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Background: Gene regulatory networks govern the function of key cellular processes, such as control of the cell
cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in
modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is
represented by O (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at
discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and
incompletely through noisy measurements based on expression technologies such as cONA microarrays, RNA-Seq,
and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct
from other deterministic and stochastic Boolean network models in removing the requirement of a directly
observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario

encountered in practice in transcriptomic analysis.

Results: Booffilter is an R package that implements the POBDS model and associated algorithms for state and
parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement

parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate
the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is
the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and
user accessibility to the new package.

Conclusions: We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The
BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for
simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained

with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.

Keywords: Partially-Observed Boolean Dynamical Systems, Gene regulatory networks, Gene expression analysis,

Boolean Kalman Filter, Particle filter, Network inference

Background

The Boolean Network (BN) model was introduced by
Stuart Kauffman in a series of seminal papers [1-3]; see
also [4]. This simple model has found extensive applica-
tion in modeling cell biology processes involving regula-
tory networks of switching bistable components, such as
the cell cycle process in Drosophila [5], Saccharomyces
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cerevisiae [6], and mammals [7]. The basic idea is that in a
feedback biochemical network, based for example on the
expression of genetic DNA (genes) into RNA, each gene
can be modeled as a switch that can be “ON” (RNA is
being transcribed at a minimal functional level) or “OFF”
(RNA is being transcribed below a minimum functional
level). The presence of RNA transcribed by a gene can
launch a process that eventually can inhibit or promote
the production of RNA by other genes, in the fashion of a
boolean logical circuit.
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Figure 1 depicts an example of a Boolean network model
of a gene regulatory network. This is the p53-MDM2 neg-
ative feedback loop transcriptional circuit that is involved
in DNA repair in the cell, and is therefore an important
tumor suppression agent [8]. The diagram in the top left
displays the activation/inhibition pathways corresponding
to this gene regulatory network. In the upper right, we
see Boolean equations consistent with the pathway dia-
gram, which specify the associated Boolean network [9].
From the pathway diagram, is is clear that MDM?2 has an
inhibiting effect on p53, which in turn activates it. This
p53-MDM?2 negative-feedback regulatory loop keeps p53
at small expression levels under no stress, in which case
all four proteins are inactivated in the steady state [8].
However, MDM?2 is also inhibited by ATM, which in turn
is activated by the DNA damage signal, so that p53 is
expected to display an oscillatory behavior under DNA
damage [10]. These behaviors are captured nicely by the
BN model, as can be seen in the state transition diagram
under no stress and under DNA damage, at the bottom of
Fig. 1.

The basic issue with the Boolean network model is that
it is deterministic and thus unable to cope with uncer-
tainty due to noise and unmodeled variables. Stochastic
models have been proposed to address this, including
Random Boolean Networks [11], Boolean Networks with
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perturbation (BNp) [12], and Probabilistic Boolean Net-
works (PBN) [13]. The R package BoolNet [14] imple-
ments the BN and PBN models, including asynchronous
and temporal networks. It provides essential analysis tools
and a simple but complete interface for user entry of BN
models.

A key point is that all aforementioned models assume
that the Boolean states of the system are directly observ-
able. But, in practice, this is never the case. Modern
transcriptional studies are based on technologies that
produce noisy indirect measurements of gene activity,
such as ¢cDNA microarrays [15], RNA-seq [16], and
cell imaging-based assays [17]. The Partially-Observed
Boolean Dynamical System (POBDS) signal model
[18-20] addresses the noisy observational process, as well
as incomplete measurements (e.g., some of the genes in
a pathway or gene network are not monitored). In the
POBDS model, there are two layers or processes: the
Boolean network layer, which is a hidden layer, is the state
process, while the observation layer or process models the
actual data that are available to researchers — see Fig. 2 for
an illustration. It should be noted that the POBDS model
is a special case of a hidden Markov model (HMM), in
which the underlying states are Boolean.

The purpose of the present paper is to describe the
BoolFilter R package, which implements the POBDS

dna_dsb =0 (no stress)

ATM; = WIPIx_; AND (ATMy_1 OR dna._dsby)
P53, = MDM2;_; AND (ATMy_1 OR WIPj_1)
WIP1), = p53;_,
MDM2, = ATM;_; AND (p53,_, OR WIP;_;)

dna_dsb = 1 (DNA damage)

Fig. 1 The p53-MDM2 Boolean gene regulatory network. The state of the system at time k is represented by a vector (ATMy, p53,, WP, MDM2y),
where the subscript k indicates expression state at time k. The Boolean input uy = dna_dsby at time k indicates the presence of DNA double strand
breaks. Counter-clockwise from the top right: the activation/inhibition pathway diagram, transition diagrams corresponding to a constant inputs
dna_dsby = 0 (no stress) and dna_dsbx = 1 (DNA damage), and Boolean equations that describe the state transitions
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Fig. 2 POBDS model. The state process vector X, evolves through networks of Boolean functions (i.e., logical gates), but it cannot be observed
directly; instead, an incomplete and noisy function of the state is observed, namely, the observation process vector Yx

model and associated algorithms. It allows the user to
estimate the Boolean states, network topology, and noise
parameters from time series of transcriptomic data using
exact and approximated (particle) filters, as well as simu-
late the transcriptomic data for a given Boolean network
model. Some of its infrastructure, such as the network
interface, is the same as in the BoolNet package. This
enhances compatibility and user accessibility to the new
package. The BoolFilter package can be considered to be
an extension of the BoolNet package to accommodate the
POBDS model. BoolFilter does not replace BoolNet, but
instead both packages can be used together.

Several tools for the POBDS model have been proposed
recently. The optimal estimators based on the MMSE
criterion, called the Boolean Kalman Filter (BKF) and
Smoother (BKS), were introduced in [21, 22], respectively.
In addition, methods for simultaneous state and param-
eter estimation and their particle filter implementations
were developed in [18, 19]. Other tools include optimal fil-
ter with correlated observation noise [23], network infer-
ence [24], sensor selection [25], fault detection [26], and
control [20, 27-29]. BoolFilter implements the exact BKF
and BKS, an approximate filter based on the SIR particle
filtering approach, as well as a multiple model adaptive
estimator (MMAE) for network inference and noise esti-
mation. In BoolFilter, Boolean networks are defined by
the user through the same interface used in the BoolNet
package.

Implementation

The first step for using the package is to define the state
process, including the Boolean network and its inputs and
noise parameters, and the observation process, which is
specific to each kind of expression technology used.

State process

Assume that the system is described by the state process
{Xi;k =0,1,...}, where X € {0,1}% represents the acti-
vation/inactivation state of the genes at time k. The states

are assumed to be updated and observed at each discrete
time through the following nonlinear signal model:

X =f(Xs_1) ® ng  (state model), (1)

for k = 1,2,.... Here, ng € {0,1}% is the transition noise
at time &, “@” indicates component-wise modulo-2 addi-
tion, f : {0,1}4 — {0,1}4 is the network function. The
noise process {ngi;k = 1,2,...} is assumed to be inde-
pendent, meaning that the noises at distinct time points
are independent random variables, and it is also assumed
that they are independent of the initial state Xy. In addi-
tion, ng is assumed to have independent components
distributed as Bernoulli(p) random variables, where the
noise parameter p gives the amount of “perturbation” to
the Boolean state transition process. As p — 0.5, the
system will become more and more chaotic, however as
p — 0 the state trajectories become more determinis-
tic and therefore become governed more tightly by the
network function.

The network function specifies the Boolean network. In
the BoolFilter package, the network function is entered
using the BoolNet package vernacular. The user can
define their own Boolean Network using the Bool-
Net function loadNetwork, or use the available prede-
fined networks. In addition to the “cellcycle” network,
defined in the BoolNet package, BoolFilter contains three
additional well-known and frequently researched net-
works in its database: “p53_DNAdsb0’, “p53_DNAdsb1’,
and “Melanoma” Notice that “p53net_DNAdsb0” and
“p53net_DNAdsb1” refer to the p53-Mdm?2 negative feed-
back loop regulatory network with external input O
and 1 respectively, shown in Fig. 1. For example, the
pS3net_DNAdsb1 network can be called as follows:

net <- data(p53net DNAdsbl)
For more information about defining a custom Boolean

network using the BoolNet interface, the reader can refer
the BoolNet package documentation [14].
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Observation model
Several common observation models are implemented in
the package:

e Bernoulli Model: the observations are modeled to be
the perturbed version of Boolean variables with i.i.d.
Bernoulli observation noise with intensity q. This is
defined in BoolFilter as:

obsModel =
g = 0.05)

list (type = ‘‘Bernoulli’’,

® Gaussian Model: the Boolean variables in inactivated
and activated states are assumed to be observed
through Gaussian distributions N (mu0, sigma0) and
N (mul, sigmal) respectively, where (mu0, sigma0)
and (mul, sigmal) are the means and standard
deviations of the observed variables in the inactivated
and activated states, respectively. The Gaussian
model is appropriate for important gene-expression
measurement technologies, such as cDNA
microarrays [30] and live cell imaging-based assays
[31], in which measurements are continuous-varying
and unimodal (within a single population of interest).
More information about this model can be obtained
in [20]. For example,

obsModel =1ist (type="Gaussian”,
model=c(mu0=1, sigma0=2,
mul=5, sigmal =2))

e Poisson Model: a common model for RNA-Seq data,
which has the following parameters: sequencing
depth s, baseline expression in inactivated state mu,
and the differential expression delta between
activated and inactivated expression levels, which is a
vector of size d. More information about this model
can be obtained in [22, 26, 32]. For example,

‘‘Poisson’',
0.1, delta =

obsModel = list (type
s = 1.175, mu
c(2,2,2,2))

e Negative Binomial Model: another common model
for RNA-Seq data, which, in comparison with the
Poisson model, carries an extra parameter vector phi.
This is called the inverse dispersion parameter and
regulates the variability in the measurement
independently of the mean. More information about
this model can be obtained in [29]. For example,

obsModel=1list (type ='‘NB’' "',
s = 1.175, mu = 0.1,delta =
c(2,2,2,2), phi = ¢(3,3,3,3))
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Data generation - simulateNetwork()

After defining the state and observation models, the user
is able to create a time series of state and observation data
of a user-defined size n.data as follows:

data <- simulateNetwork (p53net_DNAdsbl,
n.data= 100, p=0.01, obsModel)

where obsModel specifies the observation noise model, as
described in the previous section.

Boolean Kalman filter - BKF()

The BKF [21] is the optimal recursive MMSE state esti-
mator for a partially-observed Boolean dynamical system.
The BKF can be invoked as follows:

Result <- BKF (data$Y, p53net DNAdsbl,
p=0.01, obsModel)

where Y is the observation data subset from the output of
the simulateNetwork() function (here called data$Y) or a
set of real observation data, and p is the magnitude of the
state transition noise.

Particle filter approximation of BKF - SIR_BKF()

When the network contains many nodes, i.e., genes,
the exact computation of the BKF becomes intractable,
due to the large size of the matrices involved.
Other methods, such as sequential Monte-Carlo methods
(also known as particle filtering algorithms), must be
used to approximate the optimal solution. The particle
filter implementation of the BKF (based on sequential
importance resampling (SIR)), called SIR_BKF [33], can
be applied as follows:

Result <- SIR BKF(data$Y, N = 100,
alpha = 0.9,
p53net DNAdsbl, p = 0.01, obsModel)

where N is the number of particles and 0 < alpha <1 is
a threshold for the particle-filter resampling process. For
more information, see [33].

Boolean Kalman smoother - BKS()

The BKF uses the latest measurement Y to estimate the
state at the current time k. Assume, however, that one
wants to use the entire Y, data sequence to estimate
the state at a current or a previous instant of time s,
where 1 < s < k. This would be the case if data have
been collected and stored “off-line” up to time k, and esti-
mates of the states at a time s, where s < k, are desired.
The Boolean Kalman Smoother (BKS) [22] is the optimal
MMSE smoother in this case. This estimator can be called
as follows:
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Result <- BKS(datas$Y, p53net DNAdsbl,
p=0.01, obsModel)

Multiple model adaptive estimator - MMAE()

Suppose that the nonlinear signal model is incompletely
specified. For example, the topology (i.e., the connec-
tions) of the Boolean network may be only partially
known, or the statistics of the noise processes may
need to be estimated. We assume that the infor-
mation to be estimated can be coded into a vec-
tor parameter ® = {6;,...,63}. Model selection is
achieved by running a bank of BKFs running in parallel,
one for each candidate model. The following two cases can
currently be handled by the MMAE function:

e Unknown network: The user can define multiple
networks as possible models of the system.

e Unknown process noise: Different possible intensities
of Bernoulli process noise can be entered as an input
to the function.

An example of implementation of algorithm,
when there are two possible models for the network
(“netl’ “net2”) and three possibilities of process noise, is
as follows:

MMAE (data, net = c('‘p53net DNAdsb0O’’,
‘‘p53net DNAdsbl’'’),
p = ¢(0.01, 0.05, 0.10),
threshold = 0.8,
Prior = NA, obsModel)
where Prior is a vector of size |net| x |p| that

specifies the probability of each model (if Prior is
defined as “NA’, the uniform prior is assumed as a default
for different models), and “threshold” stops algorithm
when the posterior probability of any model surpass this
value.

Plotting trajectories - plotTrajectory()

A sequence of data can be plotted using the plotTrajec-
tory function. This function can be used for plotting the
sequence of state, observations, or estimation results - or
any combination of the above. The user is able to spec-
ify the Boolean variables which should be plotted. For
example,

plotTrajectory (datasX,
labels=p53net DNAdsbl$genes,
Result$Xhat, compare=TRUE)

where data$X and Results$Xhat are the original and esti-
mated sequence of states, respectively.
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Results and discussion

We provide below a detailed step-by-step demonstra-
tion of a typical BoolFilter session. First, the p53-MDM?2
Boolean network model in both no-stress (dna_dsb=0)
and DNA-damage (dna_dsb=1) conditions is loaded as:

data (p53net DNAdsbO)
data (p53net DNAdsbl)

We assume a POBDS observation model that consists
of Gaussian gene expression measurements at each time
point:
obsModel = list(type = “Gaussian”,
model = c¢(mu0 = 1, sigma0O=2,
mul = 5, sigmal = 2))

To evaluate the performance of the BKF in estimating
the gene states, a time series of length 100 time points
is generated from the “p53net_ DNAdsb1” network, with
Bernoulli process noise of intensity p = 0.01:

data <- simulateNetwork (p53net DNAdsbl,
n.data= 100, p=0.01, obsModel)

The BKF can be called for estimation purposes as
follows:

Result <- BKF (data$Y, p53net DNAdsbl,
p=0.01, obsModel)

The result can be visualized using the plotTrajectory()
function as:

plotTrajectory(datasX,
labels=p53net DNAdsbl$genes,
Result$Xhat, compare=TRUE)

Figure 3 displays the obtained plots, showing the orig-
inal and estimated transcriptional states of all four genes
over the length of the time series. The solid black lines
specify the original gene trajectories and the dashed red
lines correspond to the trajectories estimated by the BKF.
One can see that the states of all genes are properly
tracked by the BKF.

To evaluate the performance of the MMAE() function
for system identification purposes, the “p53net_DNAdsb”
networks are used with a Gaussian observation model. We
assume that the network in which the data is generated
from and also the intensity of the process noise (p) are
unknown. The network function is assumed to be either
“p53net_DNAdsb0” or “p53net_DNAdsb1’, and the inten-
sity of process noise is assumed to be one of p = 0.01,
p = 0.05 or p = 0.10. Thus, there are 6 possible models
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Fig. 3 Typical graphical output of the function “plotTrajectory”. The black and red lines denote the original state trajectory and estimated trajectories

by the BKF for all four genes

for the system. A uniform prior assumption is considered
for all models. The MMAE() function can be performed
for model selection purposes as follows:

MMAE (data, net = c('‘p53net_ DNAdsb0’’,
‘‘p53net DNAdsbl’”’),

p = c(0.01, 0.05, 0.10),
threshold = 0.8,
Prior = NA, obsModel)

The stopping threshold for the MMAE() function
is set to be 0.8. This means that if the posterior
probability of any model exceeds this value, the decision
is made and the process is stopped (for more informa-
tion see [24]). Figure 4 displays the posterior probabil-
ity of the true model. It can be seen that after only
15 time points, the true model is found by the MMAE
method and the process is stopped. Future versions
of the BoolFilter package will include methods for simul-
taneous estimation of state and parameters of POBDS
as well as optimal control algorithms for modifying the
behavior of the system (e.g. reducing the probability
of states associated with cancer in the gene regulatory
example).

Conclusion

The BoolFilter R package enables estimation and identi-
fication of gene regulatory networks observed indirectly
through noisy measurements based on various expression

technologies such as ¢cDNA micrroarys, RNA-Seq, and
cell imaging-based assay. This software tool provides the
bioinformatics community with state-of-the-art exact and
approximate algorithms for estimation of transcriptional
states of genes in small and large systems, respectively,
as well as identification of gene regulatory networks,
which is a key step in the investigation of genetic dis-
eases. The performance of the software in estimation and
identification of gene regulatory networks was demon-
strated using the p53-MDM2 Boolean gene regulatory
network.

1.0

0.8

0.4

0.2

T T T

5 10 15
Time

Posterior Probability of The Correct Model

Fig. 4 Typical graphical output of the function “MMAE". The
Multiple-Model Adaptive Estimation algorithm determines which
input network is the most likely network and creates a graphical
output of the posterior probability of the selected model
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Availability and requirements

Project name: BoolFilter Package

Project home page: https://cran.r-project.org/web/packages/
BoolFilter/index.html

Operating system(s): Platform independent
Programming language: R

License: GNU GPL

Any restrictions to use by non-academics: none

Abbreviations

BKF: Boolean Kalman filter; BKS: Boolean Kalman smoother; BN: Boolean
network; MMAE: Multiple model adaptive estimator; POBDS: Partially-observed
Boolean dynamical system; SIR: Sequential importance resampling
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