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Abstract

Background: Drug-drug interactions (DDIs) often bring unexpected side effects. The clinical recognition of DDlIs is
a crucial issue for both patient safety and healthcare cost control. However, although text-mining-based systems
explore various methods to classify DDIs, the classification performance with regard to DDIs in long and complex

sentences is still unsatisfactory.

Methods: In this study, we propose an effective model that classifies DDIs from the literature by combining an
attention mechanism and a recurrent neural network with long short-term memory (LSTM) units. In our approach,
first, a candidate-drug-oriented input attention acting on word-embedding vectors automatically learns which
words are more influential for a given drug pair. Next, the inputs merging the position- and POS-embedding
vectors are passed to a bidirectional LSTM layer whose outputs at the last time step represent the high-level
semantic information of the whole sentence. Finally, a softmax layer performs DDI classification.

Results: Experimental results from the DDIExtraction 2013 corpus show that our system performs the best with
respect to detection and classification (84.0% and 77.3%, respectively) compared with other state-of-the-art
methods. In particular, for the Medline-2013 dataset with long and complex sentences, our F-score far exceeds

those of top-ranking systems by 12.6%.

Conclusions: Our approach effectively improves the performance of DDI classification tasks. Experimental analysis
demonstrates that our model performs better with respect to recognizing not only close-range but also long-range
patterns among words, especially for long, complex and compound sentences.
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Background

Therapy with multiple drugs is a common phenomenon
in most treatment procedures. Drug—drug interactions
(DDIs) occur when one administered drug influences
the level or activity of another drug. DDIs often lead to
unexpected side effects or a variety of adverse drug reac-
tions (ADRs) [1]. DDIs are one of the main reasons for
the majority of medical errors. Based on their financial,
social and health costs, the recognition and prediction of
DDIs, and hence their prevention, can greatly benefit
patients and health care systems [2].
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Today, huge amounts of the most current and valuable
unstructured information relevant to DDIs are hidden in
specialized databases and scientific literature. Text mining
based on computerized techniques may recognize patterns
and discover knowledge from various available biological
databases and unstructured texts [3—5]. Hence, the use of
text-mining techniques to recognize DDIs from databases
and texts is a promising approach. In addition, this tech-
nique contributes to the automation of the database cur-
ation process, which is currently performed manually, and
the building of a biomedical knowledge graph [6].

To improve and evaluate performance with respect to
classifying DDIs from biomedical texts, DDIExtraction
challenges in 2011 (DDI-2011) [7] and 2013 (DDI-2013)
[8] were organized successfully. Each challenge provided
a benchmark corpus. DDI-2013 not only focused on the
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identification of all possible pairs of interacting drugs
(the detection task) but also proposed a more fine-
grained classification of each true DDI (the classification
task). The two tasks are regarded as binary and multi-
class classification problems, respectively. In particular,
the DDI-2013 corpus [9] consists of texts selected from
the DrugBank database (DB-2013 dataset) and MEDLINE
abstracts (ML-2013 dataset). They contain sentences with
different styles. The DB-2013 dataset contains short and
concise sentences, while the ML-2013 dataset usually
contains long and subordinated sentences that are charac-
terized by scientific language. Overall, the performance of
existing DDI classification systems decreases drastically
for long and complex sentences [10], which may be one of
the main reasons for the lower F-score obtained on the
ML-2013 dataset than that on the DB-2013 dataset.

Traditional studies of DDI tasks mainly use machine-
learning methods such as support vector machine
(SVM). In general, features such as word-level features,
dependency graphs, and parser trees are designed manu-
ally by SVM-based systems [11-17], which have per-
formed well during the past decade. Natural language
processing (NLP) toolkits such as syntactic and depend-
ency parsers are exploited to parse sentences, which un-
avoidably brings some unexpected errors, especially for
long sentences. At present, feature extraction is still a
skill-dependent task that is performed on a trial-and-error
basis. In addition, it has limited lexical generalization
abilities for unseen words.

By contrast, neural network (NN)-based methods are
automatic representation-learning methods with mul-
tiple levels of representation, which are obtained by
composing simple but non-linear modules that each
transform the representation at one level into a repre-
sentation at a higher, slightly more abstract level [18].
Recently, deep neural network models have shown
promising results for many NLP tasks [19, 20]. There
are two main neural network architectures: convolu-
tional neural network (CNN) and recurrent neural net-
work (RNN).

CNN with a fixed-size convolution window can cap-
ture the contextual information of a word, which is simi-
lar to the traditional n-gram feature. For the DDI-2013
tasks, these CNN-based systems [21-23] have performed
well. However, the best performance (an F-score of
52.1%) on the ML-2013 dataset is not satisfactory. The
semantic meaning of a drug-drug interaction in a sen-
tence may appear in a few words before, in between, or
after the candidate drug pair. The ML-2013 dataset has
sentences with relatively longer and more complex
structures than those of the DB-2013 dataset. Thus,
some meaningful contexts that are relevant to a particu-
lar DDI are possibly non-consecutive, and there may be
longer spans among them. However, the goal of CNN is
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to generalize local and consecutive contexts. Therefore,
CNN is potentially weak, especially for learning long-
distance patterns. CNN-based approaches that utilize
multiple window sizes, dependency paths and sufficiently
stacked CNN layers can solve the difficulty of CNN
models in learning long-distance patterns in part. How-
ever, stacked CNN layers are generally harder to train
than gated RNNs. In addition, they all either require
much higher computational costs or face errors caused
by a dependency parser.

By contrast, RNN with long short-term memory
(LSTM) units, which is a temporal sequence model,
adaptively accumulates context information of the whole
sentence through memory units. Thereby, RNN is suit-
able for modelling long sentences without a fixed length
because it has the power to learn the global and possibly
non-consecutive patterns. Moreover, there are some suc-
cessful RNN-based applications [17, 24, 25] for relation
classification. However, words need to be transmitted
one by one along the sequence in an RNN. Therefore,
some important contextual information (for example,
long-distance dependencies among words) could be lost
in the transmission process for long texts [26].

Currently, some systems exploit the attention mechan-
ism to address this issue. Attention-based models have
shown great success in many NLP tasks such as machine
translation [20, 27], question answering [28, 29] and rec-
ognizing textual entailments [30]. In the context of rela-
tion classification, the attention mechanism, weighing of
text segments (e.g., word or sentence) or some high-
level feature representations obtained by learning a scor-
ing function allows a model to pay more attention to the
most influential segments of texts for a relationship cat-
egory. Wang et al. [31] propose a CNN architecture
based on two levels of attention for relation classification
of general domains. The joint AB-LSTM model [32]
combines a general pooling attention with LSTM for
DDI classification. However, related experiments indi-
cate that the introduction of pooling attention fails to
improve the performance of DDI classification tasks.

In this work, with simplicity and effectiveness in mind,
we extracted DDIs from biomedical texts using an
attention-based neural network model called Att-BLSTM
that uses RNN with LSTM units. First, a candidate-
drug-oriented input attention on the representation layer
was designed to automatically learn which words are
more influential for a given drug pair. Next, outputs of a
bidirectional LSTM at the last time step represent high-
level features of sentences. Finally, a softmax classifier
conducted DDI classification. Experimental results on
the DDIExtraction 2013 corpus indicate that our model
yields F-score boosts of up to 2.2% and 5.8% over the
current top-ranking systems for DDI detection and clas-
sification, respectively, in addition to the best F-score on
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all interaction types, especially for the Medline-2013
dataset on which our F-score outperforms the existing
best result by 12.6%. Our model significantly improves
performance with respect to three datasets. Experiments
demonstrate that our model, with an attention mech-
anism and fewer features, can better recognize long-
range dependency patterns among words in sentences,
especially in long, complex and compound sentences.

Methods

In this section, we describe the proposed network model
for extracting relations of drug—drug interactions from
biomedical texts in detail.

Text preprocessing

Basic processing

We first completed several common preprocessing steps
on both training and test data. A special tag replaced
each digit string that is not a substring of a drug entity.
A bracket without either of the candidate drugs was de-
leted. For the generalization of our approach, all drug men-
tions were anonymized using drug* (* denotes 0, 1, 2, ...).
Sentences of the test dataset with only one entity or two en-
tities with the same token were filtered out because of the
impossibility of a relation.

Following-based anaphora

After the DDIExtraction-2013 shared tasks, the error
analysis of Segura-Bedmar et al. [10] indicates that one
of the most important factors contributing to false
negatives in DrugBank texts is the lack of coreference
resolution. Rules in our approach were defined for
some sentence patterns, including the phrase ‘following
[cataphora word] with a colon, where the two entities
of a candidate drug pair are on either side of the colon.
We may also call this the resolution of the following-
based cataphora. In the subsequent pattern, [w/* denotes
one or more words.

Case 1: drugl [w]* following [cataphora word]: [w]*
drug2 [w]* Replaced with: drugl [w]* following drug?2.

Case 2: [w]* following [cataphora word] [w]* drug2:[w]*
drugl [w]* Replaced with: [w]* following drugl [w]*
drug2.

Nevertheless, these rules do not work for the ML-2013
dataset, which has hardly any sentences with the above
cases.

Pruned sentences

If there are overlong texts in a sentence, except texts
between a candidate drug pair, redundant information
will decrease the detection and classification perfor-
mances. Therefore, we pruned each sentence to the fixed
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input length. After computing the maximal separation
between a pair of candidate drugs, we chose an input
width that is n greater than the separation. Each input
sentence was made of this length by either trimming
longer sentences or padding shorter sentences with a
special token.

Network architecture

Considering the advantages of LSTM in long-distance
pattern learning, we still introduced the attention mech-
anism into our model to overcome the bias defect of
LSTM to some extent. Figure 1 gives an overview of the
network architecture. The model is composed of six
layers: (1) the input layer to accept three types of infor-
mation, namely, word, part of speech (POS) and relative
distances between a word and each candidate drug in an
input sentence; (2) the embedding layer to look up tables
to encode the above input into real-valued vectors (also
called embedding vectors); (3) the input attention layer
to weight word-embedding vectors, which are the most
influential for the relationship between a pair of special
candidate drugs; (4) the merge layer to connect three
corresponding embedding vectors into a vector by
words; (5) a bidirectional RNN with LSTM units to learn
the high-level syntactic meaning of the whole sentence
and pass outputs at the last time step to the next layer;
and (6) the logistic regression layer with a softmax func-
tion to perform DDI classification. The main layers will
be described in detail in the following sections.

Input representation

After transforming inputs into various embedding vec-
tors, our model feeds them to the subsequent layer.
Word embedding, which was proposed by Bengio [33]
(also known as distributed word representation), maps
words to a low-dimensional and dense real space. It is
able to capture some underlying semantic and syntactic
information around words by learning from large
amounts of unlabelled data. Word embedding reflects
the topic similarity among words and improves their
generalization to some extent.

Input feature

Given a pruned sentence S = {w;, Wy, ..., w;, ..., w,;}, each
word w; is represented as three features: the word itself,
part of speech and position. Each feature group has an
embedding vocabulary. The position feature proposed by
Zeng [34] was also introduced into our model to reflect
the relative distances (d;; and d;5) between the current
word w; and two candidate drug mentions.

In addition, the semantic meaning of a word w; that is
reflected in a given sentence may be not necessarily con-
sistent with its embedding vector. For example, the word
“effect” is a noun as well as a verb. However, when it
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Fig. 1 The model architecture with input attention. Note: Drug0 and drug1 are the candidate drug pair

appears in different sentences with different POSs, its
embedding vectors are still identical. Therefore, the
POS feature is informative for DDI extraction. Our
model combined a word with its POS tag (such as
NN,VB,DT) to distinguish its semantic meaning in
different sentences. We obtained POS tags by using
the Stanford Parser [35] to parse above processed
sentences.

Embedding layer
Each feature group of the input layer has a corresponding

embedding layer. Suppose V"™ is the embedding vo-
cabulary for the k-th (k = 1, 2, 3) feature group, where n1;
is the dimensionality (a hyper-parameter) of the embed-
ding vector of a feature and /y is the number of features in
the vocabulary V. Each embedding vocabulary can be
initialized either by a random process or by some pre-
trained word embedding vectors. For a word w;, the em-
bedding layer maps the index token of each feature to a
real-valued row vector by looking up its corresponding
embedding vocabulary.

Input attention

Attention mechanisms have been successfully applied to
sequence-to-sequence learning tasks. For relation classi-
fication tasks, attention mechanisms are able to learn a
weight for each word of a sentence to reflect its level of
effect on the final classification result. For a pair of can-
didate drugs, the DDI tasks aim to classify their relation.

It is obvious that not all words contribute equally to the
sentence meaning that determines their relationship
type. We expected that our model has the ability to de-
termine which words of the sentence are the most influ-
ential for the relationship between a pair of special
candidate drugs. Therefore, our model applied an atten-
tion mechanism to input word embedding for this pur-
pose. We exploited two row vectors & (jel,2), whose
size equals the maximum length #n of the sentence, to
quantify the relevance degree of every word w; of a sen-
tence with respect to the j-th drug candidate e;.
o/lj = soft max (score(uy,, u,)) (1)
Here, u,, and u, are word-embedding vectors of the
word w; and the drug candidate e;, respectively. The
score function is referred to as a candidate-drug-oriented
function, for which we consider the following two alter-
natives: dot-score and cos-score:

dot(u,,, ue,.)

dot-score(u,, u,,) =
m

(izn)

(2)

(i<hn)

cos-score(ty,, ;) = Cos(thy,, Ue,) (3)

Here, the symbols dot and cos denote the dot-
product and cosine operations on two vectors u,, and
u,, respectively. m; is the dimensionality of the word
embedding vector. Then, the candidate-drug-oriented
embedding vector w{ is derived from the combined
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effects of the two factors a} and a? acting on the ori-
ginal embedding vector u,, of the word w;

al +a?
=Ty @
W= (5)

Here, the symbol * denotes element-wise multiplica-
tion. For the sake of comparison, we still provide a non-
candidate-drug-oriented function, tanh-score:

tanh-score(S,,) = V tanh(WS,, + b) (6)

where V and W are learned matrices, S,, is the embed-
ding matrix of the sentence, and the size of the function
tanh-score is same as that of the above o’

Finally, these vectors, including word embedding w¢,
POS embedding w” and position embedding w?l, w??
are concatenated into a new single vector x; = w¢| |
w! | |wi| |[w? to represent the word w;, where x;€
R” (m=mq + my + 2m3). As a result, the sentence S
is a sequence of real-valued vectors S, = {1, %2, ...,
Kiy ey Xy}

Recurrent neural network with long short-term memory
units

The DDI tasks are relation classifications at the sentence
level. In our model, the recurrent layer plays a key role
in learning both the long-range and close-range patterns
among words in sequence texts.

Theoretically, an RNN [36] has the ability to process a
sequence of arbitrary length by recursively applying a
transition function to the internal hidden state vector of
its memory unit. However, if a sequence is overlong, gra-
dient vectors of the back-propagation algorithm tend to
grow or decay exponentially [37-39] in the process of
training. The LSTM network [39] was proposed by
Hochreiter and Schmidhuber to specifically address this
issue. LSTM introduces a separate memory cell with an
adaptive gating mechanism, which determines the de-
gree to which LSTM units maintain their previous
states, and updates and exposes extracted features of the
current data input. In our model, we adopted the imple-
mentation used by Graves [40].

In addition, RNN is a biased model, where later inputs
are more dominant than earlier inputs if it is used to en-
code a sentence. For the DDI tasks, the effective features
for the relation between two candidate drugs might not
necessarily appear in front of the current word, and the
future words may play a part in the training process of
DDI classification. Therefore, our model applied a bi-
directional LSTM (BLSTM). For the word w;, the two
LSTMs pick up available contextual information along
the sentence forwards and backwards, which takes
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advantage of the previous and future context of the
current term to some extent. Thus, BLSTM better cap-
tures the global semantic representation of an input

sentence. Outputs (h*,; and A, ) of the two LSTMs at
the last time step n are concatenated into a vector

h, =Z| |<hj that reflects high-level features of the
whole sentence.

Training and classification

The softmax layer, a logistic regression classifier with a
softmax function, classifies the relation between a pair of
drugs. It takes the output &, of BLSTM as its input. Its
output is the probability distribution over each label type
for the relation between the candidate drugs in the sen-
tence S. The label with the maximum probability value
is the interaction type of a candidate drug pair.

ply =j|S) = soft max (h,Ws + bs) (7)
y=arg max(p(y = j9) ) (8)

where the symbol C is the set of DDI labels, Wy is a
learned matrix that maps the vector A, linearly to the
number of DDI labels, and by is a learned bias vector.

The training objective is the cross-entropy cost func-
tion, which is the negative log-likelihood of the true
class label y® of each predicted sentence S%:

/
1(0) = -7 logoly¥s¥) )
k=1

where [ is the number of labelled sentences in the train-
ing set and the superscript k indicates the k-th labelled
sentence. We applied RMSprop (Resilient Mean Square
Propagation) to update parameters with respect to the
cost function because RMSprop is empirically an appro-
priate optimization algorithm for learning the RNN-
based model [41]. RMSprop does not need to adjust the
learning rate manually in the process of iteration, and
moreover, it has better convergence and fast conver-
gence rate.

Results and discussion

Datasets

The training and test datasets

We trained the proposed model on the DDI-2013 cor-
pus, including three datasets: DB-2013, ML-2013 and
their union set (Overall-2013). All drug mentions and
drug pairs in each sentence are annotated manually.
Each drug pair is annotated as either no interaction or
true interaction (the detection task), with more fine-
gained annotations consisting of four labels: “mechanism”,
“effect”, “advice” and “int” (the classification task). Table 1
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Table 1 Statistics for DDI- 2013 corpus Table 2 Hyperparameters

Instances DD type DB-2013 ML-2013 Parameter Parameter name Value

Training set  Test set Training set  Test set m; Word emb.Size 200

Positive  mechanism 1257 278 62 24 m, & ms POS&position emb.Size 10
effect 1535 298 152 62 n The length of a pruned sentence 85
advice 818 214 8 7 Mini-batch Minimal batch 128
int 178 94 10 2 LSTM dim. the number of hidden units 230
Total 3788 884 232 95

Negative 22217 4381 1555 401 as shown in Fig. 2. On the one hand, vectors do not con-

Total 26,005 5965 1787 434 tain enough semantic information because of the small di-

lists the statistics of this corpus. A total of 330 and 62
negative instances on the DB-2013 and ML-2013 test
datasets were filtered out by the basic preprocessing stage,
respectively. In particular, for the ML-2013 dataset, we
trained our system on the combination of the DB-2013
and ML-2013 training datasets, as suggested by [11].

The pre-training corpus of embedding vectors

The pre-training corpus for word representations, which is
approximately 2.5 gigabytes in size, consists of two parts.
One part comes from all abstracts before 2016 that were
obtained by querying the key word “drug” in the PubMed
database, and the other one is the texts of the DDI-2013
corpus. Compared with the one-hot representation of POS
tags, Zhao's experiments [23] indicate that POS representa-
tions encoded by using an auto-encoder neural network
model have a better effect on the performance of a system.
However, vectors encoded by an auto-encoder might con-
tain little semantic information. Therefore, our POS train-
ing corpus contains only sentences of the DDI-2013 corpus
that are labelled with POS tags (43 POS tags). The two
types of embedding vectors were trained by the word2vec
tool (https://code.google.com/p/word2vec/) [42]. The pos-
ition embedding vectors were initialized with random
values that follow the standard normal distribution.

Evaluation metrics

The performance of our system is evaluated by the
standard evaluation measures (precision, recall and F-
score). F-score is defined as F = (2PR) / (P + R), where P
denotes the precision and R denotes the recall rate. F-
score can play a balancing role between P and R.

Hyperparameters
Keras library was used to implement our model. We
tuned the hyperparameters of our model to optimize
system performance by conducting 5-fold sentence-level
cross-validation on the training set. The choices gener-
ated by this process are listed in Table 2.

The dimensionality of word-embedding vectors
(m; = 200 in our model) could affect system performance,

mension. On the other hand, with the increase in the
dimension, embedding vectors bring much more noise
despite their richer semantics. Meanwhile, a system
needs to spend more training time with the increasing
complexity of the model. The dimensionality m, of the
position-embedding vectors was set as 10, as used by
Zeng [34]. Figure 3 shows that our model achieves the
best F-score when the maximal separation between
candidate drugs is less than 75, which contains all posi-
tive instances of three datasets. According to this result,
we kept at least five extra words before and after two
candidate drugs. Therefore, we set the length n of a
pruned sentence as 85. We output results at each
epoch. When the epoch numbers are nearly 131, 128
and 58 for the Overall-2013, DB-2013 and ML-2013
datasets, respectively, our model achieved better per-
formance on the corresponding dataset. The number of
hidden units (230) of LSTM was set as the same size of
input dimension of the LSTM layer to simplify our
research.

For RMSprop optimization, we set the learning rate
Ir = 0.001 and the momentum item parameter r/0 = 0.9,
as suggested by Tieleman et al. [41]. To alleviate the
over-fitting problem, dropout [43] was applied to the
LSTM and softmax layers on feed-forward networks.
Dropout has improved the performance of many systems

7800 F-Dim

1675
7550 e
135 !
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0 50 100 150 200 250 300 350 400 450
dim

Fig. 2 Evaluation of the dimensionality of word embedding when

our model without the attention mechanism was trained
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because it reduces the interdependency of neural units
by randomly omitting feature detectors from the net-
work during the training. The dropout rate was set to
0.5 in our model, as used by Hinton et al. [43].

Effects of input attention

We examined different score functions as described in
section 2. The results in Table 3 show that candidate-
drug-oriented score functions are superior in perform-
ance to those without the special target (e.g., tanh). The
tanh-score function equivalently adds a hidden layer to
the network, so performance drastically decreases with
increasing complexity and noise of the model. Figure 4
shows an example for the word-level attention values
calculated by dot-score used in our model, Att-BLSTM.
We find that the words “synergism”, “combined” and
“when” have higher attention values than other words.
This seems sensible in light of the ground-truth labelling
as an “effect” relationship (between drug0 and drugl).
Hence, we might infer that the introduction of input
attention highlights those influential words and makes
semantic relationships between candidate drugs clear. It
can be seen from Table 5 that the F-score of the model
with input attention increases 23.7% over that of the
model without input attention when only word embed-
ding is considered. On the one hand, this result supports

Table 3 Performance of different score functions for the DDI
classificaton on the Overall-2013 dataset
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Fig. 4 Input attention visualization. Note: Drug0 and drug1 are the
candidate drug pair

Score function P (%) R(%) F(%)
Base_BLSTM 740 786 76.2
dot-score 784 76.2 77.3
cos-score 763 76.5 764
Tanh-score 67.9 659 66.9

Base_BLSTM is the BLSTM model without an attention mechanism which uses
our all preprocessing techniques and all input embeddings including word,
POS and position embedding

J

the above conclusion to some extent. On the other hand,
it also indicates that a high F-score can be achieved by
only using word embedding for the proposed model. To
analyse the effect of input attention on the distance
between candidate drugs, we group sentences in which
the distance is lower than a fixed length in the training
and test datasets. Figure 3 shows that the performance
of Att-BLSTM with input attention is distinctly superior
to those of Base-BLSTM without an attention mechanism
when the distance is greater than 50, whereas the Base-
BLSTM is slightly better when the distance is less than 50.
The following reasons may explain this phenomenon. For
short sentences, the Base-BLSTM model might have the
ability to learn adequately from its network. Input atten-
tion equivalently appends additional restrictions to the
model and requires semantic meanings to match strictly,
which causes Att-BLSTM to misclassify some sentences
with ambiguous semantics. However, the bias characteris-
tic of BLSTM causes some important information to be
disregarded when a sentence becomes longer. Hence,
Base-BLSTM misclassifies more negative instances as
positive instances as the number of positive instances in-
creases. However, input attention in the proposed model
makes up for this shortcoming. Att-BLSTM misclassifies
fewer false-positive instances (fp) than Base-LSTM, des-
pite the fact that the number of true-positive instances
(tp) recognized by Att-BLSTM has slightly decreased.
Table 4 lists the number of different instances detected by
Base-BLSTM and Att-BLSTM on the Overall-2013 data-
set. Comparing tp and fp between Base-LSTM and

Table 4 The number of different instances detected by two
models for the DDI classificaton on the Overall-2013 dataset

Model tp fp fn tp+fn
Base_BLSTM 769 270 210 979
Att-BLSTM 746 205 233 979

tp denotes the number of true-positive instances, fp denotes the number of
false-positive instances, and fn denotes the number of false-negative instances
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Att-BLSTM, the decrease in fp for Att-LSTM is nearly
three times that of tp (65 vs. 23). Therefore, it can be
seen from Table 3 that the introduction of the atten-
tion layer increases the precision and decreases the
recall for the two candidate-drug-oriented attention
models.

Nonetheless, input attention will not work when the
distance between two drugs exceeds a threshold value.
However, in practice, the distances used in our experi-
ments should meet most of needs of relation classifica-
tion at the sentence level.

Effects of input representations

We conducted experiments to evaluate the effectiveness
of the strategies adopted in our method. In addition to
the three embedding vectors, our model also processes
the following-based cataphora and prunes sentences.
Tables 5 and 6 show the effects of these steps on the
performance of our model.

The position feature is an important factor that
influences performance. The F-score increases by 4.7%
when position embedding is introduced. Our model with
the position feature further intensifies the significant
contextual combination by distinguishing semantic
meanings from the current word and drug entities.
Moreover, the proposed model further improves the F-
score when POS embedding is incorporated. Furthermore,
it can be seen from Table 6 that some preprocessing of
the given sentences effectively improves the performance
of our system. However, our model also performs well
even if texts are not pre-processed.

Performance comparisons with other systems
To evaluate our approach, we compared our system with
top-ranking systems in the DDI tasks.

Other systems for comparison

For the DDI tasks, most existing systems are based on
either SVM or NN. We compare the performance of the
proposed model with those of the following baseline

Table 5 Performance changes with different input
representations on the overall-2013 dataset

Input representation P(%) R(%) F(%)
(1): word without attention 54.7 428 480
(2): word + att 76.5 67.5 717
(3): word + att + pos 709 74.7 72.7
(4): word + att + position 79.1 739 764
(5): word + att + pos + position 784 76.2 773

Every model in this table uses all preprocessing techniques of our approach.
Word without attention denotes the model without the attention mechanism
which uses only word embedding. Word + att denotes the model which uses
the attention mechanism and word embedding
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Table 6 Performance changes with different preprocessing
procedures on the overall-2013 dataset

Processing procedure P (%) R(%) F(%)
(1): only candidate drugs replaced 759 68.7 715
(2): basic processing 775 723 74.8
(3): (2) + Following anaphora 76.9 76.5 76.7
(4): 3) + Pruned Sentences 784 762 773

Every model in this table uses three input embeddings of our approach

methods. All compared systems have performs well and
have their own pros and cons.

(1)SVM-based methods: SVM-based methods com-
monly depend either on carefully handcrafted fea-
tures or on elaborately designed kernels, which
replace the dot product with a similarity function
between two vectors. RAIHANI [17] designs many
rules and features such as chunk, trigger words, fil-
tering negative sentence and SAME_BLOK. This sys-
tem still designs different features for the SVM
classifier of each subtype. FBK-irst [11] combines
different characteristics of three kernels. UTurku
[14] uses informatics from domain resources such as
DrugBank, in addition to sentence and dependency
features.

(2)NN-based methods: NN-based methods learn the
high-level representation of a sentence by the CNN
or LSTM architecture. For CNN-based systems,
MCCNN [21] uses multichannel word embedding
vectors and SCNN [23] combines traditional features
and embedding-based convolutional features. For
LSTM-based methods, joint AB-LSTM combines
two LSTM networks, one of which exploits the
pooling attention. For the above methods, word em-
bedding is an indispensable feature; position embed-
ding is used by all of them except MCCNN, and
some filtering techniques are exploited to rule out ir-
relevant negative instances, in addition to common
preprocessing techniques for texts.

Overall performance

Table 7 shows that our model achieves the best perform-
ance on the Overall-2013 test dataset for both DDI de-
tection (DEC) and DDI classification (CLA). Our F-
scores for the two tasks are 2.2% and 5.8% higher than
those of current best results, respectively. In addition,
we observe from Table 8 that our A#-BLSTM has the
characteristics of both higher precision and higher recall
on the three datasets, while most existing systems have
relatively lower recall values. To give every model a fair
comparison, Table 9 lists performance of NN-based sys-
tems on the overall-2013 dataset for DDI classification if
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Table 7 Performance comparisons (F-score) with top-ranking
systems on the overall-2013 dataset for DDI detection and DD
classification

Method Team CLA DEC MEC EFF  ADV INT
SVM RAIHANI [17] 711 815 736 696 774 524
Context-Vector [15] 684 81.8 669 713 714 516
Kim [16] 670 775 693 662 725 483
FBK-irst [11] 65.1 800 679 628 692 547
WBI [12] 609 759 618 610 632 510
UTurku [14] 594 699 582 600 630 507
NN Jjoint AB-LSTM [32] 715 803 763 676 794 431
MCCNN [21] 702 790 722 682 782 51.0
Liu CNN [22] 698 - 702 693 778 484
Zhao SCNN [23] 686 772 - - - -
Ours Att-BLSTM 773 840 775 766 851 57.7

The listed results come from the corresponding papers. The symbol “-"
denotes no corresponding values, because the related paper did not provide
complete results (similarly hereinafter). “DEC” only indicates DDI detection.
“CLA" indicates DDI classification. “MEC”, “EFF", “ADV" and “INT" denote
“mechanism”, “effect”, “advice” and “int" types, respectively. The highest scores
are highlighted in bold

systems don’t use main text processing techniques. Our
model only replaces the candidate drugs (row (1) in
Table 6), while other systems use basic text processing
and replaced candidate drugs (negative instances aren’t
filtered). We don’t provide comparisons with SVM-
based systems. One of the reasons is that these systems
have the different kind of architecture with ours. More-
over, most systems didn’t provide their source codes,
and their papers didn’t present results of text prepro-
cessing on the overall-2013 dataset either.

Performance on interaction types
In addition, as far as the performance of all four
interaction types are concerned, Table 7 shows that
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Att-BLSTM far surpasses other systems. The four
interaction types in descending order of the degree of
classification difficulty are “int”, “effect”, “mechanism”
and “advice”. The performance of each subtype is
shown in Table 10. Compared with the CNN-based
and other LSTM-based systems, Att-BLSTM achieves
obvious increases in F-score of 6.7% and 14.6% on
the “int” type with the fewest training and test in-
stances and of 8.4% and 9.0% on the “effect” type with
high semantic complexities, respectively. Moreover,
our F-scores on the “mechanism” and “advice” types
show more than 1.2% and 5.7% relative improvements
compared with the best values, respectively.

Performance on the ML-2013 and DB-2013 datasets

To compare the performance on different types of docu-
ments, the results from the ML-2013 and DB-2013 data-
sets are shown in Table 8. It should be noted that our
performance represents a significant improvement on
the ML-2013 dataset for DDI classification. Our F-
score exceeds those of the best existing systems by
more than 12.6%. Meanwhile, our F-score on the DB-
2013 dataset outperforms those of the best NN-based
and SVM-based systems by more than 5.8% and 3.3%,
respectively.

Performance analysis

The associated contexts of a word might have a longer
span due to the characteristics of the DDI-2013 corpus.
Therefore, it is especially important to capture relations
among long-range words. However, some global and
possibly non-consecutive patterns cannot be adequately
learned by CNN-based and SVM-based systems. Al-
though RAIHANI [17] has the best F-score of the
SVM-based systems, this system depends too much on
NLP toolkits and manual intervention. For CNN-based
systems [21-23], Zhang’s experiments [24] demonstrate

Table 8 Performance comparisons (F-score) with top-ranking systems on the three datasets

Method Team DB-2013 ML-2013 Overall-2013
P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%0) F(%)
SVM RAIHANI [17] - - 74.0 - - 43.0 73.7 68.7 711
Context-Vector [15] - - 724 - - 52.0 - - 68.4
Kim [16] - - 69.8 - - 382 - - 67.0
FBK-irst [11] 66.7 68.6 67.6 419 379 39.8 64.6 65.6 65.1
WBI [12] 65.7 60.9 63.2 453 30.5 36.5 64.2 579 60.9
UTurku [14] 73.8 535 62.0 59.3 16.8 26.2 732 499 594
NN MCCNN [21] - - 70.8 - - - 76.0 65.3 70.2
Liu CNN [22] 77.0 66.7 715 61.4 45.3 52.1 757 64.7 69.8
Zhao SCNN [23] 736 67.0 70.2 394 39.1 39.2 725 65.1 68.6
Ours Att-BLSTM 78.9 75.7 77.3 71.8 59.0 64.7 78.4 76.2 77.3

The highest scores are highlighted in bold



Zheng et al. BVIC Bioinformatics (2017) 18:445

Table 9 Performance comparisons (F-score) with NN-based
systems on the overall-2013 dataset for DDI classification if
systems don't use main processing techniques

Method Team P (%) R(%) F(%)
NN-based joint AB-LSTM [32] 713 66.9 69.3
MCCNN [21] - - 67.8
Liu CNN [22] 753 604 67.0
Zhao SCNN [23] 68.5 61.0 64.5
Our model Att-BLSTM 75.9 68.7 71.5

The listed results come from the corresponding papers. The symbol “-"
denotes no corresponding values, because the related paper did not provide
complete results. Our model only replaces the candidate drugs (row (1) in
Table 6), while other systems use basic text processing and replaced candidate
drugs (negative instances aren't filtered). The highest scores are highlighted

in bold

that CNN splits the semantic meaning into separate
word segments and mixes them together so that it
learns only local patterns for classification tasks.

By contrast, our approach has the ability to identify
the dependency patterns of long-distance words. There
are two main reasons for this. One reason is to exploit
the characteristic of LSTM that adaptively accumulates
contextual information word by word. The semantic
meaning (the output at the last time step) of our BLSTM
layer with fitted input features is actually based on con-
tributions of all words in a sentence. Thus, our model
can adequately capture the integrated contextual infor-
mation. Experiments [24] indicate that RNN-based sys-
tems are similar to CNN-based systems in performance
when the distance among interdependent words has a
relatively small span; otherwise, RNN has clear advan-
tages over CNN. In this respect, the joint AB-LSTM
model [32] uses the same BLSTM as ours.

The other reason for the significant improvement in
our performance may be the contribution of input atten-
tion that targets the candidate drugs. It provides more
targeted semantic matching and causes our model to ex-
plicitly find important cue words. Consequently, the
introduction of input attention further enhances the
memory of LSTM of influential segments for classifying
the relation between a long-distance drug pair. There-
fore, our model is able to classify DDI types effectively
(see Fig. 3). Finally, the above two reasons also lead to a
large margin of performance improvement on the ML-
2013 dataset with sentences of more complex

Table 10 Performance of interaction types on the overall-2013

dataset

Subtype P(%) R(%) F(%)
EFF 719 819 76.6
MEC 84.1 719 775
ADV 84.8 855 85.1
INT 75.0 46.9 57.7
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subordinated structures. In the case of the attention
mechanism, although the joint AB-LSTM model [32]
also intends to exploit the attention mechanism to cap-
ture the important clues for DDI classification, their ex-
periments demonstrate that the introduced attentive
pooling degrades rather than increases their F-score.
The reason for this finding may be that their introduced
attentive pooling is a non-targeted general approach ra-
ther than a target-specific approach. Moreover, their sys-
tem has higher time and model complexities compared
with our system because of the combination of two
LSTM models.

Furthermore, although the use of techniques to filter
negative instances by most of the systems partly balances
the biased dataset, many positive instances are removed
from the training set, which causes their model to lose
many learning opportunities.

Conclusion

In this study, we applied a neural network model, Att-
BLSTM, based on RNN with LSTM units and an atten-
tion mechanism for classifying DDIs from biomedical
texts. By introducing input attention, our model over-
comes the bias deficiency of LSTM to some extent,
which omits some important previous information when
processing long sentences. The proposed model only de-
pends on three input embedding vectors and the simple
network architecture. Our model achieves a good over-
all performance on the detection and classification
tasks for the DDI-2013 corpus. In particular, our F-
score far outperforms the current best F-score by 12.6%
on the ML-2013 dataset, which indicates the effective-
ness of our approach. Experimental analysis indicates
that our approach can effectively recognize not only
close-range but also long-range patterns among words
in long and complex sentences.
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