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Abstract

Background: Visualization of RNA secondary structures is a complex task, and, especially in the case of large RNA
structures where the expected layout is largely habitual, the existing visualization tools often fail to produce suitable
visualizations. This led us to the idea to use existing layouts as templates for the visualization of new RNAs similarly to
how templates are used in homology-based structure prediction.

Results: This article introduces Traveler, a software tool enabling visualization of a target RNA secondary structure
using an existing layout of a sufficiently similar RNA structure as a template. Traveler is based on an algorithm which
converts the target and template structures into corresponding tree representations and utilizes tree edit distance
coupled with layout modification operations to transform the template layout into the target one. Traveler thus
accepts a pair of secondary structures and a template layout and outputs a layout for the target structure.

Conclusions: Traveler is a command-line open source tool able to quickly generate layouts for even the largest RNA
structures in the presence of a sufficiently similar layout. It is available at http://github.com/davidhoksza/traveler.

Keywords: Visualization, RNA secondary structure, Template-based modeling, Software tool

Background

The ability to visually inspect the secondary structure of
an RNA molecule is an important aspect of RNA analy-
sis, especially in case of large molecules,such as ribosomal
RNAs (rRNAs). For such molecules, suitable visualization
can help to determine conserved regions shared across
species or, alternatively, expansion segments, the exposed
parts of the RNA structure. The visualization also facil-
itates the comparison of secondary structures, identifi-
cation of function of RNA molecules and modeling of
functional mechanisms.

There are three possible approaches with regard to lay-
ing out RNA: a linked graph, a circular graph, and a
classical structure [1]. In the linked graph, the nucleotides
are drawn on a straight line in sequence order, and base-
paired residues are linked by an arc. The circular graph
is similar to the linked graph representation with the
nucleotides laying, however, on a circumference of a circle
and connected with straight lines. Both of these represen-
tations lack the ability to capture the secondary structure
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motifs and therefore the classical structure is used when
detailed visual analysis of secondary structure motifs and
their interaction are needed. In the classical structure the
positions of nucleotides is chosen so that the secondary
structure motifs, such as hairpins, bulges, or multibranch
loops can be discerned.

Since the secondary structure of RNA can be presented
as a graph, the RNA visualization task can be translated
to a graph drawing problem. However, there are specifics
to the RNA secondary structure which do not enable the
application of the general graph drawing solutions. The
RNA specifics require the lengths of the edges that cor-
respond to base pairs to be constrained, or the secondary
structure motifs to be drawn in a compact and specific
way. For example, hairpins should consist of a stem and
a loop where stem-related nucleotides commonly lie on a
line, while loop residues are located on a circle, and the
resulting layout should be planar [2]. These rules maybe
applied as, relatively vague, optimality criteria if needed
and could drive the visualization of small RNA structures.
However, there are no such rules with respect to how vari-
ous secondary structure motifs should be positioned with
respect to each other or how complex motifs, such as
multibranch loops, should be laid out. Therefore, there is
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basically an infinitely many possibilities how to lay out the
secondary structure of more complex RNA molecules.

The absence of rigid criteria when assessing the quality
of a layout leads to the fact that secondary structure visu-
alization is largely habitual and while the layout of small
secondary structure motifs, such as hairpins, are similar in
different tools, their mutual positions differ greatly among
the existing visualization tools. A great and exhausting
overview of secondary structure drawing approaches and
software tools (both command line and interactive) can
be found in a recent review by Ponty et al. [3]. The
most commonly used tools for the visualization of sec-
ondary structure of RNA molecules include VARNA [4]
and RNAplot [5].

Outputs of these tools can differ substantially which is
especially true for large RNA structures. We show this
on an example of the visualization of the small subunit
of human rRNA which we contrast with the dramati-
cally different layout used by the biologically commu-
nity. See Fig. la for the visualization of small subunit
of human ribosomal RNA (GenBank accession number
K03432) in the layout which biological users are used to
seeing (downloaded from the Comparative RNA Website -
http://www.rna.icmb.utexas.edu/). As a contrast, we show
the layouts generated by Traveler, the tool introduced in
this paper, VARNA, RNAplot, jViz.Rna [1] and RNAFdI
[6] tools!.

The poorly defined optimality criteria for the secondary
structure visualization motivated us to circumvent the
problem by developing a template-based drawing algo-
rithm [7] which requires on its input the secondary struc-
ture of a template RNA together with its layout and
the secondary structure of the target RNA molecule for
which the layout is to be generated. Then, using tree edit
distance, the template layout is turned into the target one.

It should be noted that our approach is not the first one
to use a template to draw an RNA secondary structure.
The tool RnaViz [8, 9] allows a user to pass a so-called
skeleton, which is then used when drawing target RNAZ2.
To obtain the skeleton, one needs to use de novo layouting
capabilities or RnaViz, and correct the overlaps manually.
The resulting layout then can be stored as a skeleton and
used for the visualization of other similar structure. Our
approach, on the other hand, uses the template structure
directly and its visualization provided either as a VARNA
or CRW file (see “Traveler” section).

In this paper, we introduce a software tool called TRAVeLer
(Template-based RnA VisuaLization) by implementing
an extended and optimized version of our template-
based drawing algorithm. The extension includes the
implementation of a more efficient two-step tree edit
distance (“Target-template structure matching” section),
special treatment of multibranch loops (“Multibranch
modification” section) a range of additional polishing
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steps and special cases treatments (“Postprocessing and
special cases treatment” section), and the ability to use
VARNA layouts as templates for visualization (“Traveler”
section). Traveler is capable of visualizing even the biggest
structures with thousands of nucleotides in tens of sec-
onds; it is provided as an extendible, open-source software
framework and can be downloaded from https://github.
com/davidhoksza/traveler.

Implementation

The algorithm implemented in Traveler is based on the
ability to represent a pseudoknot-free RNA secondary
structure as an ordered rooted tree®. In the tree, inner
nodes represent base pairs and unpaired nucleotides form
leaves of the tree as illustrated in Fig. 2. To build such
a tree from an input structure, one simply traverses the
secondary structure in sequence-order from both ends
simultaneously and transforms the encountered paired
and unpaired nucleotides into inner nodes or leaves of the
nascent tree. The order of neighboring nodes is defined
by the order in which the nodes are encountered in the
traversal.

Target-template structure matching

Firstly, Traveler converts the target and template struc-
tures into their corresponding tree representations. In the
ideal case of Fig. 2, the structure can be directly converted
into a rooted tree. However, if the first and last nucleotides
are not paired, an artificial root needs to be installed, oth-
erwise the structure would be translated into a forest as
is the case with most larger structure (see Fig. 1 for an
example).

Secondly, tree edit distance (TED) is used to obtain
mapping between the trees. TED, next to the number
representing dissimilarity of the input trees, generates a
minimal sequence of tree edit operations (insert, update,
delete) which turns the template tree into the target
one. The original TED algorithm [10] has time complex-
ity O (m3n3), for trees with m and n nodes respectively,
and memory complexity O(mn) which can be problematic
with large structures such as ribosomal RNAs which con-
tain several thousand nucleotides. The time complexity of
original TED was improved to O (mznz) by Zhang and
Shasha [11] who introduced a special type of tree decom-
position (operation needed in TED) which, when used,
allows to skip some computation in the TED recursion.
Another decomposition approach comes from Demain
et al. [12] resulting in time complexity O (mznlog n) In
Traveler, we have implemented a method called RTED
(Robust algorithm for the TED) described in [13]. RTED
allows to determine optimal decomposition for given
tree resulting in a generalized version of the TED algo-
rithm with O (m3) worst-case time and O(mn) memory
complexity.
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‘Secondary Structure: small subunit ribosomal RNA.

(©)

Fig. 1 Layout of small subunit of human ribosomal RNA (GenBank accession number K03432) by different tools. The input structure definition
(sequence and structure in the dot-bracket notation) can be obtained from https://github.com/davidhoksza/traveler (the data directory). a Layout
in the form biological community is used to (downloaded from the CRW website [1]). b Layout generated by Traveler using fruit fly as a template.
¢ Layout generated by VARNA (version 3-93). d Layout generated by RNAplot

(d)

Layout transformation

TED procedure results in a mapping that is subsequently
used to convert the input template layout into the tar-
get layout. Since the mapping consists of a sequence of
tree edit operations, each tree edit operation (update,
insert, delete) can be assigned its visual counterpart.
We thus obtain a recipe how to transform the tem-
plate layout into the target one. A deleting operation
therefore leads to removal of a base(pair) from the tem-
plate which, in turn, results into free space so the lay-
out needs to be modified accordingly to remove the

space. Analogously, insertion results in a new base(pair)
and the layout needs to be shifted to accommodate the
new element. Finally, an update operation does not lead
to any structural layout modifications. Irrespective of
the modification operation, we want to interfere with
the template layout as little as possible and make only
local changes of the template. This is achieved using
two methods (used in both insert and remove opera-
tions) which handle the distribution of the bases over a
circle (Algorithm 1) and shift a subtree in given direction
(Algorithm 2).
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Fig. 2 Tree-based RNA representation. Example of a secondary structure (@) and its corresponding tree-based representation (b)

Algorithm 1 Distribute bases in loop
1: procedure DISTRIBUTEBASES(Begin, End, Bases)
2: n < Bases.size()
I' < circle for n points intersecting Begin and End
IT < split arc of I' from Begin to End to n points
foralliinl...ndo
set position of Bases| i] to T1[ ]

> &k w

Algorithm 2 Shift subtree
1: procedure SHIFTSUBTREE(Root, Vector)

2 for all node V in tree rooted in Root do

3 if node V has a defined position (not newly
inserted) then

4 add vector Vector to the position of

base(pair) V'

In the following section, we discuss how the lay-
out modification operations are handled in more detail.
For more examples illustrating individual cases see the
Additional file 1.

Inserting nodes

First, let us consider insertions which do not involve
multibranch loops. When inserting a node, we need to
discriminate between inserting an inner node and insert-
ing a leaf node. In the first case, the operation corresponds
to inserting a base pair into a stem and is handled by
Algorithm 2. We insert the base pair at a given position
in the layout and then shift all the nodes corresponding
to the descendants of the new parent node. The direction
is determined by a direction vector given by the new par-
ent and grandparent of the inserted node (see Fig. 3). In
the latter case, when a new leaf node is inserted, we need
to distinguish between an insertion into an existing loop
and an insertion into a stem where it forms a new bulge.
Inserting into an existing loop requires redrawing the loop

using Algorithm 1. One thus needs to extend the circle on
which all the sibling leaves reside, i.e. the repositioning of
bases corresponding to nodes comprising of siblings of the
node being inserted. When inserting a leaf into a stem, i.e.
a linear path in the tree, and thus forming a new bulge,
is slightly more complicated since it requires shifting the
tree rooted in the sibling of the newly inserted node to
create space for the newly formed bulge and then position
the node in the bulge the same way as when inserting into
a loop. This situation is illustrated in Fig. 3b).

Several issues can arise when inserting nodes in the first level
of the tree. Such situation is discussed in “Postprocessing
and special cases treatment” section.

Removing nodes

Removing nodes from the tree and respective layout mod-
ifications are done essentially the same way as insertions
are done. The only difference is in the direction of a shift
when removing a base pair from a stem and in decreasing
the loop size instead of increasing it when removing a base
from the loop.

Multibranch modification

In terms of the tree representation, multibranches corre-
spond to nodes which have at least two non-leaf children.
In cases of large RNA structures, the secondary struc-
ture visualizations are manually modified to be as com-
pact as possible which results in not respecting all rules,
such as the circular shape of a multibranch structure. For
this reason, we try to interfere with multibranches as lit-
tle as possible and treat them in a special way. Clearly,
after any insertion into a multibranch loop, we could use
Algorithm 1 to distribute all the base and basepairs com-
prising the loop. However, this would likely result in
substantial modification of the layout, especially for a big
loop in the center of the structure. Therefore, in situa-
tions when only few bases are added or removed, we try
to squeeze or expand the bases between the respective
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Fig. 3 Simple modification operations. lllustration of layout modification enforced by inner (a) and leaf (b) nodes insertions

neighboring branches to utilize the space between the
branches without the need to reposition them. If this is
not possible, we need to rebuild the whole loop, which
requires finding positions on a circle as it is in case of sim-
ple loops. Then, we need to rotate each of the branches
rooted in the modified loop. The rotation needs to be
propagated into the descendants of each of the branches.
Both situations are illustrated in Fig. 4.

Postprocessing and special cases treatment

Although we try to touch the template visualization as lit-
tle as possible, after the target layout is generated we apply
several modifications to the resulting layout to improve its
quality.

Firstly, we straighten stem residues so that they lie on a
line. It is necessary, because, for example, when inserting
a base pair, the direction vector is given by the positions of
the parent and grandparent, but that can lead to a curved
stem as shown in Fig. 5.

Our proposed approach always arrives to a target layout,
(2D) steric clashes can, however, occur in the target. This
is especially true when the target and template structures
are too dissimilar. Since the human-generated layouts
tend to be compact and able to utilize the available space
well, insertions can cause two subtrees that are adjacent in

the template visualization clash in the target. To minimize
the number of clashes in the target layout, we evaluate
every subtree whose nodes clash with other parts of the
tree and try to rotate it. We try to do several rotations and
pick the one with the lowest number of clashes.

The second level of the tree requires special attention if
the RNA structure is not rooted, i.e. it does not start with a
base pair. This can occur quite frequently with real struc-
tures. For example, in Fig. 1 every base or base pair which
is not descendant of a base pair is in the second level and
their parent is the artificial root. In Fig. 1, the second level
starts (from the 5’ end) with U,A,C,CG,U,AU,.... All these
residues do not have a parent with a well-defined position
and thus their removal would not modify the final layout.
For example, by removing the first A one will end up with
a space as it is not part of any loop or bulge which would
be affected by its removal. Therefore, in the postprocess-
ing phase we try to normalize the positions of the nodes
in the first level with respect to each other.

Another issue is when inserting a base pair into the
second level because in such a case, we cannot use par-
ent and grandparent to correctly determine its position as
there are no ancestors. In such a situation we discrimi-
nate between two cases. In the first case we insert a base
pair into an existing stem, i.e. the target and template both
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Fig. 4 Multibranch modification (see Additional file 1 for color coding definition). a Multibranch modification without loop rebuild. On the left is part
of frog (X04025) 18S rRNA template and on the right is the target (human 18S rRNA) visualization with the residues in the upper right part being
squeezed to avoid re-layouting of the loop. b Multibranch modification with loop rebuild. On the left is part of shrimp (X04025) 18S rRNA template
and on the right is the target (human 18S rRNA) visualization where the loop had to be rebuilt due to substantial difference of the target and
template. The numbers representing the corresponding hairpins in the respective structures
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Fig. 5 Issues when inserting a base pair. Example of incorrect position

of base pair

have a branch at a given position. Then we can use the
information about the position of the start of the stem
from the template, use it as the position for the inserted
base pair and shift the rest of the stem. In the second case,
we insert a base pair which is the root of a new branch.
In such a case we cannot use the position of an existing
branch and we also do not have the position of a parent
to guide the insertion. Therefore, we use direct siblings of
the inserted branch and orient the branch perpendicular
to them. Moreover, we then have to shift all the siblings to
the right or left of the inserted branch.

Traveler

The above described approach has been implemented into
a software tool called Traveler. The architecture of Trav-
eler is divided into three parts: (i) parser, (ii) mapper and
(iii) visualizer.

The purpose of the parser is first, to take the target and
template and generate their respective tree representa-
tions and second, to take the template layout and extract
elements corresponding to bases and their interactions.
The supported format of the secondary structures is the
Vienna/DBN format, commonly used for RNA secondary
structure representation. As for the template layout, we
support two formats. Since the idea of template-based
drawing is useful primarily for large structures and was
developed with the intention of visualizing ribosomal
RNA structures, Traveler implements image parser for
postscripts visualization from the CRW database [14].
The CRW database hosts visualizations of rRNA sec-
ondary structures in the form they are used by the biolog-
ical community, enabling easy, comparative visual analysis
of large structures. The second input template layout for-
mat which Traveler supports is the SVG format output by
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VARNA. Since VARNA is a complex tool supporting var-
ious RNA visualization styles, Traveler currently supports
only the simple base pairs types. However, the archi-
tecture of the application allows one easily implement a
parser for a new image format and use it in Traveler. All
the visualizations in the supplementary which illustrate
the layout modification operations have been generated
from a VARNA template layout. All the target layouts have
been thus generated by Traveler using the VARNA parser.

Mapper is the core component of the application imple-
menting the tree edit distance and corresponding layout
modification operations. It is separated from the subse-
quent visualization and can be run independently for the
user to be able to do the mapping and then visualize the
mapping repeatedly with different options.

The final component of Traveler is the visualizer. Visu-
alizer stores the resulting layout in SVG and PS formats,
i.e. formats which allow simple modification of the result
in any vector graphics editor. If the input template is in the
VARNA format then, since the output SVG complies with
VARNA, the output can be reused as a template. Similarly,
one can reuse the PS output as an input template if the
input format is CRW. Furthermore, the templates can be
modified manually provided that the modified files com-
ply with the structure of the CRW files (in case of PS) or
VARNA files (in case of SVG). The user can also choose
to color code the resulting structure so that updated,
inserted and shifted residues are easy to spot. The visual-
ization can thus be used to see where the input molecules
differ with respect to their secondary structures. If the
target and template structures are too dissimilar, sub-
stantial changes in the layout are required which might
cause steric clashes. Therefore a switch which instructs
Traveler to output the number of such overlaps and high-
light them in the resulting image can be turned on. An
overlap is defined as an intersection of two lines joining
two pairs of residues (hydrogen bond or sugar-phosphate
backbone).

Results and discussion

To illustrate the ability of Traveler to achieve the required
results we have carried out several experiments. In the
first experiment, we prepared an artificial RNA secondary
structure and a layout, and then formed a target structure
where one of the template stems was shortened, and gen-
erated its layout Fig. 6b. Subsequently we switched the role
of the template and the target which correctly resulted in
a layout similar to the original template Fig. 6¢. In Fig. 6d-f
we repeated the same process but with more substantial
modifications. Here, the recreated template layout slightly
differs from the original one which was expected since
Traveler had to rebuild the multibranch loop and its rules
for positioning branches on a loop are different from the
ones used to generate the original layout.
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Fig. 6 Traveler's ability to recreate layouts. On the left hand side, we took a structure with two hairpins (a), removed part of a stem and used the
original structure as the template (b). Then we reinserted the residues and used (b) as a template to obtain (c). Similarly, (d), () and (f) show
re-creation of the starting structure with a more drastic middle step where the two hairpins loose residues so that the remaining residues form a
loop. f demonstrates that Traveler is able to successfully recreate the original structure. For the purpose of clarity, the new residues were labeled |
and shown in red, while the residues which needed to be repositioned are shown in blue

A legitimate question is how close the secondary struc-
tures of a target and template need to be for Traveler
to give satisfying results. In order to quantify this, we
downloaded all 16 available 18S rRNA structures from
the metazoa kingdom (multicellular animals) from CRW,
and generated a layout for each of the structures using
every other structure from the set as the template. For
each structure we thus obtained 15 tree edit distances and
corresponding visualizations. For each structure the tem-
plates were sorted based on decreasing TED, and Table 1
shows the average tree edit distance and the average
number of overlaps including standard deviation for each
ranking. We can observe that for high tree edit distances
the number of overlaps grows up to about 40 overlaps per
image. For smaller distances, there is not a clear trend, but
that can be ascribed to the large standard deviations in
the number of overlaps (see Additional file 2 for the indi-
vidual results and projects repository for the files used to
generate the results).

Having few overlaps in such a large structure as rRNA
is not an issue as illustrated in Fig. 7 where we used
Traveler to generate the layout for human 18S rRNA using
fruit fly’s 18S rRNA as a template. The example demon-
strates that even when such a relatively distant template is
used the resulting layout (Fig. 7a) is reasonable when com-
pared to the correct layout (Fig. 7c). The only problematic
part seems to be the layout of a poorly characterized
region (expansion segment) in the upper left corner of the
visualization. We can see that in the template and correct
target layout (Fig. 7b and c), this region and the neigh-
boring hairpins are laid out differently. Since the target
layout is based on a template and not a target, which is
not known in the time of prediction, the resulting lay-
out resembles the template not the target. Moreover, since
the long stretch of uncharacterized (unpaired) nucleotides
in a template is laid out in an ad-hoc fashion, indels in
this region result in mistakes in the target layout because
Traveler is able to work with well-defined, hairpin-like

structures only. The runtime needed to generate this lay-
out was about 1 min on commodity hardware.

Traveler can find utilization not only as a tool for sin-
gle molecule visualization, but also as a backend in any
application where automatic layout of one or more RNA
molecules is required. However, its low runtime makes it
exceptionally suitable for large scale generation of RNA
layouts for RNA types where a consensus for secondary
structure layout exists. As far as we are aware, currently
a strong consensus exists only for ribosomal RNAs. We
have shown examples of its application to large rRNAs,
but it can be equally well used for small rRNAs such as 55
rRNA, templates of which can be also found in CRW (see
Fig. 8).

Table 1 Tree edit distance and the number of overlaps when
using k-th most similar structure as a template

Ranking TED avg(stddev)
1 85.94 6.31 (7.60)

2 113.94 12.81(19.08)
3 137.38 11.62 (19.58)
4 158.38 8.06(12.92)
5 172.00 2(7.59)

6 189.12 7.06 (12.68)
7 196.31 4.50(7.62)

8 199.44 4.06 (6.73)

9 258.31 26.75 (23.06)
10 262.88 22.75(23.27)
M 265.25 8.62 (15.74)
12 271.12 27.88(27.07)
13 301.19 12,62 (8.28)
14 345.25 33.81(17.30)
15 805.62 44.06 (18.92)

Computed over all pairs of 185 rRNA structures from the metazoa kingdom

available in CRW
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Secondary Structure: small subunit ribosomal RNA

(a) Generated human 18S rRNA using
fruit fly’s 18S rRNA layout from CRW
as a template.

Fig. 7 Visualization of human 18S rRNA with Traveler. a shows the target layout, (b) is the template layout while (c) is the desired layout as stored in
the CRW. The Traveler's output is colored so that red represent inserted residues, green are relabeled residues and blue are residues that needed to
be shifted due to indels happening within given hairpin (see Additional file 1 for full color coding definition)

(b) Fruit fly 18S rRNA.

Secondary Structure: small subunit ribosomal RNA

Homo sapiens
. (Ki3432)
Drosophila melanogaster
017y

8. Theia 19, Eiheria 20. Primates
21, Catain 22. Hominidae 23. Homo.
Juna 2004

(C) Human 18S rRNA.

Although the main application we had in mind when
developing Traveler was visualization or large rRNA
molecules, any field of RNA research where consistent
systematic layout of secondary structure is needed can
benefit from utilization of a template-based layout tool
such as Traveler. For example, tRNA molecules are com-
monly visualized with similar layout in the same orienta-
tion (5’ and 3’ ends up), so here Traveler could be used

to generate standardized layout for all tRNA molecules
with available secondary structure. Therefore, we also
envision application of Traveler as an enabler of stan-
dardization of layouts for different RNA stubtypes. These
subtypes need to share common secondary structure core
so that they can benefit from application of a template-
based layouting algorithm. The number of available (long)
noncoding RNA secondary structures (either predicted or

uU—G ¥§ '

u Secondary Structure: 5S ribosomal RNA
>

Secondary Structure: 5S Ribosomal RNA

(2) Generated baker’s
yeast 5s rRNA using fruit
fly’s 5s rRNA layout from
CRW as a template.

Drosophila melanogaster

(M25016)

1. celular organisms 2. Eukaryota 3. Fungi/Metazoa group
4. Metazoa 5. Eumetazoa 6. Bilateria 7. Coelomata
8. Protostomia 9. Panarthropoda 10. Arthropoda
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Fig. 8 Visualization of baker's yeast 55 rRNA with Traveler. a shows the target layout, (b) is the template layout while (c) is the desired layout as
stored in the CRW. The Traveler's output is colored so that red represent inserted residues, green are relabeled residues and blue are residues that
needed to be shifted due to indels happening within given hairpin (see Additional file 1 for full color coding definition)
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experimentally determined) in databases such as LNCi-
pedia [15] (almost 150.000 structures by October 2017)
indicates the potential of such application.

Finally, Traveler can be used in secondary structure
prediction efforts when multiple predictions of the same
sequence need to be visualized in a consistent manner to
enable visual analysis of differentially predicted regions.

Conclusions
This paper has introduced Traveler a tool capable to
generate RNA secondary structure layouts which con-
form to biologists intuition when a template layout exists.
Although it can be used for structures of any size, its
major application is in visualizing large RNA structures
with the focus on ribosomal RNAs where de novo tools are
not capable of arriving at the expected layout and manual
visualization is highly impractical.

Traveler is a command line application with no pre-
requisites and is freely available at http://github.com/
davidhoksza/traveler.

Availability and requirements

Project name: TRAVeLer

Project home page: https://github.com/davidhoksza/
traveler

Operating systems: Unix/Linux

Programming language: C++

License: GNU GPL

Endnotes

! A commonly cited tool Pseudoviewer3 is not included
here since we were not able to get any visualization with
Pseudoviewer for the input structure.

2Details on how exactly this is done are missing in both
RnaViz publications.

3 Traveler also accepts pseudoknotted structures. Those
are, however, first converted into pseudoknot-free struc-
tures and only then processed. However, the template
layout can include lines corresponding to pseudoknots
and these do get copied over to the target layout.

Additional files

Additional file 1: Traveler operations. lllustration of simple insertion and
deletion operations on both layout and tree level. (PDF 277 kb)

Additional file 2: Results on Metazoa 23S rRNA. Tree edit distance,
number of overlaps and runtimes for all Metazoa 23s rRNA structures
available in CRW. (TXT 10 kb)

Abbreviations
CRW: Comparative RNA web site; PS: Postscript; SVG: Scalable vector graphics;
TED: Tree edit distance
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