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Abstract

Background: Artificially synthesized RNAmolecules provide important ways for creating a variety of novel functional
molecules. State-of-the-art RNA inverse folding algorithms can design simple and short RNA sequences of specific GC
content, that fold into the target RNA structure. However, their performance is not satisfactory in complicated cases.

Result: We present a new inverse folding algorithm called MCTS-RNA, which uses Monte Carlo tree search (MCTS), a
technique that has shown exceptional performance in Computer Go recently, to represent and discover the essential
part of the sequence space. To obtain high accuracy, initial sequences generated by MCTS are further improved by a
series of local updates. Our algorithm has an ability to control the GC content precisely and can deal with pseudoknot
structures. Using common benchmark datasets for evaluation, MCTS-RNA showed a lot of promise as a standard
method of RNA inverse folding.

Conclusion: MCTS-RNA is available at https://github.com/tsudalab/MCTS-RNA.
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Background
The function of RNA transcripts is tied to their
three-dimensional molecular structures, itself primarily
determined by secondary structures. For this reason,
computational prediction of RNA secondary structure has
been a popular subject of research for decades [1–5]. To
obtain an RNA sequence with a desired function in syn-
thetic biology, it is often necessary to design a functional
RNA sequence whose stable structure matches a user-
specified target structure. From the viewpoint of compu-
tational biology, this is exactly the inverse problem of RNA
secondary structure prediction, and is called RNA inverse
folding [4, 6, 7].
To date, RNA inverse folding approaches have been suc-

cessfully applied to create RNAs that function in vitro and
in vivo. Dotu et al. [8] performed RNA inverse folding
of hammerhead ribozymes and experimentally validated
the self-cleaving function of the designed ribozymes.
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Wachsmuth et al. [9] have constructed an in silico artifi-
cial riboswitches design pipeline in an inverse folding-like
manner, which repeatedly utilized an RNA secondary
structure prediction method to obtain RNA sequences
that fold into specified secondary structures.
In RNA inverse folding algorithms, a reward func-

tion (or objective function) that measures the similarity
between the folded RNA structure and a target structure is
used to evaluate a generated RNA sequence. In addition, it
takes into account other sequence properties, such as GC
content (fraction of guanine and cytosine), that crucially
affect the functions of RNA molecules [10].
To deal with the huge search space whose size is expo-

nential to sequence length, a number of optimization
techniques have been applied to RNA inverse folding
(Table 1). Most approaches rely on heuristics such as
local search [11–14], evolutionary algorithms [6, 15–17],
weighted sampling [18], or ant colony optimization [7].
RNAiFold [19] uses constraint programming so that it can
find all sequences matching the target structure. Local
search algorithms apply update rules repeatedly to make
the predicted structure as close to the target structure
as possible (Fig. 1). Local search is often combined with
evolutionary algorithms to improve accuracy [17, 18].
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Table 1 Existing tools and their ability to control GC-content and
handle pseudoknot structures

Tools Algorithm GC content Pseudoknot

RNAinverse [11] Local search No No

RNA-SSD [12] Stochastic local search No No
and structure decomposition

INFO-RNA [13] Dynamic programming No No
and local search

NUPACK [14] Minimization of ensemble No No
defect and structure
decomposition

RNAexinv [35] Simulated annealing No No

Frnakenstein [15] Genetic algorithm No No

EteRNABot [36] Downhill simplex algorithm No No

ERD [16] Evolutionary algorithm No No
and structure
decomposition

RNAifold [19] Constraint programming Yes No
and structure
decomposition

IncaRNAtion [18] Weighted sampling Yes No
algorithm and
local search

MODENA [17] Multi-objective Yes Yes
genetic algorithm

antaRNA [7, 30] Ant colony optimization Yes Yes

Enzymer [37] Adaptive weighted No Yes
sampling

MCTS-RNA Monte Carlo tree search Yes Yes

Updates are designed so that the predicted structure is
improved in terms of reward.
Inverse folding algorithms depend on secondary struc-

ture prediction methods such as RNAfold [4] for nested
structures and pKiss [20] for pseudoknot structures.
RNAifold [19], IncaRNAtion [18], MODENA [17] and

antaRNA [7] design RNA sequences for nested struc-
tures with GC content control. Among them, antaRNA
and MODENA allow pseudoknot target structures. To
deal with pseudoknots, antaRNA uses pKiss [20] as its
structure prediction method, while MODENA uses either
IPknot [21] or HotKnots [22].
In this paper, we develop a new algorithm calledMCTS-

RNA that employs Monte Carlo tree search (MCTS)
to solve the RNA inverse folding problem. MCTS is a
randomized best-first search method that showed excep-
tional performance in computer Go [23, 24]. In addition,
it has been successfully applied to computational biol-
ogy [25] and other research domains [23, 26]. In an RNA
sequence, each base can have a very different impact on
the structure [27]. Replacement of an essential base may
change the structure completely, while a non-essential
base may be totally irrelevant. We employ MCTS to
discover the set of essential bases that determines the
secondary structure. In our analogy, base determination
corresponds to placing a stone in Go. In computer Go,
scoring an intermediate state, i.e., estimation of winning
probabilities given a set of placed stones, is crucial to the
overall performance. Likewise, we need to develop a way
to evaluate a partially determined RNA sequence with
respect to the possibility of creating sequences with the
target structure.
In our notation, an event indicates base assignment

to one position or two positions at once (Fig. 2). For
example, the events {A7} and {CG5,9} indicates that A
is assigned to position 7, C and G are assigned to posi-
tions 5 and 9. Let � denote the sum of the number of
free bases and that of base pairs in the target struc-
ture. The complete search tree is defined as the tree
of depth �, where the children of a node represents all
possible events. It is obviously impossible to keep the
complete tree in memory. Starting from the root node
alone, MCTS expands the tree gradually by identifying
the most promising node and expanding its children. To

Fig. 1 Schematic illustration of local search. Given an initial sequence (i.e., a point in the sequence space), secondary structure prediction is applied
to obtain the corresponding secondary structure (i.e., a point in the structure space). Based on the difference between the predicted and target
structures, the sequence is updated. After repeating the update until a termination condition is met, the best sequence is chosen from the set of
generated sequences
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Fig. 2 Target RNA secondary structure and assignment events. a This target structure of length N = 13 has three base pairs and seven free bases.
b After the events {A7} and {CG5,9}, three positions are determined

evaluate a node, a full sequence (i.e. an initial sequence)
is generated by randomly choosing the remaining events,
which is then used as an initial point of local search. Each
node has a UCB (Upper Confidence Bound) score [28]
determined by the reward of the best sequence obtained
by local search and the number of visits to the node. By
taking the number of visits into account, our algorithm
can avoid focusing too much on the same part of the
search tree.
In contrast to evolutionary algorithms, MCTS has a

stronger theoretical background [29]. The regret bound of
the UCB score, for example, is well-studied in literature
[28]. In heuristic optimization, it is essential to control
the balance between exploitation and exploration [23]:
This is a difficult task for the algorithms controlled by
biologically inspired parameters such as pheromone or
cross-over parameters. MCTS has a simpler mechanism
where the balance is controlled by a hyper-parameter C
involved in the UCB score. In general, the success of com-
plex algorithms involving many parameters is dependent
on the proper configuration of these parameters, which
can lead to difficulties adapting to different problems
without changing the default parameter values.
Using standard benchmark datasets, we performed

extensive experimental comparisons for both nested and
pseudoknotted structures. Within a time limit of ten min-
utes, MCTS-RNA succeeded in creating more sequences
matching the target structure than MODENA, ERD and
antaRNA. Notably, MCTS-RNA produced results for
some difficult Rfam families where other methods could
not find a matching sequence within the time limit.
These promising results demonstrate the efficiency of
MCTS in RNA inverse folding, and suggest a new way to
design algorithms for solving combinatorial problems in
computational biology.

Method
Reward function
In MCTS-RNA, we design a sequence whose predicted
secondary structure matches the given target structure
and the GC-content remains within an acceptable range of
a target value α∗. In the search process, a reward function
is employed to measure how close a sequence is to the

desired one. The structural distance d is the Hamming
distance between the parentheses representation of target
and predicted secondary structures. Let us denote the
sequence length of the target structure by N, and the GC
content of the generated sequence by α. The reward of a
sequence is defined as

r =
{
RGC + N−d

N for − δ ≤ α − α∗ ≤ δ
N−d
N otherwise

(1)

where RGC (> 0.0) is a weight parameter and δ determines
the allowed deviance from α∗. If the GC content target is
not available, r = (N − d)/N .

Sequence space
The target structure (Fig. 2) determines which posi-
tions should form base pairs. In designing a sequence,
such a paired position is called a paired site. It can be
assigned only with one from the following six base pairs
[AU ,UA,GU ,UG,CG,GC].
The remaining free positions are called single sites. They

are not constrained and can be assigned with any base
[A,C,G,U]. The event that a pair site (i, j) is assigned with
a base pair XY is described as {XYi,j}. For a single site, it is
described as {Xi}. Random assignment of a site is defined
as follows. If it is a paired site, a base pair is chosen from
[AU ,UA,GU ,UG,CG,GC] with equal probabilities. If it
is a single site, a base is chosen from [A,C,G,U] with
equal probabilities.

Monte Carlo tree search
MCTS-RNA creates a search tree where each node cor-
responds to an assignment event (Fig. 3). When the total
number of single and pair sites is �, the maximum depth
of the tree is �. A path from the root to a leaf repre-
sents a partially determined sequence. In the first round
of MCTS-RNA, only the root node exists in the search
tree. From � sites, a site is chosen randomly. If it corre-
sponds to a single site, four child nodes containing bases
[A,C,G,U] are created under the root node. Otherwise,
six nodes with base pairs [AU ,UA,GU ,UG,CG,GC] are
created. Each node i contains three variables: the visit
count vi represents the number of visits in the search pro-
cess, zi denotes the immediate merit of node i evaluated
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Fig. 3 Overview of MCTS-RNA. Each node of the search tree has an assignment event. The search tree is gradually expanded by repeating the four
steps: Selection, Expansion, Simulation and Backpropagation. In the selection step, the tree is traversed from the root node to a leaf node by taking
the child node with the largest UCB-score at each branch. If necessary, children nodes are added to the leaf node in the expansion step. In the
simulation step, a number of sequences are generated by local search. Finally, parameters at the ancestor nodes are updated in the
backpropagation step. These four steps are repeated until a sequence with the target structure is found

by sequence generation, and the cumulative value wi is
defined as the sum of zj for all descendant nodes including
itself. The UCB score [28] of a node is defined as

ui = wi
vi

+ C

√
2 ln vparent

vi
, (2)

where C is a constant to balance exploration and exploita-
tion and vparent is the visit count of the parent node. The
variables are initialized as

vi = wi = zi = 0,ui = ∞. (3)

A round of MCTS-RNA consists of four steps: Selec-
tion, Expansion, Simulation and Backpropagation (Fig. 3).
The expansion step can be skipped but the other three
steps always take place. In the selection step, the tree is
traversed from the root node to a leaf node by following
the child with the largest UCB score ui. If there are ties,
the winning child is chosen randomly.
If the leaf node is a rarely visited node (i.e, the visit

count is smaller than the expansion threshold β : vi < β),
the expansion step is skipped. In the simulation step,
k sequences are generated by choosing the remaining
assignment events randomly and applying k − 1 local
updates. Details of sequence generation is described in
the next section. If the predicted structure of one in the

k generated sequence is identical with the target struc-
ture, MCTS-RNA terminates immediately. Otherwise, the
algorithm continues until the time limit is up. For each
generated sequence, the reward function (1) is computed,
and themaximum reward is stored as the immediate value
zi. In the backpropagation step, the visit count vj of each
ancestor node j is incremented vj ← vj + 1 and the
cumulative value is updated as wj ← wj + zi.
If the leaf node i is a frequently visited node (vi ≥ β),

the expansion step takes place. A new site is chosen
randomly from the remaining sites and child nodes are
created under node i. Similarly in the first round, four or
six children are generated and initialized as (3). One child
node is chosen randomly and the simulation and back
propagation steps follow.

Sequence generation by local search
In the simulation step of MCTS-RNA, we generate k
sequences, i.e., an initial sequence and k − 1 sequences
which are obtained by progressively applying local
updates to the initial sequence. The process of generating
the initial sequence and local updates will keep the sites
already determined by the selected path to the leaf node.
We call the determined positions essential positions.
The initial sequence is randomly generated in such a

way that the number of GCs is approximately equal to
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Fig. 4 Illustration of local update. Two kinds of rewriting rules are applied to narrow the gap between predicted and target structures. Red bases
{AU3,11} and {AU4,10} are updated to form base pairs, while blue bases {GC2,13} are updated so that the pair is destroyed. Positions 5, 7 and 9 are
essential positions and not updated. a Nucleotides need to be updated. b Updated RNA sequence

the number of desired GCs, Nα∗. To this aim, we repeat
the following procedure until the number of GCs reachs
Nα∗: (i) Randomly pick up a non-essential position. (ii)
If it is a paired position, choose GC or CG randomly and
assign them to the paired positions; otherwise, choose
G or C randomly and assign it to the position. If the
number of GCs in essential positions is already larger
than Nα∗, the above procedure is skipped. The remain-
ing positions are assigned with A and U in a similar
manner.
In the first step of the local update, we obtain the

predicted structure of the current sequence, then apply

rewriting rules as many times as possible. There are
two rewriting rules: (i) If two non-essential positions are
paired in the target structure, but not in the predicted
structure, replace them with one of [AU ,UA,CG,GC]
randomly. (ii) If two non-essential positions are paired
in the predicted structure and not paired in the target
structure, do the following:

• If they are AU or UA, replace them with AA or UU
randomly.

• If they are GC or CG, replace them with CC or GG
randomly.

Fig. 5 Performance of MCTS-RNA in different parameter settings. C is the parameter in the UCB score that determines exploration-exploitation
trade-off. β is the expansion threshold that controls the size of the search tree. The average number of successful designs is counted for five small
datasets. Each dataset consists of randomly selected 4 nested and 4 pseudoknot structures



Yang et al. BMC Bioinformatics  (2017) 18:468 Page 6 of 12

• If they are GU or UG, replace them with one of [AC,
CA, AG, GA, CU, UC] randomly.

The first rule is expected to form a base pair, while the
second one breaks the pair. The three options in the sec-
ond rule are designed to avoid changing the number of
GCs in the sequence. Figure 4 shows an example of local
update. Due to the first rule, {AU3,11} and {AU4,10} are
updated to {GC3,11} and {AU4,10}, respectively. {GC2,13} is
updated to {CC2,13} due to the second rule.

Results and discussion
Following [6], we used 29 Rfam families as target struc-
tures to evaluate the performance of MCTS-RNA for
nested structures. For pseudoknot structures, we followed
[30] and used 249 structures from PseudoBase++ [31]. For
nested secondary structure prediction, RNAfold was used
for all the methods. For pseudoknot secondary structure
prediction, IPknot and HotKnots were used for MOD-
ENAwhile pKiss was used for MCTS-RNA and antaRNA.

MODENA has two different versions [6, 17] and the lat-
est version was used for all the comparisons. In regard
to the reward function, RGC was fixed to 1 and δ was
set to 0.01 for nested structures and 0.02 for pseudoknot
structures. As shown later, this setting resulted in rela-
tively strict control of the GC content in comparison with
competing methods. If more efficiency is required, one
can decrease RGC or increase δ to relax the control. The
number of local updates k was set to 50. In all compet-
ingmethods, we employed their default parameters unless
otherwise stated. Experiments were done on a CentOS 6.7
PC with 2.6 GHz CPU and 256 GB memory.
Given a target structure, the performance of an inverse

folding method is measured as follows. For a nested struc-
ture, an inverse folding method is applied 50 times to the
same structure with different random seeds. For a pseu-
doknot structure, the number of applications is reduced
to 10 times due to heavy computational cost. Each run
is considered as a success, if it could generate, within
10 min, at least one compliant sequence whose secondary

a

b

c

Fig. 6 Experimental results of MCTS-RNA, antaRNA and MODENA at different target values of GC content for nested structures. a Total number of
successful designs in 29 target structures. b Number of solved target structures. c Distribution of GC distance (i.e., the difference of obtained and
target GC content)
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structure matches perfectly with the target structure. If
there is at least one success for a target structure, the
structure is regarded as solved.

Parameter optimization
To identify the best values of expansion threshold β

and trade-off parameter C, we applied MCTS-RNA to
five small datasets with different values of β ∈ {1, 2, 3}
and C ∈ {0.01, 0.05, 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1.0}. Each
dataset consists of four nested Rfam structures and four
Pseudobase++ structures, which were randomly selected.
For each dataset, MCTS-RNA was performed ten times

per each structure with seven different GC content val-
ues. This resulted in total 560 MCTS-RNA runs for each
of five datasets. The average number of successes over the
five datasets was used tomeasure the performance of each
parameter setting. As shown in Fig. 5, C = 0.5 and β = 1
turned out to be the best setting. These values will be used
in all remaining experiments.

Nested structures
In this experiment, MCTS-RNA is compared with exist-
ing tools with GC content control: AntaRNA and
MODENA. RNAifold and IncaRNAtion are omitted, as

Table 2 Results of MCTS-RNA, antaRNA and MODENA for individual Rfam targets

Data MCTS-RNA antaRNA MODENA

Rfam RfamID N � Sc Et Sc Et Sc Et

RF00001 5S_rRNA 117 83 44/50 196.87 4/50 28.87 0/50 –

RF00002 5_8S_rRNA| 151 127 41/50 166.06 0/50 – 13/50 64.62

RF00003 U1 161 121 5/50 371.86 0/50 – 50/50 84.43

RF00004 U2 193 149 50/50 3.4 50/50 20.04 50/50 130.99

RF00005 tRNA 74 53 50/50 0.15 50/50 0.64 50/50 32.25

RF00006 Vault 89 69 50/50 0.38 50/50 3.65 50/50 37.49

RF00007 U12 154 112 50/50 10.08 19/50 8.19 49/50 76.19

RF00008 Hammerhead_3 54 39 50/50 0.49 50/50 0.33 50/50 28.32

RF00009 RNaseP_nuc 348 293 48/50 84.58 0/50 – 0/50 –

RF00010 RNaseP_bact_a 357 255 0/50 – 0/50 – 0/50 –

RF00011 RNaseP_bact_b 382 286 0/50 – 0/50 – 0/50 –

RF00012 U3 215 176 50/50 5.64 50/50 30.6 50/50 197.66

RF00013 6S 185 137 50/50 31.05 46/50 12.83 50/50 124.12

RF00014 DsrA 87 58 50/50 0.1 44/50 0.78 42/50 40.6

RF00015 U4 140 109 50/50 2.07 22/50 10.59 49/50 62.18

RF00016 SNORD14 129 112 0/50 – 0/50 – 0/50 –

RF00017 SRP_euk_arch4 301 200 49/50 133.19 44/50 56.24 50/50 452.17

RF00018 CsrB 360 311 0/50 – 0/50 – 0/50 –

RF00019 Y_RNA 83 60 50/50 1.51 49/50 1.67 50/50 36.32

RF00020 U5 119 89 0/50 – 0/50 – 0/50 –

RF00021 Spot_42 118 81 50/50 0.26 50/50 0.98 50/50 55.34

RF00022 GcvB 148 115 50/50 1.34 49/50 10.04 50/50 74.6

RF00024 Telomerase-vert 451 346 0/50 – 0/50 – 0/50 –

RF00025 Telomerase-cil 210 173 50/50 4.88 22/50 71.32 50/50 170.58

RF00026 U6 102 97 50/50 1.6 50/50 3.37 50/50 84.66

RF00027 let-7 79 48 50/50 0.19 50/50 0.76 50/50 37.35

RF00028 Intron_gp 344 291 7/50 336.39 0/50 – 0/50 –

RF00029 Intron_gpI 73 54 50/50 2.16 14/50 7.49 50/50 35.46

RF00030 RNase_MRP 340 276 50/50 19.96 31/50 298.74 50/50 414.19

Total 1045/1450 744/1450 953/1450

The GC content is controlled to 0.5 and the time limit is set to 10 min. N denotes the length of the target structure. � describes the sum of the number of base pairs and that
of free bases in the target structure. For each method, the number of successes in 50 runs is shown as Sc, and Et indicates the average time (in seconds) required to find a
compliant sequence. If no compliant sequences are found, it is left blank
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Kleinkauf et al. [7] showed that they perform worse than
antaRNA. Figures 6a and 6b show the total number of suc-
cesses and the number of solved targets, respectively. In
a realistic range of GC content, MCTS-RNA performed
better than antaRNA and MODENA. At GC content 0.5,
for instance, the number of successes was 40% larger than
that of antaRNA. The accuracy of GC content control
is shown in Fig. 6c. MCTS-RNA and antaRNA achieved
approximately the same level of accuracy, while MOD-
ENA showed significantly worse accuracy.
Table 2 shows the results for individual targets at

GC content target 0.5. Tables for other target val-
ues are shown in Additional file 1: Table S8–S14.

Among the structures that antaRNA failed to solve,
MCTS-RNA solved 5.8S ribosomal RNA (RF00002),
U1 spliceosomal RNA (RF00003), Nuclear RNase P
(RF00009) and Group I catalytic intron (RF00028).
Unfortunately, several difficult structures such
as SNORD14 (RF00016) could not be solved by
any tools.
To compare MCTS-RNA with ERD, we also performed

experiments without GC content control. Table 3 shows
that MCTS-RNA performed better than ERD and MOD-
ENA in aggregate. From a biological point of view, how-
ever, experimental results without precise GC content
control may be of less importance.

Table 3 Experimental results of MCTS-RNA, ERD and MODENA. No GC content control is applied

Data MCTS-RNA ERD MODENA

Rfam RfamID N � Sc Et Sc Et Sc Et

RF00001 5S_rRNA 117 83 50/50 8.38 10/50 3.1 50/50 82.31

RF00002 5_8S_rRNA 151 127 32/50 88.32 12/50 3.86 20/50 93.28

RF00003 U1 161 121 48/50 83.02 0/50 – 0/50 –

RF00004 U2 193 149 50/50 1.35 21/50 2.62 50/50 138.24

RF00005 tRNA 74 53 50/50 0.3 31/50 1.35 50/50 69.39

RF00006 Vault 89 69 50/50 0.167 38/50 0.88 50/50 65.15

RF00007 U12 154 112 50/50 0.18 30/50 1.52 50/50 102.25

RF00008 Hammerhead_3 54 39 50/50 0.026 33/50 0.67 50/50 61.25

RF00009 RNaseP_nuc 348 293 23/50 61.7 32/50 19.25 0/50 –

RF00010 RNaseP_bact_a 357 255 0/50 – 0/50 – 0/50 –

RF00011 RNaseP_bact_b 382 286 0/50 – 0/50 – 0/50 –

RF00012 U3 215 176 50/50 4.08 8/50 15.3 50/50 163.32

RF00013 6S 185 137 50/50 0.6 28/50 2.43 50/50 135.10

RF00014 DsrA 87 58 50/50 0.03 32/50 0.77 50/50 73.97

RF00015 U4 140 109 50/50 0.73 25/50 1.74 50/50 88.95

RF00016 SNORD14 129 112 0/50 – 0/50 – 0/50 –

RF00017 SRP_euk_arch4 301 200 50/50 3.15 2/50 2.48 50/50 256.07

RF00018 CsrB 360 311 0/50 – 0/50 – 0/50 –

RF00019 Y_RNA 83 60 50/50 0.1 18/50 0.86 50/50 63.22

RF00020 U5 119 89 0/50 – 0/50 – 0/50 –

RF00021 Spot_42 118 81 50/50 0.06 38/50 0.83 50/50 84.99

RF00022 GcvB 148 115 50/50 1.05 31/50 1.94 50/50 97.74

RF00024 Telomerase-vert 451 346 0/50 – 0/50 – 0/50 –

RF00025 Telomerase-cil 210 173 50/50 20.23 6/50 4.59 50/50 146.33

RF00026 U6 102 97 50/50 2 50/50 0.73 50/50 65

RF00027 let-7 79 48 50/50 0.08 46/50 0.76 50/50 63.03

RF00028 Intron_gp 344 291 19/50 91.32 19/50 46.16 0/50 –

RF00029 Intron_gpI 73 54 50/50 1.2 25/50 0.79 50/50 69.92

RF00030 RNase_MRP 340 276 48/50 71.4 0/50 – 50/50 345.89

Total 1070/1450 532/1450 970/1450

The definitions of N, �, Sc and Et are described in Table 2
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Fig. 7 Experimental results of MCTS-RNA, antaRNA and MODENA at different target values of GC content for pseudoknot structures. a Total number
of successfully designed sequences in 249 target structures. b Number of solved target structures. c Distribution of the error of GC content

Pseudoknot structures
We applied MCTS-RNA, antaRNA and MODENA to
249 pseudoknot structures. Figure 7 shows the number
of successes, the number of solved structures and the
error in GC content with different GC content target
values. With their default parameters, the GC content
control of antaRNA was not successful in many cases.
Disregarding the error in GC content, the numbers of suc-
cesses found by MCTS-RNA and antaRNA were approx-
imately the same, while MODENA showed significantly

worse performance. However, when we focus on success-
ful designs with accurate GC content, MCTS-RNA per-
formed substantially better (Fig. 8). When the GC error
is smaller than 0.01 (resp. 0.02), the number of successes
of MCTS-RNA was 73% (resp. 69%) larger than that of
antaRNA.

Parameter sensitivity of antaRNA
In most literature about RNA inverse folding, software
tools are evaluated with their default parameters (e.g.,

Fig. 8 Total number of successfully designed sequences whose GC distance is within a certain threshold. As in Fig. 7, MCTS-RNA antaRNA and
MODENA were applied to 249 pseudoknot structures
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[7]), because users are likely to use them as they are.
We nevertheless checked the performance of antaRNA
when the parameters are optimized like MCTS-RNA. In
optimization of antaRNA parameters, we used the same
five sets of structures that were used for MCTS-RNA.
The grid search was performed for three parameters
α ∈ {0.2, 0.5, 1.0, 2.0, 4.0}, β ∈ {0.2, 0.5, 1.0, 2.0, 4.0}, ρ ∈
{0.05, 0.1, 0.2}, As shown in Additional file 1: Figure S1,
α = 0.2,β = 0.2, ρ = 0.05 turned out to be the
best. Additional file 1: Figure S2 shows the results for
nested structures, where the number of successes of
antaRNA increased substantially in extreme GC con-
tent settings (e.g., 0.2 and 0.8). Still, the control of GC
content by antaRNA was less strict than MCTS-RNA.
Additional file 1: Figure S3 shows the number of success-
fully designed sequences whose GC distance is smaller
than 0.01. MCTS-RNA was better than antaRNA except
for the case that the GC content is controlled to 0.8. In
pseudoknot structures (Additional file 1: Figure S4 and
S5), MCTS-RNAwas consistently better than antaRNA in
all GC-content settings.

Experimental results without the structures used in
parameter optimization
The accuracy of MCTS-RNA may be positively biased
for the structures used in parameter optimization. In
Additional file 1: Figures S6 to S9, we summarized
the experimental results without the structures used in
parameter optimization (Additional file 1: Table S15).
Overall, we obtained similar results as in the experiments
with all structures (Additional file 1: Figures S2 to S5).

Contribution of Monte Carlo tree search
MCTS-RNA consists of MCTS and local search. In this
section, we investigate how much these two parts con-
tribute to accurate inverse folding and how they inter-
act. For easy problems, local search from random initial
sequences may suffice, but the addition of MCTS would
seem necessary in difficult cases. In the following experi-
ments, we used the 29 nested structures.
Figure 9 shows the depth distribution of the search tree,

when a compliant sequence is found, averaged over 29
Rfam structures. It is seen that, for extreme GC content
targets (e.g., 0.2 and 0.8), the depth of MCTS is larger. It
shows that designing sequences of medium GC content is
relatively easy, so tree backtracking and expansion is not
required as much.
To measure the effect of MCTS, we compared MCTS-

RNA with a simpler method of applying the local search
to randomly designed initial sequences (Fig. 10). Detailed
results are available in Additional file 1: Tables S1 to S7.
Here, the number of local updates was constrained to
300 for both methods. No time limits were applied. The
number of total successes of MCTS-RNA was about 30%

Fig. 9 Depth of the search tree when a successfully designed
sequence is found

larger than the local search with random initial sequences.
This result indicates that the systematic search of essential
bases including backtracking is necessary in RNA inverse
folding.

Conclusions
In this research work, we introduced MCTS-RNA based
on Monte Carlo Tree Search to solve RNA inverse fold-
ing problem. A characteristic of this approach is that the
sequence space is represented as a tree of assignment
events.MCTS-RNA outperformed existing tools based on
evolutionary algorithms and provided an efficient way to
search in the GC-content-specific sequence space. Evo-
lutionary algorithms keep a population of intermediate
solutions and update them simultaneously. The update is
designed such that a certain level of diversity is main-
tained to avoid falling into local minima. MCTS offers a
more specific way to perform trial-and-error by setting up
a search tree and allowing backtracking when the current
branch turns out to be non-promising according to the
UCB score.
We believe that it is easy to deploy MCTS to other

real-life optimization problems, thanks to its clear sepa-
ration between the problem-dependent part of the algo-
rithm and the general search. In MCTS-RNA, the local
search is the problem-dependent part, while in computer
Go, it corresponds to the playout algorithm that ran-
domly creates the remaining moves according to the rules
of the game [24]. By contrast, in a genetic algorithm,

Fig. 10 Comparison of MCTS-RNA and local search from randomly
designed initial sequences. The number of RNAfold calls is fixed at 300
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the problem-dependent part corresponds to the defini-
tion of the gene, the rules of crossover and mutation: all
aspects of the algorithm have to be calibrated to achieve
top performances. Furthermore, another advantage of
MCTS is that it is particularly amenable to parallelization
[32]. In future work, we would like to apply MCTS to a
wider range of computational biology problems such as
chemical compound design [33] and discovery of diverse
motifs [34].

Additional file

Additional file 1: This supplementary report shows the experimental
results for individual Rfam families where the GC content is controlled to
different target values and the performance of antaRNA with optimized
parameters. (PDF 1198 kb)
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