two interactions are known. We also conducted a 10×
cross-validation experiment for each drug in the GPCR
dataset and performed the same comparison with similar
results (Fig. 8). It is worth to mention that the number of
currently unobserved positive interactions in large-scale
settings and in comprehensive DTI repositories is vital
for the pharmaceutical industry and an open scientific
question, as indicated by research on drug-likeliness and
druggability. Assuming total independence, the expected
value provides a raw estimate for this. However, as the rel-
ative frequency of positive interactions among the unob-
served cases should influence the selection of weight for
the observed cases (c), and the value of c influences the
expected value, resolving this circular situation and tuning
c requires further investigations.
We also performed a case-based evaluation by obtain-

ing the top 5 novel predictions in the incomplete datasets
and examining whether they are present in the current
version of the DrugBank database. Most interactions were
confirmed and some of the unconfirmed hits are known

to bind to other members of that particular protein fam-
ily. This shows the ability of VB-MK-LMF to predict novel
interactions. The predicted lists are similar to those of the
NRLMF method. Table 4 illustrates these results and also
contains the rank of the predicted interactions among the
NRLMF predictions.
Finally, we discuss computational issues. Due to the

explicit computation of inverse matrices, the variational
approximation is highly compute-intensive, however, it
is straightforward to parallelize and many steps can be
written as BLAS operations. GPUs are particularly well-
suited for this task. All computations presented in this
work can be performed on a mid-range graphics card.
Figure 9 shows the runtime of GPU and CPU imple-
mentations in terms of latent factors 200 × 200 matrix
factorization task, which showed a 30× speedup using an
NVIDA Titan X graphics card. However, in larger dimen-
sions or with many latent factors, one can quickly run out
of GPU memory, i.e. scaling remains an open question.
Although GPUs provide excellent performance with sin-
gle precision, double precision performance typically lags

Fig. 8 Expected number of interactions as predicted by VB-MK-LMF for each drug in the GPCR dataset. The number of targets are depicted on the
horizontal axis. A 10× cross-validation setting was used
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Table 4 Top 5 predicted interactions which are not present in the datasets

Probability Drug Target Drug name Target name DrugBank NRLMF

Nuclear Receptor

0.943 D00316 hsa6096 Etretinate RARB Yes 1

0.671 D01132 hsa6097 Tazarotene RARC aRARB 6

0.662 D01132 hsa190 Tazarotene NR0B1 18

0.529 D00898 hsa2100 Dienestrol ESR2 Yes 7

0.445 D00094 hsa6095 Tretinoin RARA Yes 26

GPCR

0.966 D00283 hsa1814 Clozapine DRD3 Yes 1

0.956 D00110 hsa1813 Cocaine DRD2 188

0.938 D02358 hsa154 Metoprolol ADRB2 Yes 2

0.937 D02614 hsa154 Denopamine ADRB2 Yes 4

0.937 D04625 hsa154 Isoetharine ADRB2 Yes 3

Ion Channel

0.990 D00538 hsa6331 Zonisamide SCN5A Yes 9

0.986 D00294 hsa3767 Diazoxide KCNJ11 Yes 244

0.985 D00552 hsa6331 Tetracaine SCN5A Yes 5

0.983 D00438 hsa779 Nimodipine CACNA1S Yes 2

0.983 D00649 hsa8911 Amiloride CACNA1I 83

Enzyme

0.999 D00542 hsa1571 Halothane CYP2E1 Yes 1

0.995 D00097 hsa5743 Salicylic acid PTGS2 Yes 4

0.995 D00437 hsa1559 Nifedipine CYP2C9 Yes 5

0.987 D00501 hsa50940 Pentoxifylline PDE11A aPDE5A 2

0.986 D00501 hsa5150 Pentoxifylline PDE7A aPDE5A 3

Many of the hits were confirmed by the current version of DrugBank. The asymbol indicates a known interaction with another member of the protein family. The last column
denotes the rank of the interaction among the NRLMF predictions

far behind, especially with modern consumer-level graph-
ics cards. This raises the issue of numerical stability. To
cope with the memory footprint of the algorithm, we pro-
vide a sparse implementation beside the standard dense
solver. To address the issue of numerical stability, we also
provide a QR factorization-based implementation which
is more stable but significantly slower than the default
Cholesky-based method. The computation in VB-MK-
LMF is dominated by the inversion in Eq. 6, which gives
O(DL3 max(I3, J3)) for the total time complexity (D is the
number of iterations). Comparison with the time com-
plexity of NRLMF, O(DLIJ), clearly shows the burden of
Bayesian computation in the current implementation and
calls for the usage of approximative inversion techniques,
which we consider as a future work.

Conclusion
We presented Variational Bayesian Multiple Kernel
Logistic Matrix Factorization (VB-MK-LMF), integrating
multiple kernel learning, weighted observations, graph

Laplacian regularization, and explicit modeling of prob-
abilities of binary drug-target interactions. Compared to
other state-of-the-art methods, VB-MK-LMF achieved
significantly better predictive performance in standard
benchmarks.
Admittedly, benchmarking the pure predictive per-

formance on a given dataset gives a very focused
view about the real-world applicability of the meth-
ods, but helps comparability. On the other hand, the
release of new and updated datasets as shown in
Additional file 1 in fact quickly create an impractical
fragmentary situation. In general, the definition of a
standard background knowledge pool for a bench-
marking is even more complicated, as earlier attempts
show in computational fusion methods for gene
prioritization [116, 117].
Additionally, currently the possible utilizations of a DTI

prediction method in real-world applications are at least
as diverse as the methodological repertoire. For exam-
ple, DTI prediction methods could be applied in data
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Fig. 9 Runtime of the GPU and CPU implementations in terms of the number of latent factors. This benchmark was conducted on a 200 × 200
matrix factorization. The GPU implementation brings a 30× speedup on an NVIDIA GTX Titan X graphics card

quality control phase for anomaly detection, especially
in the case of merging different bioactivity values from
public and private sources. Screening design, hit triage
and prioritization for further validation [118], possibly
in an active learning framework [16, 119], are standard
usages. Finally, DTI prediction methods may also pro-
vide essential data to support visualization and visual data
analytics, as we demonstrated in a new range of dimen-
sionality (10 − 20), which proved to be sufficient with
VB-MK-LMF.
Another key property of VB-MK-LMF is the explicit

modeling of probabilities, which allows the prediction of
interaction probabilities and their credibility. We demon-
strated the use of probabilistic predictions by proposing
DTI dataset specific versions of promiscuity and drugga-
bility, through the expected number of hits in a dataset
for a drug or a target respectively. In general, the pre-
dicted posteriors for the interactions can be seen as a
probabilistic “data-analytic” knowledge base, which allows
new functionalities in post-processing, beyond enrich-
ment methods available for ranking methods [33, 37].
To utilize the Bayesian predictions of VB-MK-LMF, we
also plan to investigate their decision theoretic usage,
when certainty for expected gains and losses of prior-
itization of interactions is expected, e.g. in functional
validations.
Further interesting research directions are the regres-

sion version of VB-MK-LMF directly approximating the
continuous activity data [8, 52] and the use of multiple
instances of VB-MK-LMF for overlapping DTI matrices,
which are linked to each other by weighted common

observations. The latter could improve the scalability of
the method using parallel implementations for mid-sized
DTI tasks with 105 drugs and 104 targets, going beyond
the current benchmarks.

Additional files

Additional file 1: The properties of DTI methods related to the
development or evaluation of VB-MK-LMF. (PDF 124 kb)

Additional file 2: Derivation of the lower bound using Jaakkola’s bound
on the logistic sigmoid. (PDF 107 kb)
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