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Abstract

Background: Despite the ubiquity of mass spectrometry (MS), data processing tools can be surprisingly limited. To
date, there is no stand-alone, cross-platform 3-D visualizer for MS data. Available visualization toolkits require large
libraries with multiple dependencies and are not well suited for custom MS data processing modules, such as MS
storage systems or data processing algorithms.

Results: We present JS-MS, a 3-D, modular JavaScript client application for viewing MS data. JS-MS provides several
advantages over existing MS viewers, such as a dependency-free, browser-based, one click, cross-platform install and
better navigation interfaces. The client includes a modular Java backend with a novel streaming .mzML parser to
demonstrate the API-based serving of MS data to the viewer.

Conclusions: JS-MS enables custom MS data processing and evaluation by providing fast, 3-D visualization using
improved navigation without dependencies. JS-MS is publicly available with a GPLv2 license at
github.com/optimusmoose/jsms.

Keywords: Mass spectrometry visualization, Mass spectrometry JavaScript, 3-D visualization, Mass spectrometry data
processing, JavaScript mass spectrometry parsing

Background
Mass spectrometry (MS) plays a role in many biolog-
ical/biomedical investigations [1] because it can quan-
tify and identify the major components (proteins, lipids,
metabolites) of most cellular systems. MS is a long-
standing technology that is vital for answering a variety
of experimental questions across many disciplines [2]. MS
yields a list of identities and quantities of molecules in
a sample through the analysis of signals generated by
charged molecules (see Fig. 1).
While fragmented spectra are of principle interest in

current proteomics mass spectrometry workflows, pre-
cursor or MS1 data is important in proteomics and
other mass spectrometry applications due to its useful-
ness in constraining the peptide spectra search space,
providing quantitative information, and in workflows (e.g.
metabolomics or lipidomics) where fragmentation rules
are not well known.
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In such cases, there exists a need to view and inter-
act with MS1 data. The most appropriate open source
software for this purpose is TOPPView [3], a module of
OpenMS. TOPPView opens any .mzML file and displays it
in a 3-d representation with zoom and rotate capabilities.
Repurposing TOPPView for manual MS data processing
reveals several shortcomings:

• TOPPView automatically filters out some visible
points, making it impossible for the practitioner to
dictate how these points ought to be interpreted.

• The only way to annotate data in TOPPView is to
export the visible subset of data as an .mzML file. The
exported data will include hidden points, and further
processing requires programming expertise to
process the exported data.

• TOPPView’s data plot does not allow for shifting to
the right, left, up, or down. In order to shift the view,
the user must zoom out and carefully zoom back in
adjacent to the previous area. This makes navigation
difficult, and keeping track of the unprocessed
portion of the data exceedingly difficult.
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Fig. 1 In a mass spectrometry experiment (a), each unique molecule in a sample will create a unique 3-d signal group, called an isotopic envelope
(indicated by color in (c)), for every charge state found in the analysis. Each isotopic envelope is comprised of several isotope traces (indicated by
dashes in (b))

• TOPPView requires the installation of the large
OpenMS library. This is not an issue on Windows or
Mac, but for linux requires the installation of several
difficult to install dependencies and a local build,
which is beyond the technical ability of many
potential users.

The form and function of current user interfaces do not
provide the tools necessary to automate the user’s involve-
ment, nor the visualizations necessary to efficiently iterate
through the data.
In this manuscript, we present JS-MS, a 2- and 3-D MS

viewer designed to as an intuitive, fast, specialized MS
viewer. JS-MS allows users to better study data character-
istics to design and test MS data processing algorithms.
JS-MS is implemented in JavaScript. It is lightweight, has
no dependencies, is cross-platform, and provides all of the
viewing features of TOPPView without filtering points,
plus the ability to track (move up/down/left/right without
adjusting zoom).
JS-MS is designed under a modular view paradigm. It

responds to a simple JSON API, making it extensible to
any workflow. JS-MS is packagedwith amodular back-end
implemented in Java as an example of how it can operate
modularly with any backend via a well-defined API. The
package is provided as a single self-contained JAR file so
that the only prerequisites to run the software are the Java
Runtime Environment (JRE) and a web browser, typically
pre-installed on any computer.
In this paper, we discuss the design of JS-MS and

demonstrate its capabilities. JS-MS is publicly available
and has been tested onWindows, Mac, and Linux operat-
ing systems with Chrome, Firefox, and Edge browsers.

Implementation
JS-MS is a cross-platform graphical interface for view-
ing and segmenting mass spectrometry data. Existing MS
viewers often require the installation of external packages
which can pose an onerous burden on the user, particu-
larly for Linux users who might have to compile required
external libraries. JS-MS is a 3-D MS viewer which

is self-contained and cross-platform. The JS-MS viewer
itself is implemented via HTML and JavaScript alone. It
runs as a web application without the need for any exter-
nal dependencies by using WebGL [4], a 3-D graphics
library included with all major modern browsers.

View
JS-MS is composed of a graph view rendered using the
three.js [5] JavaScript graphics library and a button toolbar
(see Fig. 2). The graph view is a three-dimensional graph
displaying mass-to-charge (m/z), retention time (RT) and
intensity dimensions. The graph layout follows standard
conventions, with m/z and RT comprising the horizontal
x and y axes respectively, and intensity plotted on the ver-
tical axis. The graph can be zoomed, scrolled, and rotated,
allowing full navigation of even the largest MS data sets.

Data rendering
Web browsers are attractive targets for user interfaces due
to the flexibility of HTML and CSS, but JavaScript perfor-
mance can be an obstacle. The most influential compo-
nent of memory usage and performance is rendering load,
that is, how many points are drawn on screen. Almost
every MS data file contains too many points to be ren-
dered at once. Although system memory can load more
points than can be rendered at once, RAM also becomes
a secondary ceiling that must be addressed, though this is
a problem that is handled by the backend and outside the
scope of JS-MS.
An effective representation of the original full data set

at any granularity is essential to maintaining a small ren-
dering load while maintaining an accurate representation
of the underlying data. Ideally, representations would be
selected in such a way that the points chosen are real data
points, that is, they are not an aggregation of points, and
that the resulting graph looks similar to a graph of all
original points within the viewing area. The first require-
ment is necessary for performing data processing, and the
second requirement makes a great difference in usability
and navigability of the data for the end user. The point
selection process is referred to as “summarization”. While



Rosen et al. BMC Bioinformatics  (2017) 18:469 Page 3 of 7

Fig. 2 The JS-MS client. The toolbar (left) allows for data manipulation and navigation. The legend (bottom right) indicates the current view in
relation to the data set. The graph can display the data in two-dimensional or three-dimensional mode (shown)

summarization takes place in the data store module and
not JS-MS, a brief description of efficiencies designed into
MzTree [6]–JS-MS’s default data store module–is useful
to understanding JS-MS’s design and performance.
The MzTree data structure performs summarization

both statically and dynamically.
Static summarization occurs at MzTree construction

time. First, the data set is culled to all points above an
intensity threshold of 1–points with intensity below 1 are
considered noise. This typically reduces data cardinal-
ity by over fifty percent. Second, MzTree is built recur-
sively into a hierarchical bounding boxes. Each leaf of the
MzTree contains data points, and each internal node sam-
ples a preset number of points from the set of all child
nodes’ points. Each sample is merely a collection of point-
ers to avoid data duplication. This process has a trickle-up
effect starting at the MzTree leaf level (all data); each
level of the tree contains a sample set of points with a
degree of summarization equal to its height. After con-
struction completes the resulting MzTree has numerous
prepared data samples of ascending detail levels for any
given viewing area.
Dynamic summarization occurs at runtime on a per-

query basis. Upon receiving a query (consisting of a
viewing area and desired number of points) the MzTree
is traversed breadth-first starting at the root node. At

each level in the tree, each node’s data bounds are com-
pared with the query’s viewing area. If the node’s data
bounds overlap with the query’s viewing area its within-
view points are included in the prospective point set for
that level in the tree. The size of the prospective point set
is then compared to the desired number of points. If the
point set is smaller than the desired number of points the
next level of the tree is processed (except at the leaf level,
where fewer points than requested must be returned).
If the level’s point set is sufficiently large dynamic sum-
marization occurs on the point set to whittle it down
to the desired number of points. Dynamic summariza-
tion enables query flexibility in the MzTree to ensure that
JS-MS receives exactly the number of points requested.
While JS-MS is memory conservative by default, users

have the option of increasing memory usage as a means
of degrading render time. In the current implementation
of the JS-MS viewer, a user-configurable level of detail
determines the desired number of points per query. Detail
level is implemented as a fixed number of points to render
regardless of viewing area and location; by maintaining
the same rendering load for any region of the data set,
application performance remains uniform across an entire
user session. Not all users have the same hardware capa-
bilities or preferences for speed versus detail, thus the
detail level is adjustable using a slider on the toolbar. In
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addition to the configurable detail level, JS-MS minimizes
memory usage by keeping in memory only the currently
visible data. Since the MzTree data server is exceedingly
responsive, the viewer has no need to cache or prefetch
data and can discard all loaded points from memory any
time the viewing area changes.

Results
JS-MS’s user interfaces and data rendering provide perfor-
mance and functionality unavailable in other MS viewers.

View
JS-MS is composed of a graph view rendered using the
three.js [5] JavaScript graphics library and a button toolbar
(see Fig. 2). The graph view is a three-dimensional graph
displaying mass-to-charge (m/z), retention time (RT) and
intensity dimensions. The graph layout follows standard
conventions, with m/z and RT comprising the horizontal
x and y axes respectively, and intensity plotted on the ver-
tical axis. The graph can be zoomed, scrolled, and rotated,
allowing full navigation of even the largest MS data sets.
The user is able to control the view range and perspec-

tive of the graph with a variety of graph transformations.
Zoom level can be altered using one of two options: the
mouse wheel, or a rectangular click and drag (see Fig. 3).
The mouse wheel allows the user to zoom centered on the
location of the mouse pointer. Alternatively, holding the
control key activates click and drag zooming which allows
the user to left-click and drag the mouse to specify a view
window (see Fig. 3). In this manner rectangular zooming
grants control over the graph’s aspect ratio.
JS-MS provides a rotation mechanism to allow users to

view the data at different three-dimensional perspectives.
By right-clicking and dragging, the graph can be rotated
in any direction. Dragging vertically pitches the graph,
dragging horizontally yaws.
The view range can be translated in all four horizontal

directions by scrolling the graph. Scrolling is achieved by
either left-clicking and dragging or using the arrow keys.
Clicking and dragging scrolls the graph in the direction of
the drag by the distance of the drag. Pressing an arrow key
incrementally moves the graph in the key’s direction.
To further enable fast navigation, JS-MS is equipped

with a jump to m/z feature. This feature allows the user to
enter an m/z value and be immediately placed at that m/z
position, while maintaining the current RT position, zoom
level, and perspective.
To our knowledge, these features do not exist in any

other 3-D MS viewing software. Without them, visiting
each data point in a file would require zooming out and
zooming in on adjacent data, a time-consuming practice
resulting in loss of ones place and skipped points.
Two-dimensional mode provides a bird’s-eye view of the

data. It is particularly useful for detecting low intensity

points that would go unnoticed from a three-dimensional
perspective. Switching to two-dimensional mode trans-
forms data lines to squares so that they are visible from an
overhead perspective. A variety of controls activate two-
dimensional mode. Users can quickly view the data two-
dimensionally from three-dimensional mode by either
rotating to a bird’s-eye perspective or pressing and holding
the shift key (releasing the shift key returns to the pre-
vious perspective). To persist the two dimensional view,
the user can activate a toolbar toggle button to switch to
two-dimensional mode. All applicable three-dimensional
interfaces remain the same in two-dimensional mode,
providing a seamless experience for the user. For exam-
ple, the user can scroll the two-dimensional graphwith the
same controls as the three-dimensional graph.

Data rendering
.mzML is the standard open, vendor-neutral data format
for storing and communicating mass spectrometry data
and follows the XML schema [7]. Parsing an .mzML file to
extract all MS data points is necessary for using JS-MS, for
using any other three-dimensional viewer, or for convert-
ing to novel file formats that are not spectrum ordered.
This requires a new approach to reading .mzML files that
is both fast and memory efficient.
There are mature libraries for parsing mzML files in

many languages, such as C++ and Python; however,
options for parsing .mzML files in Java are limited. Jmzml,
an existing library for processing .mzML files in Java, is
optimized for memory-efficient processing of large files.
It implements on-the-fly indexing of files to ensure only
requested data is loaded into memory [8]. Jmzml is opti-
mized for multiple, fast reads after a lengthy index-rich
initialization, making it poorly suited for parsing .mzML
to convert into another data structure. DOM (Document
object model), a popular API for interacting with XML
documents, is very fast when parsing large files but uses
considerable memory (several times the size of the XML
file). Since .mzML files can run into the tens of GBs, this
is a limiting feature of DOM.
A single pass parser using the StAX (Streaming API for

XML) interface in Java provides fast MS data extraction
with minimal memory usage.
.mzML parsers based on the StAX API, the DOM API

and Jmzml were implemented for reading the set of points
in an .mzML file. The parsers were compared based
on memory footprint and execution time. Experiments
were carried out on a set of .mzML files from several
MS experiments. File size varied from 4.3 to 1240 MB
and included indexed and non-indexed .mzML files. Both
uncompressed and zlib compressed binary arrays were
used. Testing was performed on a personal computer
running Ubuntu with an SSD. For timing experiments,
minimum and maximum Java heap space were both set to
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Fig. 3 By using the mouse, a rectangular area can be set as the new viewing window in order to control the aspect ratio or focus on a specific
section of the data set

4 GB. Memory footprint was measured by reducing the
Java heap space allocated until the parser failed to execute.
The parsers were modified to discard points after access-
ing them in order to give an accurate measurement of the
parser’s share of total memory.
Overall execution time was measured for all tests; in

addition, build time for the parser object and actual parse
time were measured for each of seven files by placing
timers inside the code for each parser.
For each of the input .mzML files above 50 MB, a set

of files containing subsets of the spectra for that original
.mzML file were generated. For instance, for a file with
1000 spectra, a file containing only the first 20 of these
spectra, a file containing the first 40 spectra, and so on
could be created to yield a total of 50 files. In this way,
the execution time for parsing as a function of file size or
number of points was measured, with other aspects of the
file held constant [9].
Memory usage of the different parsing objects in shown

in Fig. 4. DOM parsing requires memory for indexing
overhead that while amortized for larger file sizes, still
leads to much greater requirements than Jmzml, which
uses roughly two orders of magnitude less, and StAX,
which uses about two orders of magnitude less. StAX
memory requirements do not increase noticeably even on
large files.

Figure 5 shows build time and parse time separately for
the different parser objects. StAX outperformed DOM on
all tests, with Jmzml requiring performing much slower
than either alternative. under normal circumstances. For
DOM, build time was minimal, and for StAX, build time
was negligible.

Fig. 4 Parser object memory usage for mzML files of different sizes.
Required memory is shown on a logarithmic scale. StAX and Jmzml
parsers both use significantly less than DOM
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Fig. 5 Parser object build time and parsing time shown separately for several different file sizes. For Jmzml, build time is significant, while for DOM
build time is small and for StAX it is negligible

Figure 6 shows plots of execution time versus file size
for spectra subsets. The plots are linear for all parsers.
This is to be expected, as file reading is a linear algo-
rithm. For Jmzml, execution time increased more quickly
with file size than for DOM and StAX, implying that
Jmzml will always be slower even as the file size increases.
This is likely because Jmzml has to read the file from the
disk twice–once to index the file and once to access the
data–while DOMand StAX only have to read the file once.

Fig. 6 Execution time versus file size for the three parsing models and
for spectra subsets of multiple files. Execution time versus file size is
linear in this range for the same parser along subsets of the same file.
StAX and DOM perform similarly and always outperform Jmzml

Discussion
Performance-centric design allows JS-MS to handle the
overwhelming processing and storage demands for a web
environment created by the magnitude of mass spectrom-
etry data. The viewer logic is fully contained in a thin
client designed to flexibly interface with any data stor-
age and retrieval system that interfaces with the JS-MS
HTTP API. Our implementation is a Java web server that
is designed to run either on the same machine as the
client, or as a standard stand-alone server. The viewer is
responsible for drawing the current window of data pro-
vided on the latest request to the server. The decoupling
of the viewer from the backend allows implementation
and testing of various different approaches for data stor-
age and retrieval, algorithmic data processing, andmanual
inspection.
JS-MS provides two main advancements: First, it is

the only JavaScript viewer for MS data. Through the
several optimizations discussed above, JS-MS is able to
quickly plot 3-D MS data despite being implemented in
JavaScript, giving it browser-based cross-platform com-
patibility, with access to virtually unlimited extensibil-
ity provided from the wide array of tools available in
lightweight JavaScript libraries. Second, it implements
critical navigation features unavailable in other MS view-
ers. These features, such as scroll and jump to m/z, allow
users to inspect adjacent signals without needing to zoom
out and zoom in on an adjacent area–a very difficult task
given the self-similar nature of MS data. Another feature,
the instantaneous toggle between 2-D and 3-D mode, is
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absent from other popular viewers, such as TOPPView,
which requires another viewwindow and navigating to the
same spot.
JS-MS is modular because it makes no assumptions

about previous or successive data processes, other than
what is defined in the API. You can use any backend
of choice with JS-MS, and use the data for any down-
stream processes. JS-MS’s included Java server provides
a working example of how users can interact with the
viewer using its HTTP API, and also is a stand alone
contribution for those who want to implement their own
modular data processing tools for MS. The StAX parser
for .mzML, which outperforms other publicly available
parsers, should be useful for anyone who is using MS
data with Java code. Those who wish to implement their
own server or use another pre-existing server can do so
provided they implement the API that JS-MS expects.

Conclusion
JS-MS is a cross-platform, modular, browser-based MS
data viewer. It runs on any modern browser without addi-
tional dependencies. It is the first MS viewer to provide
a full suite of navigational tools (including scroll). JS-MS’s
advanced interfaces and novel backend enable sufficient
speedup to make visual analysis practical.

Availability and requirements
JS-MS is implemented in JavaScript and Java, runs on all
operating systems, and is available with a GPLv2 license
from github.com/optimusmoose/jsms.

Abbreviations
MS: Mass spectrometry; m/z: Mass to charge ratio; RT: Retention time
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