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Abstract

Background: The oxidation of protein-bound methionine to form methionine sulfoxide, has traditionally been
regarded as an oxidative damage. However, recent evidences support the view of this reversible reaction as a
regulatory post-translational modification. The perception that methionine sulfoxidation may provide a mechanism to
the redox regulation of a wide range of cellular processes, has stimulated some proteomic studies. However, these
experimental approaches are expensive and time-consuming. Therefore, computational methods designed to predict
methionine oxidation sites are an attractive alternative. As a first approach to this matter, we have developed models
based on random forests, support vector machines and neural networks, aimed at accurate prediction of sites of
methionine oxidation.

Results: Starting from published proteomic data regarding oxidized methionines, we created a hand-curated dataset
formed by 113 unique polypeptides of known structure, containing 975 methionyl residues, 122 of which were
oxidation-prone (positive dataset) and 853 were oxidation-resistant (negative dataset). We use a machine learning
approach to generate predictive models from these datasets. Among the multiple features used in the classification
task, some of them contributed substantially to the performance of the predictive models. Thus, (i) the solvent
accessible area of the methionine residue, (ii) the number of residues between the analyzed methionine and the next
methionine found towards the N-terminus and (iii) the spatial distance between the atom of sulfur from the analyzed
methionine and the closest aromatic residue, were among the most relevant features. Compared to the other
classifiers we also evaluated, random forests provided the best performance, with accuracy, sensitivity and specificity
of 0.7468 ± 0.0567, 0.6817 ± 0.0982 and 0.7557 ± 0.0721, respectively (mean ± standard deviation).

Conclusions: We present the first predictive models aimed to computationally detect methionine sites that may
become oxidized in vivo in response to oxidative signals. These models provide insights into the structural context in
which a methionine residue become either oxidation-resistant or oxidation-prone. Furthermore, these models should
be useful in prioritizing methinonyl residues for further studies to determine their potential as regulatory
post-translational modification sites.
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Background
Reactive oxygen species (ROS) are well known for their
harmful effect on cellular constituents [1]. However, a
more nuanced view has emerged during the last years. It is
now clear that certain ROS, including H2O2, can function
as messengers [2]. To act as an effective messenger, hydro-
gen peroxide has to bring about a reversible change in
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the activity of a protein through post-translational mod-
ification (PTM). The amino acids that are used as PTM
sites often have a functional group that is able to act as
a nucleophile during the modification reaction. In this
regard, the sulfur contained in the side chain of cysteine
and methionine is liable to be oxidized by H2O2. Under
mild oxidative conditions, cysteine forms cystine through
a disulfide bridge, while methionine is preferentially oxi-
dized to methionine sulfoxide. Both oxidation reactions
can be reverted through reduction reactions catalyzed by
enzymes. Disulfides are reduced back to the thiol form
by various reductases [3]. On the other hand, MetO is
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reduced back to methionine by the enzyme methion-
ine sulfoxide reductase (Msr), present in most aerobic
cells [4].
Like phosphorylation of serine, sulfoxidation of methio-

nine is a reversible covalent modification capable of mod-
ifying the physicochemical properties of the complete
protein, which, in turn, can affect the stability and/or
activity of the target protein [5, 6]. Indeed, it has been
demonstrated that sulfoxidation of specific methionine
residues can lead to both activation [7–9] and inactivation
[10, 11] of the modified protein. Moreover, the oxidation
of specific methionine sites may also impact the function
of a protein in an indirect manner, by facilitating or hin-
dering the occurrence of other functional PTM such as
phosphorylation of nearby serine residues [12–14].
The perception that methionine sulfoxidation may pro-

vide a mechanism to the redox regulation of a wide range
of cellular processes, has stimulated some proteomic stud-
ies [15–17]. This proteomic approach, despite the tech-
nical difficulties involved in the discrimination between
physiological and artifactual modifications, has allowed
to identify a considerable number of cellular proteins as
possible targets of oxidative signals. Furthermore, these
proteomic efforts have allowed to pinpoint the sites of oxi-
dation over the target proteins. Nevertheless, these exper-
imental approaches, besides being expensive, are labor-
intensive and time-consuming. In view of this, it is highly
desirable to develop in silico methods aimed to predict
methionine oxidation sites. Indeed, in the field of pro-
tein phosphorylation, the prediction of phosphorylation
sites using computational tools has attracted considerable
research attention [18–20]. Unfortunately, computational
approaches to predict methionine oxidation sites have
garnered much less attention, and only very recently some
efforts have been devoted to this purpose [21].
Herein, we describe predictive models based on com-

putational intelligence, aimed at accurate prediction of
methionine sulfoxidation sites.

Results
For each methionine residue from the training dataset, a
total of 76 characteristics were evaluated as described in
the “Methods” section. 52 of these characteristics were
derived from the primary structure while the remaining
24 characteristics were related to the tertiary structure.
These collections of features will be referred to as,Whole,
Primary and Tertiary, respectively. Using these different
sets of characteristics, we designed a number of machine
learning (ML) predictive models, namely random forests
(RF) [22], support vector machines (SVM) [23] and neu-
ral networks (NN) [24], which were intensively tested
in a comparative approach. The results obtained from
these comparative studies are presented in the following
subsections.

Predicting methionine oxidation with random forest
The performance of various RF-based models was eval-
uated in terms of the area under the ROC curve (AUC),
accuracy, sensitivity, specificity, F-measure and MCC
(Matthews Correlation Coefficient). The results obtained
using different subsets of characteristics, for both train-
ing and testing datasets, are shown in Table 1 (first four
rows of “TRAINING SET” and “TESTING SET” sub-
tables from Table 1). In addition to the above described
subsets of characteristics, we also used a subset formed
by the most relevant features (see “Methods” section). To
this end, the characteristics were ranked using the max-
imum relevance minimum redundancy (mRMR) method
[25], which uses a ranking criterion based on the trade-
off between the relevance to the output (oxidable)
and the redundancy between the input characteristics. In
this way, a final subset of 54 features was identified as
the optimal (giving the maximum AUC) feature set (see
“Methods” section for details).

Comparison with other machine learning models
To account for the potential of RF as an effective ML
approach to predict the oxidation of methionine, we have
compared it with two other classicalMLmodels: SVM and
NN (see “Methods” section). The performance of these
alternative methods is also summarized in Table 1. These
results showed differences in favor of RF, with respect to
SVM and NN, as RF gave high AUC and accuracy rates
with a better balance between sensitivity and specificity
rates for data from the testing set.
However, as those results in Table 1 correspond to single

ML models applied on a same training/testing set, a more
comprehensive evaluation of each ML-model’s predictive
potential was needed. In this vein, Table 2 and Fig. 1 show
the results from a bootstrapping strategy: for each ML
model and feature subset (Primary, Tertiary, Whole and
mRMR), 100 bootstrap re-samples were generated and
10-fold cross-validation (with 5 repetitions) were used to
train and fit each model. Mean performance rates and
standard deviation on the training and testing sets (after
ROC’s cut-off probability adjusting on the evaluation sets)
are shown in Table 2. The best overall results on the test-
ing sets (high accuracy rate with balanced sensitivity and
specificity) were obtained with RFs, showing significant
differences with respect to SVMs and NNs (see t-test p-
values in Table 3). Remarkably, very similar results were
obtained with both themRMR subset and the whole set of
76 characteristics. In general, SVMs andNNs showed sim-
ilar efficacy rates, with accuracy numbers that were lower
than those given by the RFs and worse balances between
sensitivity specificity rates (see Table 3 and Fig. 1).
The quantification of the predictive importance of each

variable is a key factor to interpret data and to under-
stand the phenomena underlying methionine oxidation.
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Table 1 Performance rates with three different ML models

Feature set AUC Accuracy Sensitivity Specificity F-measure MCC

TRAINING SET

RF

Primary (52) 1.0000 0.8233 1.0000 0.7980 0.5868 0.5756

Tertiary (24) 0.9958 0.7222 1.0000 0.6823 0.4746 0.4607

Whole (76) 1.0000 0.8476 1.0000 0.8258 0.6222 0.6107

mRMR (54) 1.0000 0.8348 1.0000 0.8111 0.6031 0.5918

SVM

Primary (52) 1.0000 0.4955 1.0000 0.4231 0.3322 0.2903

Tertiary (24) 0.9403 0.9232 0.8571 0.9327 0.7368 0.7024

Whole (76) 0.9927 0.9910 0.9592 0.9956 0.9641 0.9590

mRMR (54) 0.9952 0.9821 0.9490 0.9868 0.9300 0.9200

NN

Primary (52) 0.7148 0.6492 0.6020 0.6559 0.3010 0.1764

Tertiary (24) 0.7981 0.7273 0.7143 0.7291 0.3966 0.3132

Whole (76) 0.7827 0.6402 0.8061 0.6164 0.3599 0.2822

mRMR (54) 0.7933 0.6786 0.8061 0.6603 0.3863 0.3156

TESTING SET

RF

Primary (52) 0.7002 0.5969 0.8125 0.5664 0.3333 0.2500

Tertiary (24) 0.8014 0.6357 0.8750 0.6018 0.3733 0.3155

Whole (76) 0.8413 0.7597 0.8125 0.7522 0.4561 0.3998

mRMR (54) 0.8462 0.7597 0.7500 0.7611 0.4364 0.3668

SVM

Primary (52) 0.5603 0.4264 0.7500 0.3805 0.2449 0.0894

Tertiary (24) 0.4701 0.2791 0.6250 0.2301 0.1770 -0.1106

Whole (76) 0.6831 0.7984 0.4375 0.8496 0.3500 0.2431

mRMR (54) 0.7406 0.7907 0.4375 0.8407 0.3415 0.2320

NN

Primary (52) 0.5669 0.5504 0.4375 0.5664 0.1944 0.0026

Tertiary (24) 0.8291 0.7364 0.8125 0.7257 0.4333 0.3742

Whole (76) 0.7959 0.6589 0.7500 0.6460 0.3529 0.2661

mRMR (54) 0.8208 0.7132 0.8750 0.6903 0.4308 0.3839

Thus, we resorted to the Gini-index importance to assess
the relevance of the variable used for the RF classifiers
as input characteristic. Fig. 2 shows the 20 most rele-
vant variables as estimated by the RF on the training set
(100 bootstrap resampling), along with the distribution
(box-plot) of their averaged decrease in Gini-index (see
“Methods” section). As it can be observed, the accessi-
bility to the solvent, the proximity to other methionyl
residues and the distance to the closest aromatic residue
are among the variables with the highest predictive
importance (Fig. 2).

Discussion
Protein-bound methionine is readily oxidized to methio-
nine sulfoxide, which can drastically affect the biological
activity of the modified proteins. Although this fact has
been known for many years now, our perception of the
functional implication of methionine sulfoxidation has
evolved over time. Initially, this chemical modification
was detected in proteins that had been purified from tis-
sues following laborious experimental procedures. Hence,
there was a reasonable doubt of whether the observed
modificationwas present in the natural tissues, or whether
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Table 2 Performance rates for three different ML approaches: mean (sd)

Feature set AUC Accuracy Sensitivity Specificity F-measure MCC

TRAINING SET

RF

Primary 1.0000 (0) 0.8957 (0.0480) 1 (0) 0.8807 (0.0546) 0.7176 (0.0938) 0.7054 (0.0920)

Tertiary 0.9996 (0.0003) 0.8316 (0.0591) 1 (0) 0.8074 (0.0674) 0.6096 (0.0898) 0.5977 (0.0882)

Whole 1.0000 (0) 0.8948 (0.0533) 1 (0) 0.8797 (0.0609) 0.7192 (0.1053) 0.7071 (0.1046)

mRMR 1.0000 (0) 0.8932 (0.0480) 1 (0) 0.8777 (0.0550) 0.7138 (0.0966) 0.7015 (0.0960)

SVM

Primary 0.9997 (0.0011) 0.9069 (0.1990) 0.9990 (0.0034) 0.8939 (0.2270) 0.8751 (0.2584) 0.8670 (0.2747)

Tertiary 0.9924 (0.0090) 0.7425 (0.1501) 0.9865 (0.0217) 0.7077 (0.1729) 0.5562 (0.2335) 0.5390 (0.2407)

Whole 0.9992 (0.0025) 0.9310 (0.1542) 0.9980 (0.0058) 0.9210 (0.1772) 0.8936 (0.2254) 0.8874 (0.2370)

mRMR 0.9995 (0.0018) 0.9044 (0.1766) 0.9982 (0.0043) 0.8907 (0.2026) 0.8545 (0.2561) 0.8463 (0.2690)

NN

Primary 0.9482 (0.0339) 0.7248 (0.1607) 0.9377 (0.0416) 0.6938 (0.1841) 0.5195 (0.1975) 0.4835 (0.2133)

Tertiary 0.9336 (0.0227) 0.7552 (0.1040) 0.9079 (0.0322) 0.7334 (0.1195) 0.5082 (0.1322) 0.4706 (0.1378)

Whole 0.9616 (0.0247) 0.8273 (0.1170) 0.9491 (0.0327) 0.8098 (0.1333) 0.6292 (0.1883) 0.6063 (0.1958)

mRMR 0.9533 (0.0232) 0.7897 (0.1160) 0.9373 (0.0314) 0.7684 (0.1325) 0.5696 (0.1738) 0.5413 (0.1822)

TESTING SET

RF

Primary 0.6947 (0.0416) 0.6207 (0.0666) 0.6737 (0.1296) 0.6139 (0.0883) 0.3026 (0.0439) 0.1936 (0.0573)

Tertiary 0.7614 (0.0375) 0.6975 (0.0485) 0.7064 (0.1029) 0.6959 (0.0633) 0.3638 (0.0463) 0.2781 (0.0547)

Whole 0.7957 (0.0355) 0.7458 (0.0622) 0.6849 (0.1195) 0.7540 (0.0813) 0.4003 (0.0563) 0.3205 (0.0625)

mRMR 0.7998 (0.0334) 0.7468 (0.0567) 0.6817 (0.0982) 0.7557 (0.0721) 0.4003 (0.0562) 0.3190 (0.0622)

SVM

Primary 0.5660 (0.0431) 0.5604 (0.0847) 0.5383 (0.1381) 0.5641 (0.1112) 0.2286 (0.0414) 0.0688 (0.0573)

Tertiary 0.6480 (0.0534) 0.6434 (0.0825) 0.5500 (0.1329) 0.6561 (0.1070) 0.2741 (0.0459) 0.1437 (0.0605)

Whole 0.6753 (0.0424) 0.6441 (0.0704) 0.6037 (0.1301) 0.6501 (0.0954) 0.2924 (0.0417) 0.1744 (0.0498)

mRMR 0.6700 (0.0450) 0.6348 (0.0802) 0.5986 (0.1309) 0.6398 (0.1047) 0.2865 (0.0461) 0.1641 (0.0585)

NN

Primary 0.5601 (0.0479) 0.5477 (0.0907) 0.5465 (0.1349) 0.5474 (0.1178) 0.2274 (0.0411) 0.0637 (0.0567)

Tertiary 0.6887 (0.0470) 0.6662 (0.0687) 0.5998 (0.1412) 0.6745 (0.0907) 0.3047 (0.0523) 0.1907 (0.0658)

Whole 0.6846 (0.0469) 0.6650 (0.0680) 0.5793 (0.1194) 0.6765 (0.0886) 0.2981 (0.0453) 0.1791 (0.0581)

mRMR 0.6903 (0.0486) 0.6573 (0.0696) 0.6101 (0.1224) 0.6640 (0.0903) 0.3044 (0.0474) 0.1900 (0.0627)

it arose from some oxidation during the manipulations in
vitro [26]. A decade later, it was clear that the oxidation of
methionine in proteins takes place in vivo [27]. However,
the presence of methionine sulfoxide in proteins was con-
sidered just as an inevitable and harmful consequence of
oxidative stress. Later on, the regard of methionine oxida-
tion as mere oxidative damage would give pass to a more
benign judgment.
The finding that oxidation of protein-bond methionine

residues to methionine sulfoxide is one of the few pro-
tein oxidation events that are reversible in vivo, led to the

appealing hypothesis of methionine residues as endoge-
nous antioxidants in proteins [28]. Indeed, reversible oxi-
dation/reduction of methionine residues in proteins can
serve as a scavenger system to remove ROS, and the
importance of methionine oxidation in the antioxidation
defense has gathered strong experimental evidences since
then [29, 30]. On the other hand, although ROS have
traditionally been thought as harmful by-products of res-
piratory metabolism, that notion has slowly given way
to a more nuanced view of ROS as important signaling
molecules [1]. In this context, a new functional role for
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Fig. 1 Performance rates distributions for bootstrapping resamples. Box-plots of the performance rates on the testing sets (after ROC’s cut-off
probability adjustment on the evaluation sets) for bootstrapping resamples. Data setmRMR 54 features. Number of resamples = 100

methionine modification can be envisioned. Methionines
that undergo sulfoxidation may serve as PTM sites fulfill-
ing a signaling role, acting as on/off sensors of oxidative
stress in certain proteins. A number of such proteins has
already been identified [31–34].
Our current awareness of the functional relevance of

methionine oxidation at certain sites, demands tools for
the prediction of such sites. As a first step towards this
goal, in this study we have developed machine learn-
ing models for predicting whether a given methionine
residue would be oxidized in vivo after an oxidative chal-
lenge. In the past, driven by the interest to expand the
shelf life of therapeutic proteins, considerable effort has
been devoted to predict the reactivity in vitro of methio-
nine residues towards oxidants, using for this purpose
molecular modeling [35]. However, because of the lim-
ited number of proteins analyzed and the nature of the
data used (obtained from in vitro kinetic assays) the
use of these molecular models cannot be extrapolated
to a more general framework of methionine oxidation
prediction. In contrast, herein we have used a large
collection of data encompassing over hundred proteins

containing 122 methionyl residues that have been empir-
ically detected as methionine sulfoxide. The fact that
these sulfoxidized methionines are present within the
cells, means that the proteome data used in the current
study represents a steady-state situation, in which oxi-
dation after hydrogen peroxide challenge is balanced by
reduction catalyzed by methionine sulfoxide reductases.
Therefore, our study is, to the best of our knowledge, the
first attempt to train and test computational models aimed
to predict the oxidation status of protein-bound methion-
ines, when such protein are found into their subcellular
environment.
In this work, we have used machine learning mod-

els to predict the oxidation of methionine in protein
sequences. To this end, all the models we have been
dealing with handled two output classes: modified and
unmodified methionine sites, where the negative cate-
gory (non-oxidized methionine) is defined by the absence
of the modification. It may be possible that some of the
methionine sites labeled as negative would be actually
modified sites, but the experimental procedure failed to
detect them? Although such a possibility never can be
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Table 3 Models comparison. T-test p-value from bootstrap
results on the testing sets

Feature set RF-SVM RF-NN SVM-NN

AUC

Primary 1.337807e-53 1.656090e-52 3.629288e-01

Tertiary 7.466593e-08 7.749183e-10 3.076722e-01

Whole 1.620777e-11 1.207725e-10 6.687422e-01

mRMR 5.736385e-04 1.122952e-05 3.027066e-01

Accuracy

Primary 7.466593e-08 7.749183e-10 3.076722e-01

Tertiary 1.620777e-11 1.207725e-10 6.687422e-01

Whole 5.736385e-04 1.122952e-05 3.027066e-01

mRMR 1.110837e-35 7.810002e-38 5.302538e-01

Sensitivity

Primary 4.838807e-26 9.923600e-27 8.419212e-01

Tertiary 7.067182e-08 2.630463e-04 3.507737e-02

Whole 3.771161e-17 6.241079e-09 1.096249e-02

mRMR 1.650447e-03 5.410619e-02 1.924156e-01

Specificity

Primary 7.035627e-39 8.036713e-20 3.721847e-07

Tertiary 1.059365e-30 6.066923e-15 1.807435e-05

Whole 1.072350e-21 9.069624e-16 3.319756e-02

mRMR 7.569818e-06 2.475176e-09 1.699726e-01

F-measure

Primary 1.900064e-14 8.911586e-10 4.341598e-02

Tertiary 1.385330e-43 3.632520e-39 5.440616e-01

Whole 8.253875e-35 1.802488e-31 3.612268e-01

mRMR 5.984561e-23 4.366711e-19 3.520361e-02

MCC

Primary 9.137039e-07 8.985178e-06 5.212807e-01

Tertiary 1.701737e-16 1.821765e-13 8.146449e-02

Whole 6.201029e-44 2.659090e-33 2.914253e-03

mRMR 4.996287e-36 3.033082e-28 7.392408e-03

fully ruled out, it seems unlikely. Indeed, protein abun-
dance is a major factor for the detection of PTMs by
mass spectrometry. To this respect, an important char-
acteristic of our ML approach is that each methionine
site belonging to the negative dataset had its own internal
control. Since negative methionines were obtained from
proteins containing at least one positive methionine, we
can be confident that the non-oxidized methionine was
present at equimolar concentration with respect to other
methionine detected as MetO during the same experi-
ment. Nevertheless, a caveat that should be taken into
consideration is that the whole dataset come from a single

proteomic study using Jurkat cells [15]. Whether the cel-
lular processes taken place in this cell line represent those
operating in animal tissues, is an issue that remains to be
solved [36]. In any event, future effort directed to identify
new methionine sulfoxidation sites in vivo, using different
species, tissues and experimental conditions, will lead to
improved predictive models.
The unbalanced distribution of the output classes (oxi-

dized vs non-oxidized) and the proportion of missing data
in the dataset are two characteristics that deserve discus-
sion because they affect the performance of the predictive
models. The former has to do with the severe class imbal-
ance (the positive dataset only represents 12.5% of the
whole dataset). When training and tuning the predictive
models, we had to deal with this unwanted issue. For-
tunately, the unbalanced distribution problem could be
resolved using sampling techniques or ROC curve post-
processing approaches. On the other hand, missing data
can dramatically affect the effectiveness of the classifiers if
not appropriately treated. Moreover, the predictive mod-
els used in the current study cannot deal with missing
values, which make missing data imputation unavoid-
able. Three different missing data imputation methods
have been tested in our study, k-nearest neighbors (KNN)
imputation, median imputation and bagging imputation
[37]. KNN imputation was carried out by finding the k
closest samples (Euclidean distance) in the training set.
Imputation via medians takes the median of each predic-
tor in the training set and used them to fill missing values.
This method is simple and fast, but treats each predic-
tor independently and may be inaccurate. Imputation via
bagging fits a bagged tree model for each predictor (as a
function of all the other features). This method, which is
simple and accurate, gave us the best results in our study
although it had higher computational cost.
Since protein sequences are easily determined and easy

to work with, initially we resorted to features that could
be extracted using only protein sequence information, to
build the so-called Primary models. Despite the limita-
tion of disregard valuable 3D structural information, these
models performed modestly well (Table 2), with balanced
sensitivity and specificity in spite of a remarkable imbal-
ance between the total numbers of oxidized and non-
oxidized methionine sites in the training samples. Never-
theless, when features related to the spatial structure of
the protein were included into the models, their perfor-
mance improved substantially. This finding is consistent
with previous studies demonstrating the importance of
structural variables (such as the solvent accessible area
of the methionine and its spatial proximity to aromatic
residues) in determining the oxidation state of methionyl
residues in the proteins within living cells [38]. Interest-
ingly, the use of computational techniques to filter features
on the base of their high relevance and low redundancy
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Fig. 2 Variable Importance. Box-plots of the GI of the 20 most relevant predictors for the RF classifier. From top to bottom: variables in decreasing
order of average GI (100 bootstrapping resamples). Dataset:mRMR 54 features

(mRMR), allowed us to conclude that a reduced number
of features (54 out of 76) was enough to obtain the best
results.
With respect to the different ML approaches tested

herein, the best performance was obtained using RF, while
SVM and NN behave worse in general when compared to
RF (Table 2 and Fig. 1). There is not a clear reason why
this should be that way. However, again the heterogeneous
nature of the data, including the intrinsically unbalanced
distribution of the output classes, make the RF a better
ML approach for this particular problem of methionine
oxidation site prediction. The “ensemble nature” of RF (a
large pool of decision trees is built during the training
phase) does its best to deal with the challenge of pre-
dicting new input patterns as those found in the testing
sets, thus giving high performance rates while the balance
between sensitivity and specificity remains. Nevertheless,
since the limitation of available data and the unbalanced
characteristic of the dataset may affect the performance
of the classifier, further work for refining and improving
the prediction model will be carried out using additional
classification methods and additional dataset when they
become available. We also provide a stand-alone program
based on the RF model described herein. This software
can be downloaded from google.drive.scripts, where any
interested user will also find detailed use instructions.
Phosphorylation is the most common post-translational

modification [39]. Many of the cellular responses trig-
gered by oxidative stress are known to be mediated, at
some point, by signaling cascades involving protein phos-
phorylation [40, 41]. Recent studies have suggested that

the crosstalk between serine/threonine phosphorylation
and methionine sulfoxidation may serve to fine-tune the
cellular response to oxidative signals [12, 14]. In line
with these previous works, we have observed that includ-
ing features related to phosphorylation information (see
Methods for details) in the predictive model of methion-
ine oxidation does contribute to its performance (see the
list of relevant features filtered by the mRMR algoritm, as
well as Fig. 2). All in all, these works point to a relevant
role for methionine oxidation in the regulation of protein
function.

Conclusions
In this study we have designed and tested computa-
tional models to predict methionine oxidation sites. High
accuracy rates as well as balanced specificity and sensi-
tivity values were obtained. The best performances were
obtained when random forests were used, while neu-
ral networks and support vector machines behaved less
effectively, in general.
From the 76 features used in the design of our predictive

models, some variables related to the protein structure,
such as solvent accessibility (SASA) and the proximity of
aromatic residues, have been identify among those mak-
ing the highest contribution to the predictive power of the
random forest classifier. Some characteristics regarding
phosphorylation, such as the distance to the closest phos-
phorylable residue, have also been detected as relevant
features. This fact supports the hypothesis of methionine
sulfoxidation playing an important role in the crosstalk
with protein phosphorylation.

https://drive.google.com/drive/folders/0B-2Txigj940gMkRxeExWRHM2ZTA?usp=sharing
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As our understanding of the role played by methionine
sulfoxidation in all aspects of cellular biology continues
to expand, these computantional predictive models will
become increasingly valuable, especially in hypothesis-
driven investigations. Moreover, the availability of reliable
predictive tools should stimulate further investigations
aimed to gain a better understanding of the interplay
between sulfoxidation and phosphorylation during cellu-
lar redox signaling.

Methods
Datasets
Data regarding methionine residues detected as methio-
nine sulfoxide in vivo were taken from reference [15].
This set was further curated to exclude protein entries
that did not contain at least one methionine show-
ing a degree of oxidation, as defined in [15], equal
or greater than 20%. Using PDB cross-references from
UniProt (www.uniprot.org), this collection was further
constrained to those proteins with known structure.
In general, since many proteins were homooligomers,
most crystal structures yielded a large number of
duplicated observations, which were searched for and
eliminated using a R script. Eventually, after remov-
ing redundancy and filtering out low quality struc-
tures (for instance, those where the target methionine
did not appear resolved), we assembled a collection of
113 unique polypeptides of known structure, containing
975 methyonil residues, 122 of which were oxidation-
prone (positive dataset) and 853 were oxidation-resistant
(negative dataset).

Feature extraction
For each methionine residue from the dataset described
above, a total number of 76 features were extracted. These
features included 20 variables of the type NT_X, defined as
the number of positions in the protein sequence from the
analysed methionine to the closest X residue toward the
N-terminus, where X belong to the set of 20 proteinogenic
amino acids. Similarly, other 20 features of the type CT_X
were assessed, in this occasion, counting towards the C-
terminus.
Four additional features were related to the conservation

of the considered methionine during evolution. To assess
these features, besides the human sequence, the ortholo-
gous proteins from Pan troglodytes, Gorilla gorilla, Rattus
norvegicus, Bos taurus, Gallus gallus, Xenopus tropicalis
and Danio rerio were aligned. These alignments were
used to compute the Shannon entropy according to the
equation:

entropy = −
21∑

i=1
filog21(fi),

where fi is the relative frequency of the symbol i
at the analysed position across the alignment. Thus,
for instance, fM stands for the relative frequency
of methionine. The logarithmic base was taken 21
because in addition to the 20 proteinogenic amino
acids, the symbol ‘-’ was considered when indels
were present. For each analysed methionine, the vari-
ables mean.entropy and sd.entropy were com-
puted as the mean and standard deviation, respectively,
of the entropy determined at all the positions of the
corresponding protein.
Eight further features related with PTM sites were

evaluated. Concretely, the variables Met2S, Met2T and
Met2Y inform about the distance, in the primary struc-
ture, between the analysed methionine and the closest
serine, threonine and tyrosine phospho-acceptor, respec-
tively. It should be noted that

Met2X = min(NT_X,CT_X).

On the other hand, Met2S_PTM, Met2T_PTM and
Met2Y_PTM collect the distances to the closest corre-
sponding phosphosites. That is, to the closest phospho-
acceptor that has been shown to be phosphorylatable [42].
The other two PTM-based features were closer10res,
defined as the number of phosphorylatable residues in
a radius of 10 amino acids from the analysed methion-
ine, and away.ptm calculated according to the following
expression:

away.ptm = min
X∈{S,T ,Y }

(Met2X_PTM).

The 52 features described hitherto can be extracted
from the primary structure of the involved proteins. How-
ever, to compute the 24 features that we will introduce
next, information about the 3D structure of the protein
was essential.
Thus, we defined and computed four new variables

related to PTM sites. The first of these variables, referred
to as closest.ptm.chain, gives the distance in
ångströms between the considered methionine and the
closest phosphorylatable residue (either Ser, Thr or Tyr
experimentally shown to be phosphorylated) present in
the same polypeptide chain that the methionyl residue.
If we remove the constraint of both sites having to
be intrachain, then we will be dealing with the feature
closest.ptm.pdb. The feature closer10A.chain
provides the number of phosphorylatable sites, found on
the same polypeptide chain, within a sphere of radius
10Å centred at the relevant methionine. Analogously,
closer10A.pdb gives the number of phosphorylat-
able sites within the sphere, regardless of the chain
hosting them.
In a recent work we reported that methionyl residues

forming part of an S-aromatic motif are less prone to be

http://www.uniprot.org
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oxidized [38]. Therefore, 16 additional features related to
this non covalent bond were used. Concretely, Xd.chain
was defined as the distance in ångströms between the sul-
fur atom from the analysed methionine and the nearest
X aromatic residue within the same polypeptide chain,
being X either Y (Tyr), F (Phe) or W (Trp). If the aro-
matic residue is allowed to be in a different polypeptide
molecule, we refer to this feature as Xd.pdb. The vari-
ables nX.chain and nX.pdb inform about the num-
ber of X aromatic residues (within the same polypeptide
molecule or not, respectively) at a distance < 7Å from
the methionine. The feature numberBonds.chain was
computed according to:

numberBonds.chain =
∑

X∈{Y ,F ,W }
nX.chain.

Similarly, numberBonds.pdb was defined as:

numberBonds.pdb =
∑

X∈{Y ,F ,W }
nX.pdb.

In addition, the variables closestAro.chain and
closestAro.pdb were computed as:

closestAro.chain = min
X∈{Y ,F ,W }

(Xd.chain),

closestAro.pdb = min
X∈{Y ,F ,W }

(Xd.pdb).

Other two features, SASA.chain and SASA.pdb,
were related to the solvent accessible surface area of the
methionine residue. These variables were assessed with
the program DSSP [43] and either the atomic coordinates
of the single polypeptide chain harboring the methion-
ine (for SASA.chain), or the atomic coordinates of the
whole protein (for SASA.pdb).
The B factor of the sulfur atom from the methionine of

interest extracted from the PDB file used was recorded in
the variable Bfactor.
Finally, dpxmeasures the depth of the sulfur atom from

the considered methionine, defined as the distance in
ångströms between the S atom and the closest atom from
the protein exposed to the solvent [44].
The data file with all these extracted features used in our

study is available at github.data

Machine learning methods
In the current study we used RFs to design predictive
models of methionine oxidation sites. RFs are ensemble
machine learning methods for classification, that func-
tion by constructing a large pool of decision trees during
the training phase. The final output will be the mode of
the classes given by the individual trees in the pool. The
method combines Breiman’s ‘bagging’ idea and the ran-
dom selection of features (i.e. predictor-set split) in order
to construct a collection of decision trees with controlled
variation [22].

The quantification of the predictive importance of each
variable was carried out by means of the Gini-index
Importance (GI). The Gini-index [45] for a given node of
a decision tree can be defined as

p1(1 − p1) + p2(1 − p2),

where p1 and p2 are the “class 1” and “class 2” proba-
bilities, respectively. For a binary-classification problem,
p1 + p2 = 1 and the previous equation could be written
as 2p1p2. The Gini-index minimizes when either p1 or p2
drives towards zero, and maximizes when p1 = p2, i.e.
when the node is “least pure”. The GI uses the decrease
of Gini-index (impurity) after a node split as a measure
of variable relevance. The average decrease in Gini-index
over all trees in the RF defines the GI.
In general, when it comes to predictive performance,

there are cases where SVMs do better than RFs, and vice
versa. The same is true for NNs with respect to other
ML approaches. Thus, for comparative purposes we also
developed classifiers based on SVM [23], as well as on
NNs [24].

Model tuning
For RF model-fitting in our experiments regarding
methionine oxidation, the only sensible tuning hyper-
parameter would be the number of variables (predic-
tors) randomly sampled as candidates at each split
(usually known as mtry). We fixed the value of
this parameter at the optimal recommended value
�√number of predictors� [22, 46]. On the other hand, the
number of trees to grow was fixed to 1000 to ensure
that every input pattern could be predicted at least a few
times [47].
For SVMs, a Gaussian radial basis function (RBF) kernel

k(x, x′) = e−σ ||x−x′||2 was used (being k a function that cal-
culates the inner product 〈�(x),�(x′)〉 of two vectors x, x′
for a given projection � : X → H). The problem of model
selection (parameter tuning) was partially addressed by an
empirical observation for the Gaussian RBF kernel, where
the optimal values of the hyper-parameter σ are known
to lie in between the 0.1 and 0.9 quantile of the ||x − x′||
statistics [48, 49]. Thus, a sample of the training set was
used to estimate these quantiles. Any value of σ comprised
within the quantile interval results in good performance.
In this way, the σ parameter was automatically estimated.
Additionally, the optimal hyper-parameter cost, that rep-
resents the cost of constraints violation and stands for the
‘C’-constant of the regularisation term in the Lagrange
formulation, was tuned as the one of 12 incremental val-
ues in {2i}9i=−2 that optimises the area under the ROC
curve (AUC) of the SVM classifier.
Fully connected single-hidden-layer feed-forward

NNs—Multilayer Perceptrons (MLP) [50]—were also

https://github.com/jcaledo/Prediction_of_Methionine_Oxidation_Sites
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constructed and trained with different combinations of
parameters to search for the best performance rates in the
prediction of methionine oxidation. Optimisation of the
NNs was done via the error back-propagation algorithm
[50]. The network size (i.e., number of hidden units
in the single hidden layer) and weight decay were the
tuned parameters, selecting the combination of values
that provided the highest AUC. All the trained MLPs had
a number of outputs that was equal to the number of
classes (i.e. n = 2), with logistic activation function for all
the hidden and output neurons. Weights were randomly
initialised, and maximum number of epochs was fixed to
100 [51].
For each predictive model, the best values for the

fitted parameters are computed as those giving the
highest averaged AUC via 10-fold cross-validation
on the training dataset (in Table 4 the best hyper-
parameters for each ML model in Table 1 are
shown).

Resamplingmethods formodel fitting
The data set was divided into three independent sets, 80%
(98 ‘positive’; 683 ‘control’) patterns for training, 6.7% (8
‘positive’; 57 ‘control’) patterns for evaluation (these pat-
tern set is used to compute the optimal threshold for the
ROC curves) and, finally, 13.3% (16 ‘positive’; 113 ‘con-
trol’) for testing. To preserve the unbalanced nature of
the original class distribution within the splits, a strat-
ified random sampling strategy was used. To estimate
the efficacy of the prediction model across the training
set, six performance measures—AUC, accuracy, sensi-
tivity, specificity, F-measure and Mathews-Correlation-
Coefficient (MCC)—of the out-of-bag (OOB) samples
for 10-fold cross-validation with 5 repetitions (50 re-
samplings) were calculated and the mean and standard
deviation of those rates were computed. To compute the
latter five performance measures, and given the following
general table for any binary classification problem (with
two classes: Yes/No),

Reference
Predicted Yes No
Yes TP FP
No FN TN,

whereTP, FP,TN and FN stand for true positive, false pos-
itive, true negative and false negative, respectively, we have
used the following well-known formulae:

• accuracy= (TP + TN)/(TP + TN + FP + FN),
• sensitivity= TP/(TP + FN),
• specificity= TN/(TN + FP),
• F-measure= 2 precision×sensitivity

precision+sensitivity , where
precision = TP/(TP + FP),

• MCC= TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

With respect to the two last performance measures, i.e.
the F-measure and MCC, although both of them have
been included in our analyses because they both are usu-
ally used in machine learning as measures of the quality
of binary classifications, the F-measure has to be taken
with caution, as it does not take the true negatives into
account. For this reason, and given that our dataset is seri-
ously unbalanced towards the negative samples, the MCC
may be preferable to assess the performance of our binary
classifiers.
The entire training set was used to fit a final model

and its performance was finally measured on the test-
ing set. For bootstrap resampling (see “Results” section),
100 random resamples were generated and 10-fold cross-
validation (with 5 repetitions) was used to train and fit
each model (RF, SVM and NN). The caret R package [52,
53] (R version 3.3.3) has been used for model fitting with
SVM (package kernlab [49]), NN (package RSNNS [51])
and RF (package randomForest [47]).
One of the more severe circumstances that can dra-

matically affect the effectiveness of prediction models is
class imbalance, i.e. the unbalanced relative frequency
of one class in the training set as compared to the
other class. In our study, class imbalance is inherent to
the procedure being followed for data acquisition (see
“Datasets” section): of the complete set of methionine
residues found in the 113 polypeptides analysed, only 122
out of 975 appeared as oxidised, i.e. a mere 12.5%. This
can result in predictive models that can easily get high
accuracy rates at the expense of unacceptable sensitivity
figures. For example, the most ‘naïve’ predictive model
consisting in classifying all methionine residues as ‘non
oxidised’ would give 87.5% accuracy and 100% specificity,

Table 4 Model tuning. Best hyper-parameters

Feature set
RF SVM NN

mtry Number of trees Sigma C Size Decay

Primary 7 1000 0.01124415 8 15 0.003162278

Tertiary 4 1000 0.04226239 8 3 0.0001995262

Whole 8 1000 0.007670497 4 1 0.001584893

mRMR 7 1000 0.01050984 4 19 0.001584893
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but an unwelcome 0% sensitivity. To further characterize
this sensitivity issue, we launched a pool of 1000 “random
predictions” over the entire dataset. For each of these ran-
dom predictions, 12.5% of the 975 patterns were randomly
chosen as oxidized sites. In this way, the mean accu-
racy (78.1%) and specificity (87.5% ) were high enough,
but, as expected, the mean sensitivity was unacceptably
low, 12.4% (standard deviation 0.0071, 0.0283 and 0.0040,
respectively).
To counteract the negative effects of class imbal-

ance, different approaches have been proposed in the
literature [37]. These approaches include model tun-
ing (using metrics alternative to accuracy such as ROC,
Cohen’s Kappa or sensitivity), adjusting of prior proba-
bilities, cost-sensitive training, use of alternative ROC-
curve cutoffs, or use of specific sampling methods.
In the current study a combination of the two latter
gave the best results. Prior to model tuning and fit-
ting, we used the down-sampling technique to get a
more balanced training dataset. The general idea of this
method is to artificially down-sample the majority class
(i.e. ‘non oxidised’ class).
On the other hand, after model training using this

down-sampled set of patterns, we used the ROC curve
to determine alternative cutoffs for the probabilities pre-
dicted by the model. Using this ROC curve, an appro-
priate balance between sensitivity and specificity can be
determined. Although several techniques do exist for
determining a new cutoff, the more general approach
is to find the point on the ROC curve that is closest
(i.e., the shortest distance) to the perfect model (with
100% sensitivity and 100% specificity), which is asso-
ciated with the upper left corner of the plot [4]. To
determine this cutoff point without biasing the results
obtained from the final testing dataset, an independent
evaluation dataset was used (see above). In Fig. 3 the
ROC curves obtained from the RF, SVM and NN classi-
fiers (corresponding to the performance results in the last
row of each model’s data in Table 1) on the evaluation
dataset is shown together with the computed alternative
cutoff. As it can be observed in the figure, the alterna-
tive cutoff gives a better balance between sensitivity and
specificity. However, as it can be observed in Table 5,
this better balance between sensibility and specificity is
obtained at the expense of accuracy. For comparison
purposes, in Table 5 those performance results (on the
testing set) from the RF model of Table 1 are shown
again (computed alternative cutoff: 0.392), together with
the results for this same model but with the standard
cutoff of 0.5.

Feature selectionwith themRMRmethod
We used the minimum redundancy maximum relevance
(mRMR) method [25] to rank the importance of the 76

Fig. 3 ROC curves. From top to bottom: ROC curves and AUC values
computed on the evaluation patterns for the RF, SVM and NN models,
respectively. The point in each curve that gives the best balance
between sensitivity and specificity rates has been marked and
annotated with the corresponding “alternative” threshold and
efficacy values. Solid black box: AUC = 1 reference area. Dashed gray
line: smoothed ROC curve. Solid gray line: random guess

features, based on the trade-off between the relevance to
the output (oxidable) and the redundancy between the
input characteristics. This method is based on the concept
ofmutual information. Given two variables, x and y, their
mutual information can be defined as
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Table 5 Performance rates for RF with two alternative ROC cutoffs

Feature set Accuracy Sensitivity Specificity F-measure MCC

Alternative cutoff: 0.392

Primary (52) 0.5969 0.8125 0.5664 0.3333 0.2500

Tertiary (24) 0.6357 0.8750 0.6018 0.3733 0.3155

Whole (76) 0.7597 0.8125 0.7522 0.4561 0.3998

mRMR (54) 0.7597 0.7500 0.7611 0.4364 0.3668

Standard cutoff: 0.5

Primary (52) 0.8062 0.1875 0.8938 0.1935 0.0836

Tertiary (24) 0.7907 0.5625 0.8230 0.4000 0.3044

Whole (76) 0.8372 0.5625 0.8761 0.4615 0.3777

mRMR (54) 0.8372 0.6250 0.8673 0.4878 0.4105

I(x, y) =
∫ ∫

p(x, y)log
p(x, y)
p(x)p(y)

dxdy.

When the goal is to select N features from the whole
feature set (�), according to their minimum redundancy
(among them) and maximum relevance (with respect to
the target or output, o), the first feature added to this
set of selected characteristics, �s, is selected according to
the concept of maximum relevancy. That is, the feature f
with the highest I(f , o). The rest of features are selected
in an incremental way: earlier selected features remain in
the feature set �s. Suppose m features have been already
selected, and we want to select an additional feature from
the set �p = � − �s
The next characteristic fj ∈ �p to be selected, i.e. to

be included in �s, is the one that maximises the mRMR
function, given by

maxfj∈�p

⎡

⎣I
(
fj, o

) − 1
m

∑

fi∈�s

I
(
fj, fi

)
⎤

⎦

To determine the final set of N selected features, an
incremental approach was followed: for each number of
selected characteristics N = 2, . . . 76, a random for-
est was trained (with down-sampled patterns from the
training set), its ROC’s cut-off probability was estab-
lished using the evaluation set (see “Methods” section)
and, finally the AUC for the testing set was measured.
Following this strategy, a final set of N = 54 fea-
tures was identified as the optimal (maximum AUC)
feature set.
The final set of 54 features, in order of selection by

the mRMR algorithm, is the following (see Sec. Fea-
ture Extraction for a description of the characteris-
tics): SASA.pdb, NT_M, away.ptm, CT_Q, CT_F, NT_R,
NT_D, Met2Y, CT_L, nF.pdb, NT_I, Met2S, dpx,

CT_G, NT_C, nY.chain, CT_D, NT_W, sd.entropy,
CT_E, CT_H, CT_M, closestAro.chain, NT_K, CT_V,
CT_A, closer10A.pdb, CT_R, CT_N, NT_A, NT_P,
NT_N, CT_C, NT_L, SASA.chain, NT_E, CT_P, NT_H,
CT_T, NT_F, NT_V, CT_K, NT_G, NT_T, Bfactor,
nW.pdb, entropy, NT_Q, CT_S, NT_Y, CT_I, NT_S,
Fd.pdb and CT_Y.
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