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Background: Threshold regression models are a diverse set of non-regular regression models that all depend on
change points or thresholds. They provide a simple but elegant and interpretable way to model certain kinds of
nonlinear relationships between the outcome and a predictor.

Results: The R package chngpt provides both estimation and hypothesis testing functionalities for four common
variants of threshold regression models. All allow for adjustment of additional covariates not subjected to
thresholding. We demonstrate the consistency of the estimating procedures and the type 1 error rates of the testing
procedures by Monte Carlo studies, and illustrate their practical uses using an example from the study of immune
response biomarkers in the context of Mother-To-Child-Transmission of HIV-1 viruses.

Conclusion: chngpt makes several unique contributions to the software for threshold regression models and will
make these models more accessible to practitioners interested in modeling threshold effects.
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Background

Threshold regression models are a class of regression
models where the predictors are associated with the out-
come in a threshold-dependent way. By introducing a
threshold parameter, also known as the change point,
threshold regression models provide a simple but elegant
and interpretable way to model certain kinds of nonlinear
relationships between the outcome and a predictor. There
are many applications to threshold regression models in
biomedical fields. Our interests in these models come pri-
marily from the analyses of immunological assay data in
human vaccine studies, where threshold-dependent asso-
ciation between risk of infection and immune response
biomarkers abounds [1, 2].

Threshold regression models can take many forms
depending on what happens at the threshold [3]. For
example, Fig. 1 shows four types of threshold effects: step,
hinge, segmented and ‘stegmented’ The step and hinge
models are two of the most basic forms of thresh-
old effects with zero slope before the threshold; the
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segmented model generalizes the hinge model by allow-
ing non-zero slope between the threshold; and the
stegmented model, as the name suggests, can be viewed as
the fusion of the step and segmented models.

In the generalized linear regression framework, we can
write down the mean function of these four types of
threshold models as follows:

n:a1+a2Tz+/31](x>e) step
77=Ol1-i-OlzTZ-l-ﬂ1(x—e)+ hinge
n=oa;+ asz +phix—e), +yx segmented
n=o1 +oz2Tz+/31 x—e L +yx

+ Bl (x > e). stegmented

Here e is the threshold parameter, x is the predictor
with threshold effect, z denotes additional predictors,
I(x>e) = 1whenx > eand 0 otherwise, and (x —e)
denotes the hinge function, which equals x —e when x > e
and 0 otherwise.

Threshold regression models are related to but dis-
tinct from change-point analysis [4], which deal with time
series data and are primarily concerned with detecting
structural changes along a natural axis such as time or
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Fig. 1 Four types of threshold effects

location on a chromosome. Many problems in change-
point analysis are not regression problems. In change-
point analysis regression problems, time series data are
divided into regimens by change points; the relationships
between the outcome and all the predictors are allowed
to differ between regimens. In other words, all predictors
are simultaneously thresholded in change-point analy-
sis regression problems [5]. On the other hand, thresh-
old regression models are fundamentally concerned with
modeling nonlinearity. In this aspect, threshold regression
models are more comparable to other nonlinear regres-
sion methods such as regression spline models [6].

Both threshold models and spline models are capable
of modeling nonlinear relationships between the outcome
and predictors. Their main differences lie in versatility and
ease of interpretation. Take for example the hinge model
and a natural cubic spline [7] with two degrees of freedom.
Both have two degrees of freedom; in the case of the hinge
model, the two relevant parameters are 8; and e. The
spline model is more versatile than the hinge model, but
when both models offer reasonably good fits, the hinge
model is more readily interpretable [8].

While many software programs are available for change-
point analysis and regression spline models, there are
relatively few for threshold regression models. The best
existing implementation is the R package segmented
[5, 9], which supports the hinge and segmented mod-
els and allows multiple thresholds. Our chngpt package

complements the segmented package by making three
unique contributions: (1) it supports all four types of
threshold effects in Fig. 1, and supports models with
interaction terms between predictors subjected to thresh-
olding and predictors not subjected to thresholding [10];
(2) the search method in segmented employs a first order
approximation of the non-smooth criterion function [11],
while chngpt offers two alternative search methods: exact,
which optimizes the exact criterion function, and smooth,
which approximates the criterion function with a logis-
tic function-based smooth function [3]. The exact method
guarantees to find the globally optimal solution but can
be slow when the sample size is large, while the smooth
method, like segmented, is faster but may find a locally
optimal solution;

(3) segmented does not provide confidence intervals
that account for the uncertainty of the threshold esti-
mate, while chngpt do. The latter also includes model-
robust confidence intervals, which are designed to provide
proper coverage even if the data-generating model is not
truly a threshold model [8].

Implementation

Estimation and confidence intervals

Estimation of threshold regression models is complicated
by the fact that the models are not smooth in the thresh-
old parameter. We consider two approaches for find-
ing the maximum likelihood estimate of the threshold
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model parameters: exact and smooth. In the exact method
we choose a grid of candidate change points that uni-
formly span the quantiles of the empirical distribution
of the thresholded covariate. Given a candidate change
point, the threshold regression model reduces to a regular
regression model. The estimated change point is defined
as the one corresponding to the reduced regression model
with the highest likelihood. The advantages of the exact
method are that it does not require a starting value for
change point, and finds the global optimal solution; on
the other hand, this method does not scale well to large
datasets. As a practical measure, we set a default grid
size of 500; when the sample size is larger than the grid
size, we choose a subset of thresholded covariate values by
uniformly sampling the ranks.

In the smooth method, we approximate the discontin-
uous likelihood function of a threshold regression model
by approximating the step function I (x > e) with a two-
parameter logistic function [1 + exp{b(x — e)}]~! [3],
where b is chosen to be an appropriately large constant.
To find the parameter estimate, we perform iterated opti-
mization. Given an initial estimate of all model parame-
ters, we alternatively

1. update the threshold parameter e and the
coefficients B’s and y that are associated with
thresholded covariate, conditional on the rest of the
model parameters estimates, &,

2. update all coefficients, «, 8’s and y, conditional on
the estimated threshold e.

Due to approximation of the step function, the second
step above has a smooth objective function and can be
performed using a wide variety of optimization meth-
ods. Our choice is a quasi-Newton method with box
constraint as implemented in the R function optim. We
stop the algorithm when the relative changes dip below
a pre-determined tolerance level. The main advantage of
the smooth approximation algorithm is that even with a
large dataset, it can converge relatively quickly. On the
other hand, the solution found by this algorithm is a local
optimum, and its performance depends critically on the
choice of starting value. To get good starting values, we
perform hypothesis testing on the coefficients associated
with the thresholded covariate, which will be described
next, and use the threshold value corresponding to the
maximal test statistic as the starting value.

There are two basic types of confidence intervals for
threshold regression model parameter estimates: model-
based and model-robust. The former has the proper cov-
erage only when the model is correctly specified, while
the coverage of the latter is robust to model misspecifica-
tion. There is an interesting interplay between these two
types of confidence intervals and continuous (hinge and
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segmented) versus discontinuous (step and stegmented)
threshold models. For continuous threshold models, all
parameters converge at the regular #~1/2 rate whether or
not the model is correctly specified, but the asymptotic
variance-covariance matrices differ [8, 12, 13]. For discon-
tinuous threshold models, under correct model specifica-
tion, the threshold estimate converges at a fast rate of n~1,
and the regression coefficient estimates converge at their
usual rates of n~1/2 [14]; under model misspecification,
all parameters converge at the slower n~ /3 rate [15]. In
the chngpt package, we provide implementation of model-
based intervals for all types of threshold models as well
as model-robust confidence intervals for the continuous
threshold models.

Hypothesis testing
For hypothesis testing, we extend the methods in [10],
which dealt with the step model, to handle all four types
of threshold effects. In the step and hinge models, we are
interested in testing the null hypothesis g1 = 0. In the
segmented and stegmented models, the situation is more
complex. We may be interested in testing all 8 and y are
0, which corresponds to the null hypothesis that x has no
effect on Y, or we may wish to leave y out of the null
hypothesis and test all B are 0. The latter puts the focus on
threshold effect, and that is what we will focus on. Specif-
ically, we will test 81 = O for the segmented model and
B1 = B2 = 0 for the stegmented model. When the null
hypothesis involves only one parameter, either the maxi-
mum of scores or the maximum of likelihood ratios can
be used. When the null hypothesis involves more than one
parameter, tests based on maximum of likelihood ratios
can be more powerful [10].

Consider the following equation that describes all
threshold models in a uniform way:

n=a’z+pTx(e),

where z represents all predictors independent of e and
x (e) represents all predictors dependent on e. Let p be the
dimension of x(e); p = 2 in the stegmented model and
p = 1 otherwise.

Let Q (e) denote the likelihood ratio statistic for compar-
ing a threshold model and the null model conditional on
a candidate change point e. Assuming there are M candi-
date change points, the maximum of likelihood ratios test
statistics is defined as

LRpyax = max{Q(e1),---,Q(eam)}.

Under the standard regularity conditions, Q (e) con-
verges to a chi-squared distribution with p degrees of free-
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dom under the null hypothesis. Furthermore, the statistic
has the asymptotic representation

Qe) = Sj (@145, () Sp (&) +0, (1),

where Sg (e) is the score vector for coefficients 8, and

jgﬂla (e) is the estimated information for 8 in the alter-
native model using i estimated under the null. In other
words, Q(e) is asymptotically equivalent to the inner
product of Sg (e) ig;f (e) and itself. Thus the joint dis-
tribution of {Q (e1),---,Q (ear)} can be estimated via a
Monte Carlo procedure by simulating from a multivariate
normal whose correlate matrix is the correlation matrix
of {Sg (e1) j;ﬁll(/f (e1), ...,Sg (em) igﬁl{f (ean)}T. Specifically,
we

e Draw B independent random samples of size pM
from a multivariate normal distribution with mean 0,
variance 1 and correlation matrix derived from JVJ,
where ] is a block diagonal matrix with ?ﬂ_ﬂl{f (e*) on
the diagonal and V is the variance-covariance matrix
of [S(er) -+~ Stemn ]".

e FEach of the B samples can be viewed as a sequence of
M p-tuples of random variables. For the b sample,
compute the sum of squares for each p-tuple of
random variables, and denote the maximum of the M
sums of square by LR?

max*

e Obtain the p-value as # { LRmax > LRf’nax} /B.

Results

Monte Carlo studies

To validate the proposed methods and check the accuracy
of the implementation, we conduct Monte Carlo experi-
ments. We simulate data from logistic threshold regres-
sion models with true parameters listed in the Additional
file 1: Table A.1. For the covariate distributions, we sim-
ulate from z ~ N (0,0 = 1), x ~ N (47,0 = 1.6). Each
experiment is repeated 2,000 times to evaluate estima-
tion performance and 10,000 times to evaluate hypothesis
testing performance.

The results of estimation are collected in Tables 1
and 2. Table 1 shows the relative bias of the estimated
coefficients and the bias of the estimated threshold. For
the step, hinge, and segmented models, the relative bias is
computed by dividing the difference between the Monte
Carlo mean and the true value by the true value; for the
stegmented model, the Monte Carlo mean is replaced
by the Monte Carlo median due to the skewness of the
distribution of the parameters. The results indicate that
the estimates from both grid search and smooth approx-
imation are asymptotically unbiased. We also see that
the estimated coefficients associated with the thresh-
olded covariate x have larger finite sample biases than the
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Table 1 Relative bias of coefficient estimates and bias of
threshold estimates of three search strategies: grid search,
smooth approximation, and first order approximation

step hinge segmented  stegmented
n 250 500 250 500 250 500 250 2000
grid
z 002 002 002 002 002 000 004 001
X 022 009 048 002
I(x>e) 0.17  0.09 085 019
x—ey 0.15 0.05 023 011 -033 -005
e 000 -001 001 -002 001 003 -016 -0.02
smooth
z 0.01 0.02 0.02 0.02 003 001 003 0.01
X 020 010 043 0.02
I(x>e) 0.13 0.06 0.35 0.03
x—e)t 0.15 0.05 022 011 -026 -0.03
e -002 -001 001 -002 003 001 -017 -0.03
first order
z 0.02 0.02 0.02 0.00
X 024 0.09
x—e+ 013 005 034 011
e -0.00 -002 004 004

Table 2 Monte Carlo interquartile range of coefficient and
threshold estimates of three search strategies: grid search,
smooth approximation, and first order approximation

step hinge segmented  stegmented
n 250 500 250 500 250 500 250 2000
grid
z 019 014 019 014 020 015 022 007
X 040 026 068 0.17
I(x>e) 035 024 315 1.09
x—e) 4+ 050 031 049 031 119 024
e 0.31 015 069 045 1.00 065 147 057
smooth
z 019 013 019 014 021 015 022 007
X 040 026 063 016
I(x>e) 035 024 284 097
x—ey 049 031 049 031 114 025
e 029 013 069 045 099 064 147 054
first order
z 020 014 020 015
X 0.41 0.26
x—e)t 049 031 053 031
e 067 045 105 065
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Table 3 Type 1 error rates at sample size 250

step hinge segmented stegmented
LR 0.055 0.055 0.058 0.073
score 0.050 0.047 0.050 -

estimated coefficients associated with z, but the biases
decrease as the sample size increases. Table 2 shows
that the sampling variability decreases as the sample size
increases as expected.

In Tables 1 and 2 we also include the first order approxi-
mation search method that is available from the segmented
package. These results show that the parameter estimates
using this method have a similar profile to the estimates
from the grid search and smooth approximation methods.
An exception is when n=250, the estimated slope param-
eter associated with (x — e)4 in the segmented model is
more biased by the first order approximation method, 0.34
versus 0.22 for grid search. To further compare their per-
formance, we repeat this simulation study with a reduced
magnitude of the slope parameter associated with (x —e) ;-
(B1 = —0.51 instead of —0.92). The results (Additional
file 1: Table A.2 and A.3) show that the distance between
the parameter estimates from the first order approxima-
tion and the grid search deviates increases dramatically,
while the distance between the results from the smooth
approximation and the grid search remains close.

Table 3 shows the type 1 error rates of hypothesis
testing. We choose a moderate sample size of 250 for illus-
tration. For the step, hinge, and segmented models, both
the maximal score test and the maximal likelihood ratio
test have close to nominal level type 1 error rates. For the
stegmented model, the maximal likelihood ratio test type
1 error rate is slightly elevated, and as p = 2, there is not
a univariate score test that is directly comparable to the
other three models.

Finally, we compare the speed of grid search versus
approximation methods. The model fitting is done on a
Linux machine with a Intel’ Xeon” CPU E5-2690 clocked
at 2.90GHz. We examine four different samples sizes from
250 to 2000. The results from averaging over 10 simula-
tions are shown in Table 4. For the smooth approximation
method, model fitting for a dataset of 2000 rows takes less

Table 4 Time (sec) for fitting threshold regression models
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than one second, while for the exact method, model fit-
ting for a dataset of 500 rows already takes more than one
second. The performance of the first order approximation
method also beats grid search but lags behind the smooth
approximation method.

Real data illustrations

We illustrate the use of chngpt for fitting thresholded
logistic regression models using a real data example
from a study on the immunological biomarkers asso-
ciated with the risk of Mother-To-Children Transmis-
sion (MTCT) of HIV-1 viruses [1]. The study was
performed using stored blood samples from a cohort
of U.S. non-breastfeeding, HIV-1-infected mother—infant
pairs enrolled in the pre-ARV era Women and Infants
Transmission Study [16]. Immunological assays were per-
formed to measure antibody immune responses, includ-
ing binding antibodies, neutralization antibodies, anti-
body avidity, and antibody-dependent cell-mediated cyto-
toxicity. The dataset includes 236 subjects, each corre-
sponding to an infected mother; among them, 79 were
transmitters and 157 are non-transmitters. For illustra-
tion, we consider the association between the transmis-
sion status and two covariates: birth, a categorical vari-
able indicating the type of births, C-section or vaginal,
and NAb_SF162LS, a continuous covariate giving the log
titers of neutralization activities against a relatively easy to
neutralize HIV-1 isolate named SF162LS.

We fit the model using the exact search method, and a
plot of the likelihood of the restricted regression model
given a fixed change point versus the value of the change
point is shown in Fig. 2a. Figure 2b plots the predicted risk
as a function of NAb_SF162LS from the fitted model for
vaginal births. For comparison, the figure also shows the
predicted risk from a spline model that models the effect
of NAb_SF162LS with a natural cubic spline with two
degrees of freedom. Both the spline and hinge model fits
suggest that the relationship between transmission and
NAb_SFI162LS is nonlinear; the hinge model fit further
suggests that NAb_SF162LS needs to be above 7.4 (95%
robust confidence interval 5.5, 8.2) before it is associated
with decreased risk of MTCT.

To examine the classification performance of the hinge
model, we perform Monte Carlo cross validation. We

grid smooth first order
n 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000
step 0.36 1.00 2.05 3.72 0.12 0.15 0.25 0.49
hinge 0.37 1.01 2.09 3.77 0.11 0.15 0.25 049 030 040 060 1.09
segmented 0.39 1.07 214 397 0.12 0.16 0.27 0.55 0.25 038 0.65 1.34
stegmented 0.45 1.25 249 5.06 0.15 0.21 0.35 0.81
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Fig. 2 The HIV immune response and MTCT example. a Likelihoods of the restricted regression models with fixed change points versus candidate
change points. b Predicted MTCT risks from a hinge model and a spline model

use 4/5 of the data to fit the model and a comparison
model with birth only and use the rest of the data to
evaluate classification performance of the models using
the area under the ROC curve (AUC). Histograms of the
AUC’s from 1000 repeats are shown in Additional file 1:
Figure A.1. The median training and validation AUC of
the birth-only model is 0.52 and 0.50, respectively; and the
median training and validation AUC of the hinge model
is 0.63 and 0.61, respectively. The Wilcoxon paired two-
sample test comparing the validation AUC between the
two models yield a p value of 2.2 x 1071,

A second example illustrating the use of chngpt for fit-
ting thresholded linear regression models can be found in
the Additional file 1: Section B.

Conclusions

We have developed an R package chngpt that supports
four variants of threshold regression models that are most
widely used in practice. The package implements both
estimation and hypothesis testing functionalities based on
a number of recent methodological advances [3, 8, 10].
chngpt is an open source software and can be downloaded
from the Comprehensive R Archive Network. A short
tutorial on how to use the package is contained in the
Additional file 1: Section B.

Choosing among the four types of threshold models is
an important and difficult question. We may divide this
question into two parts: (i) whether a jump occurs at the
threshold and (ii) whether the parameter space of the
slope parameters should be restricted. The first question is
especially challenging. For some processes, e.g. the occur-
rence of recombination events on a chromosome, it is nat-
ural to have jumps. For many others, the true underlying
process may not be discontinuous; nonetheless, a discon-
tinuous threshold model can be a useful approximation
of a sudden shift in the response over a small span of the

predictor values. To make this decision we recommend
performing a test of the null hypothesis S = 0 based on
the stegmented model using a method from [15]. For the
second question, take the choice between the two con-
tinuous threshold models for example. The hinge model
is nested within the segmented model, which may sug-
gest that we always use the segmented model. However, as
the simulation studies in [17] show, for the same sample
size the hinge model can be estimated with much greater
accuracy than the segmented model. Thus, if applicable,
the hinge model would be preferred over the segmented
model. The decision to use the hinge model should be
based on a combination of statistical evidence, e.g. fitting
the segmented model and checking whether the model-
robust confidence interval of y includes 0, and scientific
consideration, e.g. if y < 0 and yet, the predictor is
not expected to have an inverse association with outcome
given the domain knowledge, then it is more compelling
to choose the hinge model when the confidence interval
of y includes 0.

Additional file

Additional file 1: Supplementary tables and a short tutorial on using
chngpt. (PDF 63.5 kb)
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