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Abstract

Background: This article concerns the identification of gene pairs or combinations of gene pairs associated with
biological phenotype or clinical outcome, allowing for building predictive models that are not only robust to
normalization but also easily validated and measured by qPCR techniques. However, given a small number of
biological samples yet a large number of genes, this problem suffers from the difficulty of high computational
complexity and imposes challenges to the accuracy of identification statistically.

Results: In this paper, we propose a parsimonious model representation and develop efficient algorithms for
identification. Particularly, we derive an equivalent model subject to a sum-to-zero constraint in penalized linear
regression, where the correspondence between nonzero coefficients in these models is established. Most
importantly, it reduces the model complexity of the traditional approach from the quadratic order to the linear order
in the number of candidate genes, while overcoming the difficulty of model nonidentifiablity. Computationally, we
develop an algorithm using the alternating direction method of multipliers (ADMM) to deal with the constraint.
Numerically, we demonstrate that the proposed method outperforms the traditional method in terms of the statistical
accuracy. Moreover, we demonstrate that our ADMM algorithm is more computationally efficient than a coordinate
descent algorithm with a local search. Finally, we illustrate the proposed method on a prostate cancer dataset to
identify gene pairs that are associated with pre-operative prostate-specific antigen.

Conclusion: Our findings demonstrate the feasibility and utility of using gene pairs as biomarkers.

Keywords: Gene pair, Biomarker, Penalized regression, ADMM

Background
In biomedical research, gene identification has been
critical towards understanding and predictive modeling,
whose activities are associated with biological phenotype,
disease status, or clinical outcome. These genes, referred
to as biomarkers, are further utilized for predictive model-
ing to facilitate scientific investigation, clinical diagnosis,
prognosis, and treatment developments. In this discovery
process, the expression levels of candidate genes are mea-
sured through genomic techniques enabling thousands
of genes simultaneously, permitting monitoring molecu-
lar variation on a genome-wide scale [1] and providing
more precise and reliable diagnosis [2]. As widely used
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techniques, DNA microarray, parallel qPCR, and RNA-
Seq measure gene expression at the mRNA level. Yet, two
major issues emerge with regard to the utilization of gene
expression. First, the number of genes greatly exceeds that
of biological samples typically, with tens of thousands of
genes in the presence of up to only a few hundred biolog-
ical samples or observations. As a result, inference tends
to be unstable, misleading, or even invalid due to high sta-
tistical uncertainty, in addition to extremely high cost of
computation. This, in turn, demands reliable and accurate
methods of identification. Second, prior to any analy-
sis, raw gene expressions must be normalized to com-
pensate for differences in labeling, sample preparation,
and detection methods. A common practice focuses on
normalization of each sample’s raw expression based on
remaining ones in the same dataset, known as between-
sample normalization, often in the forms of sample-wise
scaling in RNA-Seq data [3]. However, such a normal-
ization requires recomputation when a new sample is
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removed or added from the dataset, imposing computa-
tional challenges for large studies. Moreover, any analysis
using selected genes based on one dataset may be sensi-
tive to normalization, leading to non-generalizable and/or
non-reproducible scientific findings [4].
To address the foregoing challenges, a modeling method

based on gene pairs was first presented in the top-scoring
pair (TSP) classifier by [5] and later implemented by
[6]. Compared to predictors based on individual genes,
gene pair-based predictors are more robust to normal-
ization and have better predicting or classifying accuracy.
Another advantage of gene-pair based predictive mod-
eling is its ease of evaluation and validation by qPCR
methods. Ideally, to use qPCR to measure a single gene’s
expression level, one applies the delta-Ct method [7],
in which the differenced Ct values between the gene of
interest and another housekeeping gene such as GAPDH
measures gene expression level. However, between sample
variation of a housekeeping gene may be large, impos-
ing a great challenge [8]. In this sense, gene-pair based
modeling removes the requirement of housekeeping genes
since the differenced Ct values between the two genes of
interest can be directly treated as a measurement. Con-
sequently, the two genes in a gene pair serve as internal
controls for each other. Due to all these advantages, gene
pair-based predictors have been adopted in several cancer
studies [9–11].
Despite the advantage of the gene pair approach, due

to the combinatorial complexity, identifying the best gene
pair, or best combinations of several gene pairs, is sta-
tistically and computationally challenging, from all the
possible pairs from a pool of tens of thousands of genes.
For instance, the TSP algorithm employs a direct search,
whose running time grows quadratically in terms of the
number of candidate genes. Although in practice one can
first identify differentially expressed genes and then per-
form a restrictive search to these individual genes, such a
two-step approach is no longer invariant to normalization
and may miss informative pairs in which at most one gene
is differentially expressed [5]. The computational prob-
lem is even more severe when more than one gene pair
is sought, such as in k-TSP which involves exactly k top
disjoint pairs in prediction [12].
Moreover, even though rank-based gene pair predic-

tors like the TSP are robust to normalization, their utility
in modeling complex data remains limited. One possible
extension is to use ratios of gene expression levels as pre-
dictors and use regression models to select gene pairs. In
recent years, regression models with penalties enforcing
sparsity (such as the Lasso [13], SCAD [14], and TLP [15]
penalties) have been widely used for variable selection,
and many efficient algorithms have been proposed for fit-
ting such models. One may employ such an approach by
treating ratios of gene expression levels from all possible

gene pairs as candidate predictors. However, this amounts
to a quadratic complexity in the number of candidate
genes.
In this paper, we develop a new regression approach

and an efficient algorithm for identifying gene pairs asso-
ciated with biological phenotype or clinical outcome. we
propose an equivalent model subject to a sum-to-zero
constraint on regression coefficients, where the corre-
spondence between nonzero coefficients in these models
is established. The model of this type has been proposed
for compositional data [16] and recently for reference
point insensitive data [17]. One salient aspect is that this
model is more parsimonious, involving only predictors
linearly in the number of candidate genes. To deal with
the constraint, we develop an efficient algorithm based on
the alternating direction method of multipliers (ADMM)
[18, 19], for identification and model parameter estima-
tion. The new approach shares not only the benefit of
simplicity in interpretation but also a linear complex-
ity. Most importantly, the proposed method substan-
tially improves the statistical accuracy and computation
efficiency. Finally, in simulations, the method compares
favorably against the traditional method in terms of the
accuracy of identification, and our ADMM algorithm is
more computationally efficient than a coordinate descent
with local search (CD+LS) algorithm of [17].

Methods
High-dimensional linear regression
This section proposes predictive models based on combi-
nations of ratios of gene expression levels on the ground
that ratios of gene expression levels not only are robust
to normalization but also can be easily validated and
measured by qPCR techniques.
Given p predictors (x1, . . . , xp) measuring the expres-

sion levels of p genes (g1, . . . , gp), we consider informa-
tive second-order interactions defined by pairwise ratios
{xj/xk , 1 ≤ j < k ≤ p} of (x1, . . . , xp) with respect to a
continuous response such as the pre-operative prostate-
specific antigen level measured from prostate cancer
patients, as demonstrated in the “Results” section. It is
assumed that there are only a small number (i.e., much
smaller than p) of informative genes. Now consider a
regression model in which response Y depends on a
predictor vector x in a linear fashion:

Y = f (z) + ε ≡ αTz + ε; ε ∼ N(0, σ 2); (1)

where α = (α12,α13, . . . ,αp−1p)T and z = (log(x1/x2),
log(x1/x3),. . . ,log(xp−1/xp))T are q = p(p−1)

2 -dimensional
vectors of regression coefficients and predictors, and ε is
random error that is independent of z. For convenience,
for i < j, we let αji = −αij. In Eq. (1), primary reasons
for the logarithm of the pairwise ratios {xj/xk , 1 ≤ j <
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k ≤ p} are two-fold. First, it stabilizes the variance of gene
expression levels so that Eq. (1) is suitable. In fact, the
logarithm transformation is widely used in the literature
on gene expression modeling [20]. Second, it facilitates an
efficient model fitting algorithm to be introduced subse-
quently. Our objective is to identify nonzero coefficients
of α corresponding to informative gene pairs based on
gene expression.
There are several challenges for identification of infor-

mative ratios within the framework of Eq. (1), in which
p may greatly exceed the sample size n, known as high-
dimensional regression. Normally, onemay apply a feature
selection method such as the Lasso [13] for this task.
Unfortunately, however, high-dimensionality of Eq. (1)
impedes the accuracy of feature selection in the pres-
ence of noise in addition to computational cost, which
are roughly proportional to p2. To overcome these diffi-
culties, we propose an alternative yet equivalent model
of Eq. (1) through a more parsimonious representation
involving one linear constraint.
The next proposition says that f (z) in Eq. (1) has

an equivalent representation with only p-variables. In a
sense, it achieves the objective of dimensionality reduc-
tion.

Proposition 1 The following equivalent form of f (z) in
Eq. (1) is as follows:

f (z) =
p∑

j=1
βj log xj, βj =

∑

k �=j
αjk . (2)

Importantly,
∑p

j=1 βj = 0.

Based on Proposition 1, we derive an equivalent model
of Eq. (1):

Y = βT x̃ + ε,
p∑

j=1
βj = 0, ε ∼ N(0, σ 2); (3)

where x̃ = (log x1, . . . , log xp) and β = (β1, . . . ,βp)T .
Most critically, the correspondence between coefficients
of α and β is established by Eq. (2), where Eq. (1) and
Eq. (3) can have different number of nonzero coefficients,
which is because of the reparametrization and the sum-
to-zero constraint. For instance, suppose that α12 = 3,
α23 = −2, and αij = 0 otherwise in Eq. (1), then β1 = 3,
β2 = −5, β3 = 2, and βj = 0 otherwise in Eq. (3). Model
Eq. (3) has been proposed for compositional data [16] and
recently also for reference point insensitive data [17]. Here
[16] established model selection consistency and bounds
for the resulting estimator.
In contrast to Eq. (1), Eq. (3) contains only p instead of

p(p−1)
2 predictors, subject to the sum-to-zero constraint

for the regression coefficients. In other words, model
Eq. (3) is more parsimonious than model Eq. (1) in terms
of the number of active parameters in a model. As a result,
there can not be a one-to-one correspondence between α

and β . It is shown in Eq. (2) that the value of β in Eq. (3)
is uniquely determined by that of α in Eq. (1). The inverse
does not hold – many values of α in Eq. (1) correspond to
the same value of β in Eq. (3). The non-existence of one-
to-one correspondence between α and β is due to the fact
that model Eq. (1) is largely non-identifiable. In fact, for
any cycle formed by sequence i1, i2, . . . , ik , ik+1 = i1, we
can add any constant c to the αijij+1 ’s formed by adjacent
indices without changing the model. That is, we can con-
struct α′ where α′

ijij+1
= αijij+1 + c for j = 1, . . . , k and

α′
ij = αij otherwise and model Eq. (1) with α is equivalent

to that with α′. Therefore, when we obtain a solution β by
solving Eq. (3), due to the argument above, there are an
infinite number of α that are related to β through Eq. (2).
Among them, we would like to choose the “simplest” one.
In this paper, we define the “simplest” α to be the one(s)
with the minimum L1 norm, where the L1-norm of a vec-
tor y = (y1, . . . , yp) is ||y||1 = ∑p

i=1 |yi|. In practice, given
an estimate of β from (3), an estimate of α can be obtained
using Algorithm 1 below.

Algorithm 1 (Peeling) Given an estimate of

β , β̂ =
(
β̂1, · · · , β̂p

)T
satisfying the sum-to-zero con-

straint
∑p

j=1 β̂j = 0, initialize β̃ as β̂ and α̂ as α̂j,k = 0 for
all 1 ≤ j < k ≤ p.
Step 1: Identify one positive and one negative β̃j’s, say
β̃k1 > 0 and β̃k2 < 0, where k1 and k2 are two distinct
indices from {1, · · · , p}. For instance, β̃k1 and β̃k2 can be
taken as the most positive and most negative (ties can be
broken arbitrarily) β̃j’s. This can always proceed as long as
not all β̃j’s are zero.
Step 2: Set α̂k1k2 = min

(
|β̃k1 |, |β̃k2 |

)
. For instance,

β̃1 = 1.5 and β̃2 = −0.5, then set α̂12 = 0.5.
Step 3: Subtract α̂k1k2 from β̃k1 and −α̂k1k2 from β̃k2 to
make one of them zero, that is, β̃k1 ← β̃k1 − α̂k1k2 and
β̃k2 ← β̃k2 + α̂k1k2 . In the previous example, β̃1 ← 1 and
β̃2 ← 0.
Step 4: Repeat Steps 1–3 until all components of β̃ become
zero.

Algorithm 1 terminates in at most p steps because the
number of nonzeros in β̃ decreases by either 1 or 2 after
each iteration. Note that β̃k1 and β̃k2 identified in Step 1
may not be unique. Therefore it may lead to different α̂’s.
Importantly, this algorithm always yields a minimum L1-
norm α estimate (see Proposition 5 later in this section).
The following two propositions characterize properties

of such α with respect to its representations.
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Proposition 2 (Minimum L1-norm of α) Given α and β

satisfying Eq. (2), the following conditions are equivalent:

(A) For all α′ satisfying (2), ||α||1 ≤ ||α′||1.
(B) For all 1 ≤ i, j, k ≤ p, i �= j, j �= k, αijαjk ≤ 0.
(C) ||α||1 = 1

2 ||β||1.

Proposition 3 (Uniqueness of the representation of α)
Given α and β satisfying Eq. (2), the following conditions
are equivalent:

(D) For all α′ �= α satisfying Eq. (2), ||α||1 < ||α′||1.
(E) The conditions in Proposition 2 are met by α.

Furthermore, there does not exist distinct
(j1, k1, j2, k2) such that αj1k1 �= 0 and αj2k2 �= 0
simultaneously.

(F) There exists j such that |βj| = ∑
i�=j |βi|.

Correspondingly, αij = βi for all i �= j and αik = 0 for
all i �= j, k �= j.

The following proposition establishes the relations
between the numbers of nonzero elements of α and β

under different settings.

Proposition 4 Assume that α and β satisfy Eq. (2). Let
A = ||α||0 = ∑

1≤j<k≤p I(|αjk| �= 0) and B = ||β||0 =
∑p

j=1 I(|βj| �= 0) denote the numbers of nonzero elements
of α and β , respectively. Then,

(G) B ≤ 2A.
(H) If α and β satisfy the conditions in Proposition 2,

then 2
√
A ≤ B ≤ 2A.

(I) If α and β satisfy the conditions in Proposition 3 and
α �= 0 and β �= 0, then B = A + 1.

In view of condition (H) in Proposition 4, if those condi-
tions of Proposition 2 are met with B = 2 or 3, then those
of Proposition 3 must be satisfied.

Proposition 5 For any β̂ satisfying the sum-to-zero con-
straint, the corresponding α̂ produced by Algorithm 1
satisfies Proposition 2.

The proofs of the propositions are supplied in
Appendix.

Constrained penalized likelihood
Given model Eq. (3), a random sample of n observa-
tions (x̃i,Yi)ni=1 is obtained, based on which the log-
likelihood function l(β) can be written as l(β) =
−1
2σ 2

∑n
i=1

(
Yi − βT x̃i

)2
. In a high-dimensional situation,

model Eq. (3) is overparameterized when p > n, and
hence that l(β) has multiple maximizers. Towards this
end, we introduce a constrained penalized likelihood

as a generalization of the Lasso regression using L1-
regularization.

min − l(β) + λ

p∑

j=1
|βj|, subject to

p∑

j=1
βj = 0. (4)

Minimization of Eq. (4) in β yields itsminimizer β̂ . Since
the term σ 2 can be absorbed into the regularization coef-
ficient λ in the penalized likelihood, we set σ = 1 in the
objective function for simplicity.
In contrast to the Lasso problem, Eq. (4) has one

additional linear constraint. The coordinate descent algo-
rithm has been shown to be very efficient for solving
L1-penalized problems [21] since the nondifferentiable L1
penalty is separable with respect to βj’s. However, the
sum-to-zero constraint destroys the separability so that
the coordinate descent algorithm can no longer guarantee
convergence. In [17], the authors proposed adding addi-
tional diagonal moves and random local search to the
coordinate descent algorithm, which improves the chance
for convergence.
To deal with this convex optimization subject to linear

constraints, we develop an algorithm using the alternating
direction method of multipliers (ADMM) [18, 19] to solve
iteratively, see Appendix for details. In each iteration, we
derive an analytic updating formula to expedite conver-
gence of ADMM, and convergence is guaranteed by a
result in Section 3.1 of [18].We compare our ADMMalgo-
rithm with the algorithm proposed in [17] in the “Results”
section.

Results
Comparison of ADMM and CD+LS algorithms
This section compares our ADMM algorithm with a coor-
dinate descent with local search (CD+LS) algorithm of
[17] for Eq. (4) with respect to computation efficiency
through one simulated example. The CD+LS algorithm is
implemented in R package zeroSum (version 1.0.4, https://
github.com/rehbergT/zeroSum). In this example, we con-
sider correlated predictors, that is, x̃i’s are drawn iid from
N(0,V ) and are independent of εi’s that are sampled from
N(0, 1), and V is a p × p matrix whose ijth element is
0.5|i−j|. Moreover, the true βj’s are drawn iid from N(0, 1)
and then centered to have a sum zero, and λ is fixed as
1. Then, their rates for successful convergence and run-
ning times are recorded for the ADMM and the CD+LS
algorithms over 20 simulations. Particularly, a precision or
tolerance error of 10−10 is used for both algorithms. Suc-
cessful convergence is reported if a solution from an algo-
rithm satisfies the sum-to-zero constraint with a tolerance
error of 10−8, and both the solution and its objective value
are no further than 10−8 to the optimal solution and its
corresponding objective value in terms of the L2-distance.
Here, the optimal solution is defined as the one, among

https://github.com/rehbergT/zeroSum
https://github.com/rehbergT/zeroSum
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the two solutions from the two algorithms, having the
minimal objective value and satisfying the sum-to-zero
constraint.
Four different settings are compared, ranging from low-

to high-dimensional situations. As showed in Table 1,
the proposed ADMM algorithm outperforms the CD+LS
algorithmwith respect to both convergence guarantee and
running time.

Comparison of the proposedmethod and the Lasso
This section examines effectiveness of the proposed
method through simulated examples. Specifically, the pro-
posed method is compared with the Lasso in terms
of predictive accuracy and identification of the true
model, where the Lasso is implemented in R package
glmnet [21].
Simulated examples are generated with correlation

structures as to be analyzed. These simulations are
designed to examine various operating characteristics of
the proposedmethod with respect to (p, n), noise level σ 2,
and correlation structures among predictors in Eqs. (1)
and (3). For tuning, λ is searched over 100 grid points that
are uniformly spaced (in the log-scale) between 104 and
10−2. An independent testing dataset with 1000 randomly
generated data points are used to find the optimal λwhich
minimizes the mean squared error (MSE).
For performance metrics, an independent validation

dataset with 1000 randomly generated data points are
used to evaluate the performance of the fitted model in
terms of mean squared error (MSE) and R2. To assess
robustness of the approaches under data normalization,
we randomly add sample-wise shifts from N(0, 1) to the
validation dataset. Furthermore, we consider other two
metrics for parameter estimation and the quality of iden-
tification of zero elements of true α in Eq. (1) and β in
Eq. (3). For parameter estimation, we use the relative error

Table 1 Comparison of ADMM and CD+LS algorithms

% Success Rate Time (s)

p n ADMM CD+LS ADMM CD+LS

20 50 100.0 100.0 0.03 0.0

(0.0) (0.0) (0.01) (0.0)

100 100 100.0 100.0 0.06 1.3

(0.0) (0.0) (0.00) (0.1)

100 500 100.0 80.0 0.14 0.6

(0.0) (9.2) (0.04) (0.2)

200 1000 100.0 80.0 0.54 3.9

(0.0) (9.2) (0.12) (0.4)

Sample means (standard errors in parentheses) of rates for successful convergence
(in percentages), and running times (in seconds), based on 20 simulation
replications, for the proposed ADMM and CD+LS algorithms

(RE) for estimating the true regression coefficients γ 0 =(
γ 0
1 , . . . , γ 0

p

)T
, defined as

RE = ||γ̃ − γ 0||2
||γ 0||2 ,

where γ̃ = (γ̃1, . . . , γ̃p)T are estimated regression coef-
ficients. This metric allows for accounting for different
scales between α and β . For accuracy of identification, we
use the false identification rate (FR), defined as

FR = 1 − |�̃| ∩ |�0|
|�0| ,

where �0 = {j|γ 0
j �= 0} and �̃ = {j|γ̃ ′

j �= 0}, with γ̃ ′
being a truncated version of γ̃ such that only the coeffi-
cients with the |�0| largest absolute values are retained,
and all others are zeroed out. Our simulated example con-
cerns correlation structures among predictors. In Eqs. (1)
and (3), log xi’s are iid from N(0,V ) and are independent
of εi’s that are iid from N(0, σ 2), and V is a p × p matrix
whose ijth element is 0.5|i−j|, α = (α12,α13, . . . ,αp−1p)T .
Three settings for α are considered:

1) α12 = 1, α13 = 0.5, α24 = 0.5, and αjk = 0 otherwise,
which does not satisfy the conditions defined in
Proposition 2 with β1 = 1.5, β2 = β3 = β4 = −0.5,
and βj = 0 for j ≥ 5.

2) α12 = 1, α13 = 0.5, α24 = −0.5, and αjk = 0
otherwise, which satisfies the conditions defined in
Proposition 2 but does not satisfy the conditions
defined in Proposition 3 with β1 = 1.5, β2 = −1.5,
β3 = −0.5, β4 = 0.5, and βj = 0 for j ≥ 5.

3) α12 = 1, α13 = 0.5, α14 = 0.5, and αjk = 0 otherwise,
which satisfies the conditions defined in
Proposition 3 with β1 = 2, β2 = −1,
β3 = β4 = −0.5, and βj = 0 for j ≥ 5.

The proposed method is compared with the Lasso
in two models, corresponding to the gene-pair level
design matrix z in Eq. (1) and x̃ in Eq. (3) (without the
sum-to-zero constraint), referred to as Lasso 1 and Lasso
2, respectively. These three methods are examined on
simple and difficult situations correspondingly with
(p, n, σ) = (25, 50, 0.5), (100, 25, 0.2). Then the values
of MSE, R2, RE, and FR are reported. As suggested in
Table 2, the proposed method performs better or the
same compared with Lasso 1 and Lasso 2 in terms of
accuracy and robustness across all the six situations. The
improved performance is attributed to a reduced number
of candidate parameters in Eq. (1) than Eq. (3), as well
as to the sum-to-zero constraint introduced in Eq. (3).
Interestingly, the false identification rates of the proposed
method are almost zero in three low-noise setting of
(p, n, σ) = (20, 50, 0.5) regardless if the conditions in
Propositions 2 and 3 are met, and are small in the other
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Table 2 Comparison of the proposed method and the Lasso in
simulations

Setting (p, n, σ) Method MSE R2 RE FR

1 (20, 50, 0.5) Lasso 1 0.29 0.89 0.77 0.33

(0.01) (0.00) (0.01) (0.00)

Lasso 2 0.31 0.88 0.14 0.00

(0.01) (0.00) (0.01) (0.00)

Proposed 0.29 0.89 0.13 0.00

(0.01) (0.00) (0.01) (0.00)

1 (100, 25, 0.2) Lasso 1 0.19 0.92 0.80 0.37

(0.07) (0.03) (0.02) (0.02)

Lasso 2 0.24 0.89 0.22 0.06

(0.08) (0.03) (0.03) (0.03)

Proposed 0.19 0.92 0.21 0.04

(0.07) (0.03) (0.03) (0.03)

2 (20, 50, 0.5) Lasso 1 0.32 0.89 0.44 0.20

(0.01) (0.00) (0.02) (0.04)

Lasso 2 0.36 0.88 0.14 0.00

(0.02) (0.01) (0.01) (0.00)

Proposed 0.32 0.89 0.14 0.01

(0.01) (0.00) (0.01) (0.01)

2 (100, 25, 0.2) Lasso 1 0.42 0.84 0.52 0.37

(0.07) (0.02) (0.03) (0.06)

Lasso 2 0.63 0.76 0.32 0.22

(0.09) (0.03) (0.03) (0.05)

Proposed 0.41 0.85 0.31 0.24

(0.07) (0.02) (0.03) (0.05)

3 (20, 50, 0.5) Lasso 1 0.30 0.93 0.18 0.00

(0.01) (0.00) (0.02) (0.00)

Lasso 2 0.33 0.92 0.11 0.00

(0.01) (0.00) (0.01) (0.00)

Proposed 0.30 0.93 0.11 0.00

(0.01) (0.00) (0.01) (0.00)

3 (100, 25, 0.2) Lasso 1 0.15 0.96 0.25 0.00

(0.02) (0.01) (0.03) (0.00)

Lasso 2 0.26 0.93 0.16 0.01

(0.08) (0.02) (0.02) (0.01)

Proposed 0.15 0.96 0.15 0.00

(0.02) (0.01) (0.01) (0.00)

Sample means (standard errors in parentheses) of mean squared error (MSE), R2,
relative error (RE) and false identification rate (FR), based on 20 simulation
replications, for the proposed method and the Lasso

three settings. In contrast, Lasso 1 has a higher relative
error and false identification rate. While Lasso 2 has
similar relative error and false identification rate as the
proposed method, it has higher MSE and lower R2 in
all settings, due to its non-robustness to sample-wise

scaling without the sum-to-zero constraint. Overall, all
three methods perform better in the low-noise situation
of (p, n, σ) = (20, 50, 0.5) than the high-noise situation
of (p, n, σ) = (100, 25, 0.2). Across the three settings of α,
the performance of the proposed method is rather stable.
However, Lasso 1 performs much worse for settings in
which α fails to satisfy the conditions in Proposition 3,
corresponding to non-uniqueness of the representation
of α. Most critically, when α satisfies the conditions in
Proposition 3, the proposed method continues to outper-
form its counterpart in terms of the performance metrics.
Overall, the proposed method achieves our objective.

An application to a real RNA-Seq dataset
This section applies the proposed method to a prostate
adenocarcinoma (PRAD) RNA-Seq dataset published as
part of The Cancer Genome Atlas (TCGA) project
[22]. Particularly, we identify gene pairs that are associ-
ated with pre-operative prostate-specific antigen (PSA),
an important risk factor for prostate cancer. Towards
this end, we download normalized gene expression data
from the TCGAdata portal (https://tcga-data.nci.nih.gov/
docs/publications/tcga/). As described by TCGA, tissue
samples from 333 PRAD patients were sequenced using
the Illumina sequencing instruments. While raw sequenc-
ing reads were processed and analyzed using the SeqWare
Pipeline 0.7.0 and MapspliceRSEM workflow 0.7 devel-
oped by the University of North Carolina, read alignment
was performed using MapSplice [23] to the human refer-
ence genome, and gene expression levels were estimated
using RSEM [24] with gene annotation GAF 2.1, and fur-
ther normalized so that the upper quartile count is 1,000
in each sample. All these steps were performed by the
TCGA consortium.
In our experiment, the normalized RSEM gene expres-

sion estimates are used, excluding samples with missing
pre-operative PSA values and genes for which the average
normalized expression level is lower than 10. This prepos-
sessing step yields p = 15, 382 genes and n = 187 sam-
ples. Furthermore, we run Pearson correlation tests for
each gene between log-transformed expression levels and
log-transformed pre-operative PSA levels, and exclude
genes with false discovery rate (FDR) values (calculated
using the Benjamini-Hochberg [25] method based on the
p-values from the Pearson correlation tests) larger than
0.01. Consequently, only 520 genes are retained in the
analysis, on which we fit model Eq. (3) using the proposed
ADMM algorithm.
To visualize the selection result, we display the solution

paths of the model fitting. As shown in Fig. 1, the first pair
of genes entering themodel are PTPRR and KRT15.While
PTPRR is a member of the protein tyrosine phosphatase
(PTP) family, which is known to be related with prostate
cancer [26, 27], KRT15 is a member of the keratin gene

https://tcga-data.nci.nih.gov/docs/publications/tcga/
https://tcga-data.nci.nih.gov/docs/publications/tcga/
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Fig. 1 Solution paths of the model fitting with p = 520 genes

family, which is known to be associated with breast cancer
[28] and lung cancer [29]. Interestingly, we find no publi-
cation record on PubMed with keywords such as “KRT15
AND PSA” or “KRT15 AND prostate”. By correlating log
expression levels and log PSA levels in the 187 patients, we
find that both PTPRR and KRT15 are significantly corre-
lated with PSA levels (r = 0.28 and p < 10−4 for PTPRR,
r = −0.33 and p < 10−5 for KRT15). Not surprisingly,
their log-ratio is even more strongly correlated with log
PSA levels (r = 0.41 and p < 10−8), demonstrating the
potential of using gene pairs as biomarkers.
The other selected genes are HIST1H1E, LRAT, LCN2,

KCNN4, RHOU, and EPHA5 in the order of them enter-
ing the model, among which LRAT [30], LCN2 [31],
RHOU [32], and EPHA5 [33] are known to link to prostate
cancer, and HIST1H1E and KCNN4 are connected to
myeloma [34] and pancreatic cancer [35], respectively.
To demonstrate the scalability of our proposed method,

we employ the proposed ADMM algorithm to fit Eq. (3)
with all the p = 15, 382 genes without pre-screening. In
this situation, the first pair of genes entering the model
are BCL8 and KRT15, where BCL8 is known to be asso-
ciated with lymphoma [36]. The other selected genes are
PTPRR, LRAT and LCN2, which are very similar to the
foregoing results based on pre-screening. By comparison,
fitting the corresponding model Eq. (1) using a standard
Lasso algorithm, such as glmnet [21], would be practi-
cally prohibitive, which requires storing a design matrix
of p(p−1)

2 × n ≈ 22 × 109 elements. To further demon-
strate robustness of the proposed method with respect to
data normalization, we randomly scale the gene expres-
sion levels, both along the gene dimension and the sam-
ple dimension, mimicking the gene length normalization
and the library size or sequencing depth normalization,
respectively. Numerically, we find that the solution path

fitted using the randomly scaled data is always identical to
that fitted using the original data.

Discussion
Model Eq. (3) has been proposed for compositional data
[16] and recently for reference point insensitive data [17].
In this article, we explore Eq. (3) for the identification of
gene pairs as biomarkers, enjoying robustness to sample-
wise scaling normalization (which is a common practice
for RNA-Seq data) and simplicity of validation and mea-
surement by qPCR techniques. Through Propositions 1–
4, we establish the relationship between models Eq. (1)
and Eq. (3). Additionally, we develop an efficient ADMM
algorithm for solving model Eq. (3), which is guaranteed
to converge and is shown to be highly competitive in terms
of computational efficiency.
One interesting yet important issue of model Eq. (3) is

determination of the value of α. One proposal is choosing
the α to minimize the L0-norm instead of L1-norm. How-
ever, in such a situation, it remains unclear what kind of
conditions as those in Propositions 2, 3 and 4 may be. Fur-
thermore, minimization of the L0-norm in α continues to
be challenging by itself due to non-convexity and discon-
tinuity of the L0-function. Therefore, our approach based
on the L1-norm gives rise to convex minimization, which
is easier to manage.
One important aspect of model Eq. (3) is that it enables

to identify gene pairs in an unbiased manner without
any prior knowledge of the known biology of the dis-
ease. However, in some situations, information regarding
the disease of interest is available from previous stud-
ies. Then the prior knowledge needs to be integrated for
gene pair identification so that more probable subset of
genes or pathways should have a higher chance of being
selected. This can be accomplished through weighted
regularization with weights {λk}pk=1, with a large weight
corresponding to a small chance of being selected. More-
over, in some other situations, gene pairs are constrained
in that gene pairs are formed only between relevant genes
from the same pathway. This can be achieved by replac-
ing the Lasso penalty by either a (sparse) group Lasso
penalty [37] and/or the simple equality constraint by a
set of constraints, each corresponding to a given path-
way of interest. Finally, some non-convex penalties such
as the SCAD penalty [14] and the TLP penalty [15] can be
used as opposed to the Lasso penalty to achieve a higher
accuracy of selection at an expense of computation.
For a large-scale problem, an ADMM algorithm may

have a linear convergence rate. To expedite convergence,
an inexact ADMM algorithmmay be useful in our setting,
which has been shown recently to lead to a substantial
improvement over the standard ADMM algorithm [19].
Furthermore, parallelization of our ADMM algorithm
may achieve further scalability, which is one advantage of
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ADMM algorithms over many other optimization tech-
niques [18].
One extension of Eq. (1) is generalized linear models

such as logistic regression or other predictive models like
support vector machine. In such a situation, the proposed
method for Eq. (1) is directly applicable to gene pair iden-
tification with some modifications. Further investigation
is necessary.

Conclusion
In conclusion, the experimental results demonstrate that
gene pairs can be used as robust biomarkers which can
tolerate sample-wise scaling normalization. Furthermore,
using L1 penalized regression with equality constraints,
the model fitting can be formulated as a convex opti-
mization problem which can be solved efficiently using
the proposed ADMM algorithm. This approach has the
potential to discover novel and reliable biomarkers for
biological or clinical studies.

Appendix
Proofs of propositions
Proof of Proposition 1: From Eq. (1), we have

f (z) =
p∑

j=1

p∑

k=j+1
αjk(log xj − log xk)

=
p∑

j=1
log xj

⎛

⎝
p∑

k=j+1
αjk −

j−1∑

k=1
αkj

⎞

⎠

=
p∑

j=1
log xj

∑

k �=j
αjk

=
p∑

j=1
βj log xj.

Furthermore
p∑

j=1
βj =

p∑

j=1

∑

k �=j
αjk

=
p∑

j=1

p∑

k=j+1
αjk −

p∑

j=1

j∑

k=1
αkj

=
p∑

j=1

p∑

k=j+1
αjk −

p∑

k=1

p∑

j=k+1
αkj

= 0.

This completes the proof.
Proof of Proposition 2: We show (A)⇒(B), (B)⇒(C)

and (C)⇒(A), respectively.
(A)⇒(B): We prove by contradiction. Without loss of

generality, assume that α12 ≥ α23 > 0. Then, we construct
α′ such that α′

12 = α12−α23, α′
23 = 0, α′

13 = −α13+α23 >

0 and α′
ij = αij otherwise. Easily, α′ satisfies Eq. (2) and

||α′||1 − ||α||1 = −2α13 < 0, which contradicts (A).
(B)⇒(C): By (B), αij and αjk always have opposite signs.

This, together with the definition that αji = −αij, αji and
αjk always have the same sign, where 0 can be regarded as
an arbitrary sign. Therefore, from Eq. (2), we have

1
2
||β||1 = 1

2

p∑

j=1
|βj| = 1

2

p∑

j=1

∣∣∣∣∣∣

∑

k �=j
αjk

∣∣∣∣∣∣

= 1
2

p∑

j=1

∑

k �=j
|αjk| = ||α||1.

(C)⇒(A): For any α′ satisfying Eq. (2), we have

||α||1 = 1
2
||β||1 = 1

2

p∑

j=1
|βj| = 1

2

p∑

j=1

∣∣∣∣∣∣

∑

k �=j
α′
jk

∣∣∣∣∣∣

≤ 1
2

p∑

j=1

∑

k �=j
|α′

jk| = ||α′||1.

This completes the proof.
Proof of Proposition 3: We show (D)⇒(E), (E)⇒(F)

and (F)⇒(D), respectively.
(D)⇒(E): As in the proof of Proposition 2, we assume,

without loss of generality, that α24 ≥ α13 > 0. Then,
we construct α′ such that α′

13 = 0, α′
14 = α14 + α13,

α′
23 = α23 + α13, α′

24 = α24 − α13 and α′
ij = αij otherwise.

Easily, α′ also satisfies Eq. (2), and ||α′||1 ≤ ||α||1, which
contradicts (D).
(E)⇒(F): From (E), there exists a j such that αik = 0 for

all i �= j and k �= j. From Eq. (2) and (B) in Proposition 2,
βi = ∑

k �=i αik = αij, for alli �= j, and |βj| =
∣∣∣
∑

k �=j αjk

∣∣∣ =
∑

k �=j |αjk| = ∑
k �=j |βk|.

(F)⇒(D): Suppose that α′ satisfies Eq. (2) and the condi-
tions in Proposition 2. From (B), we know for all k �= j, α′

jk
have the same sign. From Eq. (2), (C) and (F), we have

1
2
||β||1 = |βj| =

∣∣∣∣∣∣

∑

k �=j
α′
jk

∣∣∣∣∣∣
=

∑

k �=j
|α′

jk| ≤ ||α′||1 = 1
2
||β||1

Therefore, we must have
∑

k �=j |α′
jk| = ||α′||1. That is,

α′
ik = 0 for all i �= j, k �= j. Furthermore, for any i �= j, we

have βi = ∑
k �=i α

′
ik = α′

ij. Therefore, α′ = α, implying the
uniqueness of α. This completes the proof.
Proof of Proposition 4:
(G): By Eq. (2), βj �= 0 only if at least for some k �= j,

αjk �= 0. Based on α and β , we can construct an undi-
rected graph G = (V ,E) with p vertices such that there
is an edge between vertices i and j if and only if αij �= 0.
We know that βj can not be nonzero unless vertex Vj has
a degree of at least 1. Since the total number of edges is
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A, we know that B ≤ ∑p
j=1 I(degree(Vj) > 0) ≤ ∑p

j=1
degree(Vj) = 2A.
(H): Suppose α satisfies the conditions defined in Propo-

sition 2. If αij �= 0, let αij be the weight associated with
edge connecting Vi and Vj. By condition (B), for any cycle
in the graph formed by sequence i1, i2, . . . , ik , ik+1 = i1,
we know that weights associated with adjacent edges (i.e.,
αij−1ij and αijij+1 ) always have opposite signs. Therefore,
the number of edges in the cycle has to be an even number,
which means that the graph has to be a bipartite graph. It
is then easy to see that A ≤ (B

2
)2 for such graphs. That is,

2
√
A ≤ B.

(I): Suppose α �= 0 satisfies the conditions defined in
Proposition 3. By condition (F), B = A+1. This completes
the proof.
Proof of Proposition 5: It suffices to show that α̂ sat-

isfies (C) of Proposition 2. Note that β̃ in Algorithm 1
satisfies the sum-to-zero constraint at each step of itera-
tion before termination. In the beginning, ‖α̂‖1 = 0 and
‖β̃‖1 = ‖β̂‖1. After each iteration, ‖α̂‖1 is increased by
α̂k1k2 = min(|β̃k1 |, |β̃k2 |), and ‖β̃‖1 is decreased by 2α̂k1k2 .
In the end, ‖β̃‖1 = 0, and therefore ‖α̂‖1 = 1

2‖β̂‖1. This
completes the proof.

ADMM algorithm for solving Eq. (4)
We adopt the notation in [18] and reformulate Eq. (4) as

min (1/2)‖Ax − b‖22 + λ‖z‖1
subject to Cx = d, x − z = 0.

(5)

where x are the parameters of interest. If C = 1T and
d = 0, we will have all coefficients sum up to 0. When
there is an intercept in the model, we can add a scalar 0
as the first element in C, meaning that we do not have
constraint on the intercept. Similarly, as a convention we

also do not penalize the intercept. Denoting B =
[
C
I

]
,

D =
[

0
−I

]
, and d =

[
d
0

]
, the two equality constraints

can be simplified as Bx + Dz = d. To use the ADMM
algorithm [18], we form the augmented Lagrangian

Lρ(x, z, y) = (1/2)‖Ax − b‖22 + λ‖z‖1
+(ρ/2)‖Bx + Dz − d + u‖22 − (ρ/2)‖u‖22,

with uk = (1/ρ)yk =
[
u1
u2p

]
where u1 is a scalar and

u2 ∈ R
p×1.

Let E =
[

A√
ρC

]
, the ADMM algorithm consists of the

following iterations

xk+1 := (ETE + ρI)−1
(
ATb + ρ

(
zk − CTuk1 + CTd − u2k

))

zk+1 := Sλ/ρ

(
xk+1 + u2k

)

uk+1 := uk +
(
Bxk+1 + Dzk+1 − d

)
.

The x update can be accelerated by caching an initial fac-
torization. Suppose the dimension of E ism× p. Ifm < p,
we cache the factorization of I + ρEET (with dimension
m × m) and use the matrix inversion lemma

(
ρI + ETE

)−1 = I/ρ − ET
(
I + 1/ρEET

)−1
E/ρ2

to update x. Otherwise, we cache the factorization of
ρI + ETE (with dimension p × p) and use back- and
forward- solve to update x directly. The iteration stops
when the primal and dual residuals are smaller than their
corresponding tolerances,

‖rk+1‖2 ≤ εpri and ‖sk+1‖2 ≤ εdual,

where
rk+1 = Bxk+1 + Dzk+1 − d,

sk+1 = ρBTD
(
zk+1 − zk

)
,

εpri = √
p + 1εabs + εrelmax

{
‖Bxk+1‖2, ‖ − zk+1‖2, ‖d‖2

}
,

εdual = √pεabs + εrel‖ρBTuk+1‖2.
Usually, the relative stopping criteria is chosen to be εrel =
10−4, and the choice of absolute stopping criteria εabs

depends on the scale of the variable values. See Boyd
et al. [18] for details. To compute a solution path for a
decreasing sequence of λ values, we adopt the approach
in Friedman et al. [21] and use warm starts for each λ

value. The sequence of λ values are either provided by the
user, or we begin with λmax = ‖ATb‖∞ for which all the
coefficients are equal to 0. We set λmin = ελλmax, where
ελ is a small value, such as 0.01, and generate a decreas-
ing sequence of 100 λ values from λmax to λmin on the
log-scale.
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