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Abstract

Background: Biomedical named entity recognition(BNER) is a crucial initial step of information extraction in
biomedical domain. The task is typically modeled as a sequence labeling problem. Various machine learning
algorithms, such as Conditional Random Fields (CRFs), have been successfully used for this task. However, these
state-of-the-art BNER systems largely depend on hand-crafted features.

Results: We present a recurrent neural network (RNN) framework based on word embeddings and character
representation. On top of the neural network architecture, we use a CRF layer to jointly decode labels for the whole
sentence. In our approach, contextual information from both directions and long-range dependencies in the
sequence, which is useful for this task, can be well modeled by bidirectional variation and long short-term memory
(LSTM) unit, respectively. Although our models use word embeddings and character embeddings as the only features,
the bidirectional LSTM-RNN (BLSTM-RNN) model achieves state-of-the-art performance— 86.55% F1 on BioCreative II
gene mention (GM) corpus and 73.79% F1 on JNLPBA 2004 corpus.

Conclusions: Our neural network architecture can be successfully used for BNER without any manual feature
engineering. Experimental results show that domain-specific pre-trained word embeddings and character-level
representation can improve the performance of the LSTM-RNN models. On the GM corpus, we achieve comparable
performance compared with other systems using complex hand-crafted features. Considering the JNLPBA corpus, our
model achieves the best results, outperforming the previously top performing systems. The source code of our
method is freely available under GPL at https://github.com/lvchen1989/BNER.

Keywords: Biomedical named entity recognition, Word embeddings, Character representation, Recurrent neural
network, LSTM

Background
With the explosive increase of biomedical texts, informa-
tion extraction, which aims to unlock structured informa-
tion from raw text, has received more and more attention
in recent years. Biomedical named entity recognition
(BNER), which recognizes important biomedical entities
(e.g. genes and proteins) from text, is a essential step in
biomedical information extraction.
Because BNER is a fundamental task, it becomes the

focus of some shared-task challenges, such as BioCreative
II gene mention (GM) task [1] and JNLPBA 2004 task
[2]. Most systems employed machine learning algorithms
in BNER, likely due to the availability of the annotated
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datasets and promising results. Various machine learn-
ing models have been used for this task, such as Con-
ditional Random Fields (CRFs) [3–7], Support Vector
Machines (SVMs) [8], Maximum Entropy Markov Model
(MEMM) [9] and Hidden Markov Model (HMM) [10].
These machine learning algorithms use different kinds
of features, including orthographic, morphological, part-
of-speech(POS) and syntactic features of words, word
cluster features and domain-specific features using exter-
nal resources, such as BioThesaurus [11]. However, the
success of these approaches heavily depends on the appro-
priate feature set, which often requires much manual
feature engineering effort for each task.
The rapid development of deep learning on many tasks

(e.g., [12–15]) brings hope for possibly alleviating the
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problem of avoiding manual feature engineering. It pro-
vides a different approach that automatically learns latent
features as distributed dense vectors. Recurrent neural
network (RNN) [16] and its variants long-short term
memory (LSTM) [17] have been successfully used in
various sequence prediction problems, such as general
domain NER [18, 19], language modeling [20, 21] and
speech recognition [22].
Meanwhile, recent advances in word embedding induc-

tion methods [12, 23–25] have benefited researchers in
two ways: (1) Intuitively, word embeddings can be used
as extra word features in existing natural language pro-
cessing (NLP) systems, including the general domain [26]
and biomedical domain [27, 28], to improve the perfor-
mance, and (2) they have enabled more effective training
of RNNs by representing words with low dimensional
dense vectors. which can capture distributional syntactic
and semantic information [29, 30].
In this paper, we propose a neural network architecture

for BNER.Without any external resources or hand-crafted
features, our neural network method can be success-
fully used for this task. To capture morphological and
orthographic information of words, we first use an atten-
tion model to encode character information of a word
into its character-level representation. Then we combine
character- and word-level representations and then feed
them into the LSTM-RNN layer to model context infor-
mation of each word. On top of the neural network archi-
tecture, we use a CRF layer to jointly decode labels for the
whole sentence. Several word embeddings trained from
different external sources are used in our LSTM-RNN
models.
We evaluate our model on two BNER shared tasks —

BioCreative II GM task and JNLPBA 2004 task. Experi-
mental results on both corpus show that domain-specific
pre-trained word embeddings and character-level
representation can improve the performance of the
LSTM-RNN models. Although our models use character
embeddings and word embeddings as the only features,
the bidirectional LSTM-RNN(BLSTM-RNN) model
achieves state-of-the-art performance on both corpora.

Methods
We regard BNER as a sequence labeling problem follow-
ing previous work. The commonly used BIEOS tagging
schema (B-beginning, I-inside, E-end, O-outside and S-
the single word entity) is used to identify the boundary
information of the entities.

Overall architecture
Figure 1 illustrates the overall architecture of our
approach.
The input layer calculates the representation of input

words based on both word and character embeddings. An

attention model is used to compute the character-level
representation of the word with the character embeddings
as inputs. Then we combine the character representation
and word embedding to get the feature representation of
each word in the sentence.
The extracted features of each word are then passed

through non-linear LSTM-RNN hidden layer, which is
designed to combine the local and contextual informa-
tion of a word. The forward LSTM and the backward
LSTM can also be integrated into this layer. A nonlin-
ear hidden layer f1 follows to form more complex features
automatically.
Finally, the output vectors of the neural network are fed

into a CRF layer. For a given input sentence, we model the
label sequence jointly using the CRF, which considers the
correlations between labels in neighborhoods.

Input layer
Given an input sentence s as an ordered list of m words
{w1, w2 ... wm}, the input representation �x of the LSTM-
RNN layers is computed based on both word and charac-
ter embeddings.
To obtain the character representation of the word wi,

we denote the character sequence of wi with {c1, c2 ... cn},
where cj is the jth character. The character embedding
lookup table function �ec is used to map each character cj
into its character embedding �ejc. Then we use an attention
model [31] to combine the character embeddings {�e1c , �e2c ...
�enc } for wi. In this model, �Ri

c = ∑n
j=1 a

j
c � �ejc, where �Ri

c is
the character representation of wi, a

j
c is the weight for �ejc,

� is the Hadamard product function and
∑n

j=1 a
j
c = 1.

Each ajc is computed based on both the word embed-
ding of the current word wi and the character embedding
window around the current character �ejc.
�hjc = tan

(
Wc

(
�ej−2
c ⊕ �ej−1

c ⊕ �ejc ⊕ �ej+1
c ⊕ �ej+2

c
)

+ bc
)

(1)

tjc = exp
(
Wt�hjc + Ut�eiw + bt

)
(2)

ajc = tjc
∑n

j=1 t
j
c

(3)

where ⊕ is the vector concatenation function and �eiw
is the embedding of the current word wi. Wc,Wt ,Ut , bc
and bt are mode parameters. We combine the character
representation �Ri

c and word embedding �eiw to form the
representation �Ri: �Ri = �Ri

c ⊕ �eiw.
Finally, the input representation �x of the LSTM-RNN

layer is computed by a window function: �xi = �Ri−2 ⊕
�Ri−1 ⊕ �Ri ⊕ �Ri+1 ⊕ �Ri+2.
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Fig. 1 The model architecture

Long short-termmemory RNN
The RNNs in this section are neural networks, which
have recurrent connections and allow a form of mem-
ory. This makes them captures information about what
has been calculated so far. They compute compositional
vector representations for the input word sequences.
These distributed representations are then used as
features to predict the label of each token in the
sentence.
Although RNNs can, in principle, model long-range

dependencies, training them is difficult in practice, likely
due to the vanishing and exploding gradient problem [32].
In this paper, we apply Long Short-Term Memory

(LSTM) [17] to this task. LSTMs are variants of the above
RNNs, with the recurrent hidden layer updates in RNNs
are replaced with the special memory units. They have
been shown to be better at capturing long range depen-
dencies in the sequence data.

Bidirectionality
With the definition of LSTM described above, we
can see that the hidden state at time t only cap-
tures information from the past. However, both past
(left) and future (right) information could also be ben-
eficial for our task. In the sentence “Characteriza-
tion of thyroid hormone receptors in human IM-9
lymphocytes.”, it helps to tag the word “thyroid” as
B-protein, if the LSTMs know the following word is
“receptors”.
To incorporate the future and past information, we

extend LSTM with bidirectional approach, referred as the
bidirectional LSTM [33], which allow bidirectional links
in the network. Two separate hidden states

−→
ht and

←−
ht

are used to represent the forward and backward sequence
respectively. Finally, we combine the features from the for-
ward and backward LSTMs by an hidden layer f1. The final
output hidden layer ht is computed as follows:
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ht = tanh
(
Wf

[−→
ht ;

←−
ht

]
+ bf

)
(4)

where
−→
ht is the forward LSTM layer and

←−
ht is the back-

ward LSTM layer.Wf and bf denote the weight matrix and
bias vector in the hidden layer f1. The output feature rep-
resentation ht is then fed into the CRF layer and captures
both the future and past information.

CRF
For sequence labeling (or general structured prediction)
tasks, it is beneficial to consider the correlations between
labels in neighborhoods, and jointly decode the best chain
of labels for a given input sentence. We model label
sequence jointly using a CRF [34], instead of decoding
each label independently.
For an input sentence x = x1, . . . , xT , the correspond-

ing hidden sequence h = h1, . . . , hT is output by the
above neural networks.We consider thematrix F of scores
fθ

(
[ h]T1

)
and θ is a model parameter of the CRFs. In

the matrix F, the element fi,t represents the score for the
t-th word with the i-th tag. We introduce a transition
score [A]j,k , which is also a model parameter, to model
the transition from the j-th tag to the k-th tag. The score
of the sentence [ x]T1 along with a label sequence [ y]T1 is
computed by summing the transition scores and network
output scores:

S
(
[ x]T1 ; [ y]T1

)
=

T∑

t=1
(Ayt−1,yt + fyt ,t) (5)

Then given the sentence x, the conditional probability of a
label sequence y is defined by the following form:

P(y|x) = expS
(
[ x]T1 ; [ y]T1

)

∑
y′∈Y (x) expS

(
[ x]T1 ; [ y′]T1

) (6)

where Y (x) denotes all the possible label sequences for the
sentence x.
The label sequence ŷ ∈ Y (x) with the highest score is

the predicted sequence for sentence x:

ŷ = argmax
y∈Y (x)

P(y|x) (7)

For the CRF model, decoding can be solved efficiently by
adopting the Viterbi algorithm.

Training
Max likelihood objective are used to train our model. The
parameters� is the parameter set in ourmodel. It consists
of the parameters W and b of each neural layer, and the
model parameters in the CRF layer.
Given the training examples set B, the log-likelihood

objective function is defined as:

L(�) = 1
|B|

∑

(xn,yn)∈B
logP(yn|xn) + λ

2
‖ � ‖2 (8)

where logP(yn|xn) is the log probability of yn and λ is a
regularization parameter.
To maximum the objective, we use online learning to

train our model, and the AdaGrad algorithm [35] is used
to update the model parameters. The parameter update at
time t for the j-th parameter θj,t is defined as follows:

θj,t = θj,t−1 − α
√∑t

τ=1 g2j,τ
gj,t (9)

where α is the initial learning rate, and gj,τ is the subgra-
dient for the j-th parameter at time τ .

Word embedding
Word embeddings are distributed representations and
capture distributional syntactic and semantic information
of the word. Several types of word embeddings trained
from different external sources are used in our LSTM-
RNNmodels. Here we will give a brief description of these
pre-trained word embeddings.

SENNA
Collobert et al. (2011) [12] propose a neural network
framework for various NLP tasks. To give their network a
better initialization, they introduce a new neural network
model to compute the word embeddings. The main idea
for the neural network is to output high scores for positive
examples and low scores for negative examples. The pos-
itives example are the word windows in a large unlabeled
corpus, and the negative examples are the windows where
one word is replaced by a random word.
They releases the word embeddings with the 130K

vocabulary words [36]. The dimension of the SENNA
word embedding is 50 and they are trained for about 2
months, over English Wikipedia.

Word2vec
Another start-of the-art method word2vec [23, 24] can
be used to learn word embeddings from large corpus
efficiently. They propose the continuous bag-of-words
(CBOW)model and the skip-gram model for computing
word embeddings.
They release pre-trained vectors with 3 million vocabu-

lary words. The dimension of the word2vec word embed-
dings is 300 and the training corpus is part of Google
News dataset [37].

Biomedical embeddings
Since we work on biomedical text, which is different
from the above general domain corpora, domain-specific
embeddings are trained using the word2vec CBOW
model from a set of unannotated data. The corpus con-
tains all full-text documents from the PubMed Central
Open Access subset [38].
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For comparison with SENNA and Google word2vec
embeddings, we learn word embeddings (vocabulary
size 5.86 million) of 50- and 300-dimensions using the
word2vec tool [23, 24].

Results and discussion
Data sets
We evaluate our neural network model on two pub-
licly available corpora: the BioCreAtIvE II GM corpus
and JNLPBA corpus, for system comparison with exist-
ing BNER tools. The GM corpus consists of 20,000
sentences (15,000 sentences for training and 5000 sen-
tences for test) fromMEDLINE, where gene/gene product
names(grouped into only one semantic type) were man-
ually annotated. On the other hand, the JNLPBA corpus
consists of 22,402 sentences (18,546 training sentences
and 3856 test sentences) from MEDLINE abstracts. The
manual annotated entities in JNLPBA corpus contains five
types, namely DNA, RNA, protein, cell line, and cell type.
In addition,10% of the training set are randomly split as
the development data to tune hyper-parameters during
training. Table 1 shows the statistics of the two corpora.

Evaluation metric
We evaluate the results in the same way as the two shared
tasks, using precision (P), recall (R) and F1 score (F1):

P = TP
TP + FP

(10)

R = TP
TP + FN

(11)

F1 = 2 × P × R
P + R

(12)

where TP is the number of correct spans that the sys-
tem returns, FP is the number of incorrect spans that the
system returns, and FN is the number of missing spans.

Table 1 Statistics of the datasets

Training Dev Test

GM

Sentences 13500 1500 5000

One-word Entities 7051 805 2831

Multi-word Entities 9355 1047 3494

Total Entities 16406 1852 6325

JNLPBA

Sentences 16691 1855 3856

One-word Entities 19476 2170 3466

Multi-word Entities 26765 2890 5196

Total Entities 46241 5060 8662

Note that alternative annotations generated by human
annotators in the GM corpus will also count as true pos-
itives. We evaluate the result on the GM coups using the
official evaluation script.

Neural network settings
Pre-processing
We transform each number with NUM and lowercase all
words in the pre-process step. We also mark the words,
which are not in the word embedding vocabulary, as
UNKNOWN.

Parameters
Character embeddings are randomly initialized with uni-
form samples from range [0,1] and we set the dimension
of character embeddings to 30.
For each neural layer in our neural network model,

parameters W and b are randomly initialized with uni-
form samples from [−

√
6

nr+nc , +
√

6
nr+nc ], where nr and

nc are the number of rows and columns of W. The initial
learning rate for AdaGrad is 0.01 and the regularization
parameter is set to 10−8.
The dimension of the single RNN hidden layer h1 is 100

and the size of hidden layers f1 connected to RNN hidden
layer h2 is set to be 100. Tuning the hidden layer sizes can
not significantly impact the performance of our model.

Code
The C++ implementations of our proposed models are
based on the LibN3L package [39], which is a deep learn-
ing toolkit in C++.

Experimental results
Table 2 presents our results on BioCreative II GM and
JNLPBA data sets for various LSTM-RNNs and word
embeddings.

Table 2 Results for various LSTM-RNNs and word embeddings
on the GM and JNLPBA data sets

Systems Dim. GM (P/R/F1 score) JNLPBA (P/R/F1 score)

LSTM-RNN

+SENNA 50 83.87/80.46/82.13 67.50/72.52/69.92

+Biomedical 50 85.85/84.09/84.96 70.69/74.80/72.69

+Google 300 83.90/82.80/83.35 69.19/72.56/70.83

+Biomedical 300 86.66/85.58/86.12 70.34/74.96/72.58

+Random 300 83.63/76.56/79.94 66.96/71.46/69.13

BLSTM-RNN

+SENNA 50 84.29/79.83/82.00 67.00/71.60/69.22

+Biomedical 50 88.42/82.63/85.43 71.04/74.45/72.71

+Google 300 85.02/82.04/83.50 68.59/73.99/71.19

+Biomedical 300 87.85/85.29/86.55 71.24/76.53/73.79

+Random 300 82.87/77.65/80.18 68.43/70.98/69.68
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Contributions of word embeddings in LSTMs
In our LSTM framework, word embeddings are used to
avoid feature engineering efforts, and these embeddings
are not fine-tuned in the experiments above. Despite using
these pretrained word embeddings, we can also randomly
initialize the word embedding in the neural network.
To show the contributions of word embeddings, we per-

form experiments with different pretrained word embed-
dings, as well as a random initialization embeddings.
According to the results in Table 2, models using pre-
trained word embeddings significantly performs better
than the Random ones by providing better initialization,
with the maximum gains of 6.37% on GM and 4.11% on
JNLPBA by BLSTM+ Biomedical (300 dim.). The results
are significant at p < 10−3 by pair-wise t-test.
For different pretrained embeddings, the domain-

specific biomedical embeddings (300 dim.) achieve best
results in all cases. For example, BLSTM-RNN using
biomedical embeddings (300 dim.) outperforms the
SENNA (50 dim.) ones, with the gain of 4.55% (p < 10−3)
on GM and 4.57% (p < 10−3) on JNLPBA. The possi-
ble reasons are that:(1) it is trained on the biomedical
domain corpus and (2) high dimensional embeddings
may capture more information compared with the low
dimensional ones. Biomedical embeddings (300 dim.) can
capture more syntactic and semantic information, and
improves the performance on this task.

Comparison between bidirectional and unidirectional
When we compare the uni-directional LSTM-RNNs with
their bidirectional counterparts, we can see that the
bidirectional improves the performance. BLSTM signif-
icantly outperforms LSTM with the maximum gains of
0.43% on GM and 1.21% on JNLPBA by BLSTM-RNN +
Biomedical (300 dim.).
However, these improvements does not meet our expec-

tation. When we analyze the data set, we find it to be
unsurprising because of the span distribution in the data
set. The average span of the named entity mentions in
JNLPBA data set is two words, and 40.0% of the mentions
only contain one word. Despite these named entity men-
tions, there are still 15.4% of the mentions whose span
is more than 3. Therefore, the information captured by
the bidirectional link helps to correctly recognize these
mentions.

Effects of fine-tuningword embeddings
Table 3 shows the F1 score of LSTM-RNN and BLSTM-
RNN, when the embeddings are not fine-tuned in the
training process, and when they are learned as part of
model parameters (fine-tuned) in the task.
Considering SENNA, Google and Random embeddings,

fine-tuning these three embeddings in our LSTM frame-
work significantly outperforms the non-tuned settings,

Table 3 Effects of fine-tuning word embeddings in LSTM-RNN
and BLSTM-RNN

Systems Dim. GM JNLPBA

LSTM-RNN +tune -tune +tune -tune

+SENNA 50 85.69 82.13 70.56 69.92

+Biomedical 50 85.33 84.96 71.78 72.69

+Google 300 85.65 83.35 71.13 70.83

+Biomedical 300 84.56 86.12 72.04 72.58

+Random 300 84.74 79.94 71.10 69.13

BLSTM-RNN +tune -tune +tune -tune

+SENNA 50 86.81 82.00 72.09 69.22

+Biomedical 50 85.24 85.43 72.28 72.71

+Google 300 86.52 83.50 73.03 71.19

+Biomedical 300 84.53 86.55 73.44 73.79

+Random 300 84.94 80.18 71.81 69.68

with a maximum absolute gain of 4.81% (p < 10−3) on
GM and 2.87% (p < 10−3) on JNLPBA by BLSTM +
SENNA. These embeddings are not good initialization
for our neural model, and fine-tuning them in our LSTM
framework can improve the performance on this task.
The likely reason is that these embeddings are trained on
general domain or randomly initialization, and may have
much noise for this task. Remarkably, fine-tuning brings
the performance of Random initialization close to the best
ones.
Considering the domain-specific biomedical embed-

dings, using them without fine-tuning significantly per-
forms better that the fine-tuned ones, with a maximum
absolute gain of 2.02% (p < 10−3) on GM by BLSTM
+ Biomedical (300 dim.). Fine-tuning the biomedical
embeddings is not necessary in our model, and it may
cause slight overfitting and reduce the performance.

Effects of character representation
Figure 2 shows the effects of character representation
in our LSTM framework for each data set. Biomedi-
cal embeddings (300 dim.) are used in our experiments
without fine-tuning.
From the Fig. 2, we observe an essential improvement

on both data sets. Compared with the model without
character representation, the model with character repre-
sentation improves the F1 score with the gain of 2.3% on
GM and 1.7% on JNLPBA by BLSTM. It demonstrates the
effectiveness of character representation in BNER.

Effects of the CRFs
In this section, we conduct the experiments to show the
effects of the CRF layer in our framework. Instead of the
CRFs, softmax classfier can be also used to predict the
label of each token based on the feature representation



Lyu et al. BMC Bioinformatics  (2017) 18:462 Page 7 of 11

(a) (b)
Fig. 2 Effects of character representation. +Char — with character representation; -Char — without character representation. a LSTM-RNN,
b BLSTM-RNN

output by our LSTM framework. The softmax classfier
layer calculates the probability distribution over all labels
and chooses the label with highest probability for each
word.
Table 4 shows the performance of BLSTM-RNN mod-

els with and without the CRF layer. Biomedical embed-
dings (300 dim.) are used in the experiments without
fine-tuning. We can see that the CRF layer significantly
(p < 10−3) improves the performance with the gain of
3.91% on GM and 1.86% on JNLPBA.
The improvements show that although BLSTM is con-

sidered to have the ability of handing sequential data and
can automatically model the context information, it is still
not enough. And the CRF layer, which jointly decode label
sequences, helps to benefit the performance of the LSTM
models in BNER.

Feature representation plotting
Although neural networks have been successfully used for
many NLP tasks, the feature representation of the NN
models is difficult to understand. Inspired by the work
of Li et al. (2016) [40], which visualizes and understands
phrase/sentence representation for sentiment analysis and
text generation, we conduct the experiment to visualize
the feature representation in our LSTMmodels for BNER.
Figure 3 shows the heat map of the feature represen-

tations of some context in two sentences. The represen-
tations are the input features of the CRF layer in our
framework. The BLSTM + Biomedical (300 dim.) model
is used in the experiments.
These two cases are namely “the inability of this fac-

tor to activate in vivo the ...” and “In particular , naturally
occurring sequence variation impacted transcription fac-
tor binding to an activating transcription factor / cAMP
response element...”. In the first context, the word “factor”
occurs in a general noun phrase without any descriptive
words and is not identified as an entity. While in the sec-
ond context, two entity mentions, namely “transcription

factor” and “activating transcription factor”, are recog-
nized with the Protein type. The representation of the
word “factor” in the first sentence is different from the
entity mentions in the second sentence.
In particular, Fig. 4 shows the heat map of the feature

representation of the word “factor”. Our LSTMmodel out-
puts different representation for it in different context.
We can see that the representation difference between
the word “factor1” and the other two words “factor2”
and “factor3” is apparent. While the representation of the
words “factor2” and “factor3”, both recognized as part of
entities, are similar.
This is an initial experiment for understanding the abil-

ity of our feature representation to predict the label in
BNER task. More strategies for understanding and visual-
izing neural models need to be explored in future work.

Comparisonwith previous systems
Tables 5 and 6 illustrate the results of our model on the
GM and JNLPBA corpus respectively, together with pre-
vious top performance systems for comparison. IBM [41]
and Infocomm [8] are the best systems participating in
BioCreative II GM task and JNLPBA task respectively.
IBM [41] uses semi-supervised machine learning

method and forward and backward model combination,
while Infocomm [8] combines HMM and SVM model to
tackle this task. CRFs are widely used in BNER-shared
tasks and have shown the state-of-the-art performance
[3–7]. The performance of these systems depends on
manually extracted rich features.
Note that these systems use complex features like

orthographic, morphological, linguistic features andmany

Table 4 Comparison of systems with and without the CRF layer

Systems GM JNLPBA

BLSTM-RNN 82.64 71.93

BLSTM-RNN+CRF 86.55 73.79
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The inability of this factor to activate in vivo

Impacted transcription factor binding to an activating transcription factor

Fig. 3 Feature representation of our model. Each column indicates
the feature representation from BLSTM for each token. Each grid in
the column indicates each dimension of the feature representation.
The dimension of the feature representation is 100

more in their models, some of which rely on external
resources. In addition, some systems also use model com-
bination strategy and integrate post-processing modules,
including abbreviation resolution and parentheses correc-
tion. Our LSTM-RNNs only use character representation
and word embeddings as input features, avoiding manual
feature engineering.
In recent years, deep neural network architectures have

been proposed and successfully applied to BNER. Li et al.
(2015) [30] applies extended Elman-type RNN to this task

and the results on BioCreative II GM data set show that
extended RNN outperforms CRF, deep neural networks
and original RNN.
On the GM corpus, our model achieves 4.68% improve-

ments of F1 score over Li et al. (2015) [30], which is a
neural networkmodel using used softmax function to pre-
dict which tag the current token belongs to. This demon-
strates the effectiveness of our Bi-LSTM-CRF for this task
and the importance of character representation. Com-
paring with traditional statistical models, our best model
BLSTM+Biomedical (300 dim.) gives competitive results
on F1 score. Considering the JNLPBA corpus, our best
model BLSTM+Biomedical outperforms all these previ-
ous systems, with a significant improvement of 0.81% over
the NERBio system.

Error analysis
For BNER task, the errors contain two categories, includ-
ing false positives (FP) and false negatives (FN). The
entities in JNLPBA corpus contain five types, while the
entities in GM corpus are grouped into only one type. We
analyze the errors on the JNLPBA test set and report the
results in this section.
Both FP and FN errors can be further divided into two

types: 1) Boundary errors, in which the boundary of an
entity is incorrectly identified. 2) Type errors, in which the
boundary of an entity is correct but its type is incorrectly
identified. Table 7 shows the statistics of error analysis.
The boundary errors are the main errors and constitute
more than 80% of all errors in both FP and FN errors.
We further distinguish these errors into the following

categories:

1) Left boundary errors. These errors are recognized
with wrong left boundary and correct right boundary.
The recognized entities often include too many
details (“cytosol estradiol receptors” rather than just
“estradiol receptors”) or too few (“B lineage genes”
instead of “many B lineage genes”). In these errors,
some words, such as “factor” and “protein”, are very
useful indictors for entity mentions with the type
Protein. While some words, such as “genes” and

factor1

factor2

factor3

Fig. 4 Feature representation of the word “factor”. “factor1” is the word in the first sentence. “factor2” and “factor3” are the corresponding words in
the second sentence. Each vertical bar indicates one dimension of the feature representation for the corresponding word
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Table 5 Results of our model on the GM corpus, together with
top-performance systems

Systems P/R/F1

BLSTM + Biomedical (300 dim.) 87.85/85.29/86.55

AIIAGMT [5] 88.95/87.65/88.30

IBM [41] 88.48/85.97/87.21

Gimli [3] 90.22/84.82/87.17

BANNER [6] 88.66/84.32/86.43

NERSuite [4] 88.81/82.34/85.45

Li et al. (2015) [30] 83.29/80.50/81.87

NERBio [7] 92.67/68.91/79.05

“sites”, are useful for entity recognition with the type
DNA. The right boundary is correctly recognized in
these cases and it is difficult for us to determine
whether the descriptive words are parts of the entity
mentions (e.g. “normal” in “normal human
lymphocytes”).
2) Coordinate entity errors. The coordinate entity
names , such as “upstream promoter or enhancer
element” and “NF-kappa B and AP-1 binding sites”,
are often combined with some coordinating
conjunctions. It is difficult to distinguish whether
they are one whole entity or not. For example,
“upstream promoter or enhancer element [DNA]” is
identified as two entities “upstream promoter
[DNA]” and “enhancer element [DNA]” by our
system. There are also some apposition entities, such
as “transcription factor NF-kappa B” and they are
frequently recognized as two individual entities (e.g.
“transcription factor [Protein]” and “NF-kappa B
[Protein]” instead of “transcription factor NF-kappa B
[Protein]”) by our system.
This may be rational due to the following reasons:
First, the components of the entities are frequently
annotated as an individual entity when they occur
alone in the corpus. For example, both “transcription
factor” and “NF-kappa B” are often annotated with
the type Protein. Second, these errors are mainly
caused by the corpus annotation inconsistency. The
above coordinate entities are annotated as one whole

Table 6 Results of our model on the JNLPBA corpus, together
with top-performance systems

Systems P/R/F1

BLSTM + Biomedical (300 dim.) 71.24/76.53/73.79

NERBio [7] 72.01/73.98/72.98

Infocomm [8] 69.42/75.99/72.55

Gimli [3] 72.85/71.62/72.23

NERSuite [4] 69.95/72.41/71.16

Table 7 Error analysis on JNLPBA test set

Error type %

FP Boundary errors 49.31

Type errors 7.52

FN Boundary errors 35.66

Type errors 7.52

entity in some sentences. While in other sentences,
these entity mentions are annotated as multiple
individual entities.
3) Missing entities. They include the annotated
entities, which are not matched (or overlapped) with
any recognized entities. We find that 49.1% of these
errors come from the Protein type and 48.3% of them
are one word entities on the JNLPBA corpus. Among
these errors, some general noun words (e.g.
“antibodies” and “receptors”) are annotated as
biomedical entities. In addition, abbreviations, such
as “EZH2” and “IL-5”, can not be recognized by our
model in some context.
The missing entities on the JNLPBA data occur with
a similar percentage on the GM data set. These errors
are involved in 8.51% of all the entities on the
JNLPBA corpus, while the percentage of the missing
entities on the GM corpus is 9.72%. As to the single
word entities, the percentage of them in the missing
errors is 48.3% on the JNLPBA corpus, while the
percentage of them on the GM corpus is 54.6%. The
likely reason for the similar percentage is that Protein
is the main type on the JNLPBA data and 58.5% of the
entities come from the Protein type.
The character representation helps to improve the
model for the single word entities. When removing
the character representation from our model, the
percentage of the single word entities in the missing
errors will increase from 48.3 to 56.4% on the JNLPBA
corpus. In the future, more contextual information
should be considered to improve the BNER.
4) Classification errors. They include the errors with
correct boundary match but wrong type
identification. We find that 35.6% of the errors are
caused by misclassification of the Cell_type type to
the Cell_line type and 31.5% of the errors are the
misclassification of the DNA type to the Protein type,
e.g. “IRF1 [Protein]” instead of “IRF1 [DNA]”. It is
difficult to distinguish them, because of the sense
ambiguity of these biomedical named entities.

From the above analysis, we find that some errors on the
JNLPBA data are caused by the corpus annotation incon-
sistency. Considering the GM data, the F1 score of our
model increases from 77.5 to 86.6% with the alternative
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annotations. Although our model achieves state-of-the-
art performance on the JNLPBA corpus, more contextual
information and external knowledge should be considered
to improve the BNER.

Conclusions
In this paper, we present a neural network architecture for
this task. Our model can be successfully used for BNER
task without any feature engineering effort.
In order to evaluate our neural networkmodel and com-

pare it to other existing BNER systems, we use two com-
monly used corpora: GM and JNLPBA. Our best model
BLSTM+Biomedical (300 dim.) model achieves F1 score
results of 86.55% and 73.79% on each corpus, respectively.
Experimental results on both corpora demonstrate that
pre-trained word embeddings and character representa-
tion both improve the performance of the LSTM-RNN
models. Although our models use word embeddings and
character embeddings as the only features, we achieve
comparable performance on the GM corpus, comparing
with other systems using complex hand-crafted features.
Considering the JNLPBA corpus, our model achieves the
best results, outperforming these previously top perform-
ing systems.
In the future, we will explore the effects of adding depth

to the LSTM layers. In this paper, our LSTM framework
only contains one LSTMhidden layer.We can designmul-
tiple LSTM hidden layers and higher LSTM layers may
help to exploit more effective features in deeper networks.
Another direction is that we plan to apply our method to
other related tasks, such as biomedical relation extraction.
We would also like to explore to jointly model these tasks
in the RNN-based framework.
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