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Abstract

Background: Predicting disease-associated genes is helpful for understanding the molecular mechanisms during
the disease progression. Since the pathological mechanisms of neurodegenerative diseases are very complex,
traditional statistic-based methods are not suitable for identifying key genes related to the disease development.
Recent studies have shown that the computational models with deep structure can learn automatically the features
of biological data, which is useful for exploring the characteristics of gene expression during the disease progression.

Results: In this paper, we propose a deep learning approach based on the restricted Boltzmann machine to analyze
the RNA-seq data of Huntington's disease, namely stacked restricted Boltzmann machine (SRBM). According to the
SRBM, we also design a novel framework to screen the key genes during the Huntington’s disease development. In
this work, we assume that the effects of regulatory factors can be captured by the hierarchical structure and narrow
hidden layers of the SRBM. First, we select disease-associated factors with different time period datasets according to
the differentially activated neurons in hidden layers. Then, we select disease-associated genes according to the
changes of the gene energy in SRBM at different time periods.

Conclusions: The experimental results demonstrate that SRBM can detect the important information for differential
analysis of time series gene expression datasets. The identification accuracy of the disease-associated genes is
improved to some extent using the novel framework. Moreover, the prediction precision of disease-associated genes
for top ranking genes using SRBM is effectively improved compared with that of the state of the art methods.

Keywords: Restricted Boltzmann machine, Key genes associated to the disease progression, Huntington'’s disease,
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Background

Neurodegenerative disease is a type of chronic degen-
erative disease in the central nervous system with the
degenerative changes of the neuronal cells in brain and
spinal cord. The symptoms of the neurodegenerative
disease deteriorate slowly and eventually lead to death
[1, 2]. Thereinto, the Huntington’s disease is due to
a triplet (CAG) repeat elongation in the Huntington
gene (IT15), which further affects numerous interactions
between molecules. With the accumulation of the variant
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Htt protein in brain, a number of molecular pathways
are affected in turn, resulting in neuronal malfunction
and degeneration. Changes in Htt protein and the inter-
actions between molecules are closely associated with the
abnormalities of gene expression. It has been shown that
there exist abnormalities of gene expression among the
genes related to nerve conduction in the striatum tissue of
Huntington’s disease individuals [3, 4]. Since the com-
plexity of chronic disease, the molecular pathogenesis
of Huntington’s disease is not entirely clear. Neverthe-
less, identifying the key genes associated with the disease
deterioration can reveal useful insights into the disease
pathogenesis.

The rapid development of high-throughput sequenc-
ing technologies, especially next-generation sequencing
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methods, provides possibility for us to explore the molec-
ular mechanisms of complex disease on a genome-
wide scale. However, because of the complex etiology
of chronic diseases [5], the traditional disease-associated
gene prediction methods cannot effectively identify the
genes affected during the disease development. Gener-
ally, the disease-associated prediction methods roughly
fall into three categories: network-based methods [6, 7],
statistic-based methods [8-10], and machine learning
methods [11, 12]. At present, as a branch of machine
learning methods, the deep learning methods have
become the most advanced technology in the field of
computer vision, speech recognition and natural language
processing. Deep learning methods use the hierarchical
structure of deep neural network to conduct the nonlinear
transfer of the input data, which could learn automati-
cally the internal features that represent the original data
[13, 14]. Compared with methods that are of man-
ual designed features, the deep learning methods could
improve the prediction accuracy. Recently, the deep learn-
ing methods have been introduced into the field of bioin-
formatics. Liang et al. [15] designed a multimodal deep
belief network to conduct the integrative data analysis
on multi-platform genomic data including gene expres-
sion data, miRNA expression data, and DNA methylation
data. They used the model to detect a unified represen-
tation of latent features, capture both intra- and cross-
modality correlations, and to identify key genes that may
play distinct roles in the pathogenesis between different
cancer subtypes. Cheng et al. [16] designed a miRNA pre-
diction algorithm based on convolutional neural network
(CNN). The CNN automatically extracts essential infor-
mation from the input data while the exact miRNA target
mechanisms are not well known. Experimental results
demonstrated that the algorithm significantly improved
the prediction accuracy.

During neurodegenerative disease development, gene
expression level is affected by many factors, e.g. the
environment, impaired metabolic pathways, protein mis-
folding, etc [17-19]. Intuitively, identifying the key genes
associated with the disease development is to screen
the genes that are most seriously affected by these fac-
tors over with time. Consequently, the features that dis-
tinguish disease-related genes from non-disease-related
genes could be represented by these factors. Extracting
the deep hierarchical structure of the gene expression data
and learning the important information represented by
the decreased neurones in hidden layers are helpful to
further understand the changes of gene expression dur-
ing the disease development. In this paper, we designed
a deep learning approach based on restricted Boltzmann
machine to analyze the gene expression data [20], namely
stacked restricted Boltzmann machine (SRBM). We used
the unsupervised contrastive divergence algorithm (CD)
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to learn the parameters in each restricted Boltzmann
machine [21, 22]. By maximizing the likelihood func-
tion, the probability distribution of the hidden layer vari-
ables fitted the probability distribution of the original
data well. We trained the stacked restricted Boltzmann
machine in a greedy layer-wise fashion [23]. Because the
number of neurons in hidden layers is far smaller than
that in the visible layer, we could reduce dimensions
of the input data and capture useful high-level features
of the input data at the same time. The gene expres-
sion level is manipulated by regulatory factors. In this
work, we assume that the effects of regulatory factors
can be captured by the hierarchical structure and nar-
row hidden layers of the SRBM. We used the model
to rank the genes, aiming to make key genes that may
play important roles in the pathogenesis of Huntington’s
disease with high rankings. First, according to the dif-
ferentially activated hidden neurons obtained by gene
expression datasets at different time periods, we selected
disease-associated factors. Then, we selected disease-
associated genes according to the changes of the gene
energy in SRBM at different time periods. Experimental
results demonstrated that SRBM can detect the impor-
tant information for differential analysis of time series
gene expression datasets. The identification accuracy of
the disease-associated genes is improved to some extent.
Moreover, the prediction precision of disease-associated
genes for top ranking genes using SRBM is effectively
improved compared with that of the state of the art
methods.

The presented study is organized as follows: The deep
learning approach proposed in this paper is presented
in “Methods” section. Experiments that analyze the per-
formance of the stacked restricted Boltzmann machine
and the overall discussion of the experimental results are
reported in “Results and discussion” section. Conclusions
are presented in “Conclusions” section.

Methods

In this section, first, the stacked restricted Boltzmann
machine model and the learning method are described.
Next, we detailedly describe how the SRBM is used to
extract the disease-associated genes with gene expression
data at different disease stages. Finally, we present the
parameter setting of the SRBM.

Stacked restricted Boltzmann machine

Model

RBM is a kind of undirected probabilistic graphical model
containing a layer of observable variables and a single layer
of hidden variables [24]. In the RBM model (Fig. 1), each
visible variable connects to every hidden variable, but no
connections are allowed between any two variables within
the same layer.
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Fig. 1 Schematic illustration of RBM
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In this study, we designed a stacked restricted Boltzmann
machine to extract the hierarchical structures of gene
expression dataset. The schematic illustration of SRBM
is shown in Fig. 2. We add another RBM (denoted as
RBM2 in Fig. 2) to the original RBM (denoted as RBM1
in Fig. 2). The input of visible layer in RBM2 is the output
of hidden layer in RBM1. The dimension of gene expres-
sion data can be further reduced through the SRBM. As
the gene expression data is real-valued data, we assume
that the expression of genes obeys Gaussian distribution
[15]. We use a Gaussian-Bernoulli RBM model for RBM1.
However, variables in RBM2 are all binary numbers.

In the analysis of the gene expression dataset, the gene
expression profile of a sample is V' = (v1,v2,- -+, V),
where v; represents the expression level of gene i and ny
is the number of genes. Here, v; represents visible vari-
able and V represents a layer of visible variables. H =
(h1,ha, -+, hyy,) denotes the layer of hidden variables,
where /; represents hidden variable and # is the num-
ber of hidden variables. The weight of the corresponding

connection between hidden variable /; and visible variable
v; is wj;. The weight matrix W =[ wj;],,;; xn,, represents the
parameter setting of weights between the hidden layer and
the visible layer. Let B = (b1, by, - - - , by,,) be the bias vec-
tor of visible layer, where b; stands for the bias of visible
variable v;. Let C = (c1, ¢, - -, ¢nyy) be the bias vector of
hidden layer, where ¢; stands for the bias of hidden variable
h.
]In RBM1 (Gaussian-Bernoulli RBM), the conditional
distribution over the visible variables is usually supposed
to be a Gaussian distribution whose mean is a function of
the hidden variables [25, 26]. The conditional probability
of a visible variable is

nH
po WilH) =N | > ljwji + bi,o? |,
j=1

1)

where 0 = (W, B, C) represents the parameter setting of
the model. Symbol o; is the standard deviation of Gaussian
noise in visible variable v;.

RBM2

Hidden layer 2

Hidden layer 1

RBM1

Visible layer

SRBM

Fig. 2 Schematic illustration of SRBM
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The energy function of the RBM1 with binary hidden
variables and real-valued visible variables can be defined
as

ny nH

Eg(V, H) = Z(V‘_‘ Zc,h DRI

i=1 i=1 j=1
()

To simplify the parameter learning of the model, we
standardized the input gene expression dataset, i.e., the
average value of the visible variables v; is equal to 0 and
the variance of that is equal to 1 (; = 1). In this way, the
energy function in Eq. 2 can be rewritten as

(V _ 4 ny nyg
Eg(V,H) = Z (=00 Zc,h SN vibw.
i=1 i=1 j=1

3)

The joint probability density function of (V, H) is given
by

1 o—Eo(V.H)

where Z(0) is a normalizing constant known as the par-
tition function, Z(0) = ZV,H e B (VH) 1t is important
to state that the variables are under independent identical
distribution. We need to get the conditional probability
distribution of the visible variables due to the unobserv-
ability of the hidden layer, thus to solve the model. The
edge probability distribution of the visible variables is
given by

e B (VA (5)

po(V) = ZP@(V H) =

Z(0) (9 ) G

Since the gene expression data are very noisy, we dis-
cretized the gene expression values into binary values
during the Gibbs sampling process. And we used binary
activations instead of the real-valued visible units sampled
from a Gaussian distribution which are usually seen as
their activations. Because a binary activation contains less
information than a real-valued gene expression, using the
binary activation to represent a gene expression is helpful
to distinguish the genes. This is a straightforward way to
reduce noise in the gene expression data. The conditional
probability density distributions can be easily obtained
according to Egs. 4 and 5. (The detail derivation process is
given in Additional file 1).

1
phy=1V) = — , (6)
1 +e—(6k+2i=v1 WkiVi)
1
pvk = 11H) = (7)
lt+e —(-05+bir S hywi)
In RBM2, v = (v1,v2,---,Vy,) represents the input

layer (hidden layer 1 in Fig. 2) and & = (h1,h,- -+ , hyy)
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denotes the output layer (hidden layer 2 in Fig. 2). The
weight of the corresponding connection between output
variable /; and input variable v; is wj;. The weight matrix
w =[Wji]n, xn, represents the parameter setting of weights
between the output layer and the input layer. Let b =
(b1,b3, - - , by,) be the bias vector of input layer, where b;
stands for the bias of variable v;. Let ¢ = (c1,¢2,- -+ ,¢y,)
be the bias vector of output layer, where ¢; stands for the
bias output variable /;.

As the variables in RBM2 are all binary, the energy
function of the RBM2 model is defined as

ny Hy ny np
Eg(v,h) = — Z by, — Z C/‘hj — Z Zhjwji"i~ (8)
i—1 =1 =1 j=1

In the same way, we get the following conditional prob-
ability density distributions

1
he =1lv) = T , 9
p (b =1{v) o S ) )
1
p (v =1lh) = m . (10)
14 e*(bk+2,'£1 hink)
Learning

Training the RBM model means to learn the parameters
of the model, making sure that the probability density dis-
tribution of the hidden variables fit that of the variables
in the visible layer well. Physically, the energy function of
the system is minimized when the system reaches a steady
state. Mathematically, the goal of RBM training is to max-
imize the logarithmic likelihood function. For such a type
of optimization problem, we use gradient up method to
learn the parameters of the model.

al v
6=+ 520V (11
a0
alogpe(V)__<aEe(V,H)> +<aEg(vm>
20 90 po(HIV) 90 o (V.H)
(12)
where 7 is learning rate, (aE"gﬂ> is the expecta-
po(H|V)
tion of energy gradient function % under the con-
dition distribution pg(H|V), and <W> is the
po(V,H)

expectation of energy gradient function under the joint
distribution py(V, H). Since the hidden variables cannot
be directly observed, we use CD-k algorithm to approxi-
mately estimate the probability pg (V') though Gibbs sam-

pling in k steps [21, 22], thus to obtain the solution of

<%> . For sample V, the initial values of visi-
po(V,H)

ble layer is V(© = V. We use V® to denote the sample
obtained by CD-k.
The gradients for sample V in one iterative process
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are given by (The detail derivation process is given in
Additional file 1).

dlogpe(V)
otogpe (V) —p (hi

= 1VO) v —p (= 11V 0) ",

3Wi]'
(13)
dlogps (V) o k)
— 0 _ o 14
ob; il (14)
dlogpe (V) ) )
= (h % ) (h,_1|v ) (15)

In this study, we use mini-batch strategy to learn param-
eters in the RBM. We use sample set S = (vLv2,...,v1
to train the model one batch. Here np;,.x = n represents
the size of mini-batch. The gradient calculation formula
for one iteration is shown below

dlogLs <~ 9 (logp(V"))
BYe) _Z 90

t=1

) (16)

where Ly = pg(S) is the likelihood function of product
edge probability density distributions, V* represents the

t-th sample. The gradients for S in one iteration are given
by

l n
aaolfjs =2 [p (h" =

0 K
VOO — p (1 = v 0) i ],

t=1
17)
dlogLs ST w0) ek

- 0) _ ] 18
o ;[V V! ] (18)

dlogL
ag S _p (h,. = 1|Vt<°)) —p (hi - 1|vt(k>). (19)

¢

In summary, the detail training process of the RBM is
shown below.

Algorithm 1 Training for RBM

1: Input &, J, and sample sets {S1, Sy, - - -
2:Fori=1,2,---,m

3: Foriter=1,2,---,]

4:  CD — k(k, Si,nv, ny, RBM(W,B, C); AW, AB, AC)
5 W= W—l—n( )B B+n<nblockAB>,

C= C+n(nb[kAC)
6: End

7: End

tSWI}

We trained the stacked restricted Boltzmann machine
in a greedy layer-wise fashion [23]. We first trained
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the RBM1 according to the above training process (see
Algorithm 1), then trained RBM2 in the same way.

Identification of key genes

In our study, the regulatory factors are seen as high-
level features which could be captured by the hierarchi-
cal structure and narrow hidden layers of the SRBM.
On the one hand, the differentially activated hidden
neurons are important for distinguishing different dis-
ease stage samples. On the other hand, the neurons
differential activation indicates that the regulatory fac-
tors change greatly during the disease development.
So, we select disease-related regulatory factors accord-
ing to the differentially activated neurons in the hidden
layers.

Biologically, the connections among neurons in one
functional neural circuit are more strong. In fact, it has
also been shown that the high-level hidden units in RBM
tend to have strong positive weights to similar features
in the visible layer [27]. In an SRBM model, the connec-
tions from a visible unit in the input layer to the high-level
features (disease-related regulator factors) are seen as the
connections in a functional neural circuit. And we use
the energy of the neural circuit in the SRBM to measure
the property of the input unit (represent a gene). Since
the hidden units were activated very differently along
with the disease progression, the energy of the neural cir-
cuit changed greatly. It suggests that the gene expression
has been greatly affected during the disease development.
Based on the above analysis, we rank the genes according
to the energy changes at different time periods. The higher
the ranking of gene it is, the more likely the disease-related
gene it is.

Let x} denote the activated frequency of neuron i in
the first hidden layer, using the gene expression data of s
time period samples. Symbol y? denotes the activated fre-
quency of neuron j in the second hidden layer, i.e., the
output layer. Let E; denote the energy of gene g at s time
period. According to Egs. 3 and 8, the energy of gene g is
given by

E = ( blg

ZhI/WI/ng ZbZLVZL
Hy
- Z Z h21W2/LV2 i»

i=1 j=1
(20)

where by, h1;, w1 represent the parameters in RBM1
and by j, va,i, 1a,i, waji represent the parameters in RBM2.
Since the energy caused by the bias of the hidden layer
in RBM1 is same for all genes, we omit the term in the
calculation formula of gene energy.
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The energy change of gene g at different time periods is
computed by

1 < 1 &
Co=|— ) E}—— ) E?|, (21)
¢ |s1|; ¢ Il &

where s; denotes the samples at i time period. The details
for identifying key genes are shown below:

Step 1. Rank the two hidden layer neurons in descending
order according to the difference of the activated fre-
quency between different time periods, respectively.
We select the top ranked neurons in the ranked lists
as the differentially activated neurons, respectively.
The neurons that are not differentially activated in
the two hidden layers are all set to 0 in any case.

Step 2. Compute the energy changes of gene g at differ-
ent time periods according to Eq. 21. Rank genes in
descending order according to the energy changes of
genes.

Parameter setting

Here, we initialize parameters in SRBM according to
empirical studies in deep learning literature. The ini-
tialization weights obey Gaussian distribution N(0,0.01).
The initialization bias variables are set to 0. The learning
rate n = 0.5. The number of hidden neurons is usually
about one tenth of visible neurons. In this study, the num-
ber of variables in the first hidden layer is 400 and that of
the second hidden layer is 20. Moreover, the number of
sampling steps in CD-k is set to be k = 1.

Results and discussion

We used the SRBM to analyze the gene expression data
of Huntington’s disease mice at different time periods.
In this section, first, we briefly introduce the dataset
used in this study. Second, we demonstrate the experi-
mental results using SRBM. Then, we compare the per-
formance of SRBM with other computational methods.
Finally, we analyze and discuss the results of SRBM
in detail.

Gene expression data

The gene expression dataset used in this study were
downloaded from http://www.hdinhd.org, which were
obtained from the striatum tissue of Huntington’s dis-
ease mice by using RNA-seq technology. The genotype of
Huntington’s disease mice is ployQ 111. There are 8 sam-
ples of 2-month-old mice and 8 samples of 6-month-old
Huntington’s disease mice. We conducted a preprocessing
step to filter out noisy and redundant genes by selecting
the genes with large mean value and variance of the 16
samples. Finally 4433 genes from the total 23,351 genes
were left for further analysis. The data of modifier genes

Page 6 of 13

were from [28], which contained 520 genes, including 89
disease-related genes and 431 non-disease-related genes.

The results of SRBM

Figures 3 and 4 show the energy changes of RBM1 and
RBM2 along with every iteration during the parameter
training process. From Figs. 3 and 4, we can see that the
changes become small with the increasing of iterations.
In this study, since there are large amounts of parame-
ters in RBM1, the iteration times of RBM1 are preset to
be 50 to reduce computational time and avoid over-fit.
The iteration times of RBM2 are preset to be 400 to avoid
over-fit.

We statisticed the differentially activated frequency of
neurons in the hidden layers using SRBM with gene
expression datasets at different time periods. The results
are shown in Table 1. Compared with the differentially
activated frequency of neurons in the hidden layer 1, that
in the hidden layer 2 is much larger. The number of neu-
rons, whose differentially activated frequency in hidden
layer 1 is 3, is too small to be used to distinguish samples
at different time periods. It is better to use the neurons
with largest differentially activated frequency in the hid-
den layer 2 to distinguish samples at different time peri-
ods, thus to identify the key genes that may be seriously
affected during the disease progression.

Furthermore, we draw heatmaps of the weight matri-
ces of RBM2 to investigate the deep structure difference
between the gene expression data of Huntington’s disease
mice at different time periods. The weight matrices are
obtained by using SRBM with gene expression datasets
of Huntington’s disease mice at different time periods
(Figs. 5 and 6). The numbers in the left of the heatmap rep-
resent the corresponding neuron in the output layer. From
Figs. 5 and 6, we can clearly see that there are significant
difference between the two heatmaps. It suggests that the
gene expression changes complicatedly during the disease
progression.

Performance comparison between SRBM with other
methods

To verify the performance of SRBM, we conducted
other experiments using the original RBM method, t-test
method [10], fold change rank-product method (FC-RP)
[10], and joint non-negative matrix factorization meta-
analysis method jNMFMA) [11] with the gene expression
data. We use true positive rate (TPR), false positive rate
(FPR), precision, and recall to evaluate the prediction
accuracy of disease-associated genes. TPR is defined as
the ratio of correctly predicted disease genes to all disease
genes. FPR is defined as the ratio of incorrectly predicted
disease genes to all non-disease genes. Precision is defined
as the ratio of correctly predicted disease genes to all the
predicted disease genes. Recall is defined as the ratio of
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Fig. 3 The energy change of RBM1. a The energy change of RBM1 with gene expression data of 2-month-old Huntington’s disease mice. b The
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Table 1 The number of neurons that are of the same differentially
activated frequency using SRBM with different time period
samples

Differentially activated frequency Hidden layer 1 Hidden layer 2
5 0 5
4 0 2
3 4 3
2 57 3
1 199 4
0 140 3

correctly predicted disease genes to all disease genes. The
receiver operating characteristic (ROC) curves were cre-
ated by plotting TPR versus FPR. The precision-recall (PR)
curves were created by plotting precision versus recall.
The area under the ROC curve (AUC) and the area under
the precision-recall curve (AUPR) were used as measures
of the prediction accuracy [29].

To test the reasonability of the assumption in this study,
we used all neurons in hidden layers to compute the gene
energy while overlooking one third weak connections that
from one neuron to all the neurons of the next layer. The
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corresponding experiments are denoted as SRBM-I1 . On
the other hand, we selected differentially activated neu-
rons at different time periods as factors that manipulate
the expression of all genes during the disease progres-
sion, 61 neurons were selected in the first hidden layer
with differentially activated frequency larger than 1, and
5 neurons were selected in the second hidden layer with
differentially activated frequency larger than 5. Then, we
computed the energy for each gene. The corresponding
experiments are denoted as SRBM-II. Note that we use
RBM-I and RBM-II to denote the experiments using the
original RBM model.

From Fig. 7, we can see that the ROC cures of the
seven methods are similar. The AUCs of these methods
are around 0.5. It illustrates that these methods cannot
separate the disease genes from non-disease genes in the
modifier gene set. It also indicates that the expression
of genes change complicatedly during the disease devel-
opment. Nevertheless, the AUC of SRBM-II is mildly
improved compared with that of the other six methods.

From Fig. 8, the PR curves of the seven methods are
similar to some extent. However, the prediction precision
for top ranked genes of the seven methods are clearly dis-
tinct. The prediction precision of SRBM-II is significantly

data of 2-month-old Huntington’s disease mice

Fig. 5 Heatmap of weight matrix of RBM2 with 2-month-old gene expression data. The weight matrix is obtained using SRBM with gene expression
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Fig. 6 Heatmap of weight matrix of RBM2 with 6-month-old gene expression data. The weight matrix is obtained using SRBM with gene expression
data of 6-month-old Huntington'’s disease mice
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Fig. 8 Rank-product curves. The RP curves of the prediction results using t-test, FC-RP, (NMFMA, RBM-I, RBM-II, SRBM-I and SRBM-I|

higher for top ranked genes compared with that of the
other six methods.

We further investigate the distributions of the rank-
ings of top ranked 10 disease genes in the ranked lists
obtained by using the seven methods, respectively (Fig. 9).
From Fig. 9, we can roughly know the rankings of the top

ranked disease genes. Although the distributions obtained
by these methods are similar, SRBM-II makes the disease
genes get mild higher rankings compared with the other
six methods.

In total, the performance of SRBM-II is moderately bet-
ter than other methods. From Figs. 7, 8 and 9, we can know
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Fig. 9 Boxplots of the rankings of top ranked 10 disease genes. The rankings are obtained using different methods, including t-test, FC-RP, ]NMFMA,

RBM-1, RBM-II, SRBM-I and SRBM-II
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Table 2 The number of overlapped genes (the degree of overlap) of top ranked 500 genes between any two ranked lists obtained

using t-test, FC-RP, INMFMA, RBM-I, RBM-II, SRBM-I, and SRBM-II

FC-RP JNMFMA RBM-I RBM-II SRBM-| SRBM-I
t-test 81 (16.2%) 36 (7.2%) 73 (14.6%) 74 (14.8%) 75 (15%) 73 (14.6%)
FC-RP 114 (22.4%) 28 (5.6%) 22 (4.4%) 38 (7.6%) 40 (8.0%)
JNMFMA 6 (1.2%) 8 (1.6%) 5(1.0%) 9 (1.8%)
RBM-I 344 (68.8%) 252 (50.4%) 214 (42.8%)
RBM-II 245 (49.0%) 248 (49.6%)
SRBM-| 351 (70.2%)

that the performance of SRBM-II is better than SRBM-I.
It suggests that we improved the prediction accuracy by
selecting the differentially activated neurons, which are
assumed to be disease-associated factors in our study. We
can also know that the performance of SRBM methods are
better than RBM methods. It verifies that we effectively
separated some noisy factors from the gene expression
dataset, using the deep structure of SRBM.

We also statisticed the overlapped degree of top ranked
500 genes between any two ranked lists, the results are
shown in Table 2. It can be clearly seen that the overlapped
degrees between any two ranked lists (except for that
between SRBM-I and SRBM-II) are all small. However,
the overlap degrees between ]NMFMA and SRBM meth-
ods are smaller than that between others. The ]NMFMA
assumes that the gene expression is a weighted linear

combination of metagenes. The ]NMFMA selects disease-
associated genes through differentially regulated meta-
genes. SRBM selects disease-associated genes according
to the energy changes at different disease states. Since the
basic assumptions of the two models are greatly different,
the overlapped degrees of top ranked genes between the
two ranked lists are smaller.

The top ranked 500 genes in different ranked lists
share 4 common genes: Chmplb, Poldip3, Lrrtml and
Slc44al. According to the annotation of Gene Ontology,
the molecule function of Chmp1b is protein domain spe-
cific binding, that of Lrrtm1 is protein kinase inhibitor
activity, that of Poldip3 is nudeotide binding, and that
of Slc44al is choline transmembrane transporter activity.
The functions of the four genes are all related to pro-
tein transportation. Those genes may be related to the
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Fig. 10 The changes of gene energy. The gene ranking is obtained by using SRBM-Il based on the changes of gene energy at different time periods
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Table 3 The functional annotation clustering of the top ranked
100 genes in the ranked list obtained using SRBM-II

Annotation Annotation Genes-  P-value Benjamini
cluster included
Annotation Membrane 60 72E-8  73E-6
cluster 1 Plasma membrance 42 50E-5 1.1E-3
Annotation  Synapse 14 82E-7 33ES5S
cluster 2 Postsynaptic density 10 226 73E-5
Dendritic spine 7 78E-5 16E-3
Cell junction 11 23E-3  25E-2
Synaptic vesicle 4 23E-2  1.8E-
Postsynaptic membrane 4 9.0E-2  4.0E-1
Annotation  Cell-cell adherens junction 8 80E-4 13E-2
cluster 3

disturbance of intracellular protein trafficking in Hunting-
ton’s disease individuals [30].

Enrichment analysis

According to Fig. 10, it is obvious that the changes of
gene energy for the top ranked 100 genes are significantly
larger. Combined with Fig. 8, we known that the higher the
ranking of gene it is, the more precise the prediction accu-
racy of disease-related gene it is. To avoid introducing too
many false positives, we chose the top ranked 100 genes
in the ranked list obtained by using SRBM-II to conduct
enrichment analysis. We used the functional annotation
clustering tool through DAVID [31] to annotate the func-
tions of those genes, the result can be seen in Table 3.
The annotations listed in the table are cellular compo-
nent from GOTERM. From Table 3, we can see that those
genes are related to membrane, synapse and cell junction.
It suggests that the cellular form changes greatly during
the Huntington’s disease progression and deterioration.
In fact, the connections between neurons get sparse, and
the neurons finally died during the Huntington’s disease
deterioration [32, 33].

Conclusions

In this paper, we designed a stacked restricted Boltzmann
machine to detect the hierarchical structures and to cap-
ture the important information for differential analyzing
gene expression datasets of Huntington’s disease mice at
different time periods. We also proposed a new frame-
work to identify the key genes that may be affected by
the disease progression. Experimental results verify the
feasibility of the assumption in this study. It also demon-
strates that the performance of SRBM-II is mildly better
than other traditional methods. Besides the exploratory
analysis of the disease molecular mechanisms through
enrichment analysis, we also conducted a integrated anal-
ysis on the ranked lists obtained by the seven methods.
We found that four genes (Chmp1b, Poldip3, Lrrtm1 and
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Slc44al) related to protein transportation are seriously
affected during the disease progression.

Additional file

Additional file 1: Supplementary Material. The detail derivation process
for solving the gradients of RBMs learning is given in the Supplementary
Material. (PDF 321 kb)
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