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Abstract

Background: NCBI's Gene Expression Omnibus (GEQ) is a rich community resource containing millions of gene expression
experiments from human, mouse, rat, and other model organisms. However, information about each experiment (metadata)
is in the format of an open-ended, non-standardized textual description provided by the depositor. Thus,
classification of experiments for meta-analysis by factors such as gender, age of the sample donor, and
tissue of origin is not feasible without assigning labels to the experiments. Automated approaches are
preferable for this, primarily because of the size and volume of the data to be processed, but also because it ensures
standardization and consistency. While some of these labels can be extracted directly from the textual metadata, many
of the data available do not contain explicit text informing the researcher about the age and gender of the subjects with
the study. To bridge this gap, machine-learning methods can be trained to use the gene expression patterns associated
with the text-derived labels to refine label-prediction confidence.

Results: Our analysis shows only 26% of metadata text contains information about gender and 21% about age. In order
to ameliorate the lack of available labels for these data sets, we first extract labels from the textual metadata for each GEO
RNA dataset and evaluate the performance against a gold standard of manually curated labels. We then use
machine-learning methods to predict labels, based upon gene expression of the samples and compare this to
the text-based method.

Conclusion: Here we present an automated method to extract labels for age, gender, and tissue from textual
metadata and GEO data using both a heuristic approach as well as machine learning. We show the two methods together
improve accuracy of label assignment to GEO samples.

Keywords: Gene expression omnibus, Gene expression, Text mining, Meta-analysis

Background answer specific questions, as well as a data source for

The NCBI Gene Expression Omnibus [1] is a large, pub-
lic repository of high-throughput genomic datasets that
archives experimental data from investigators around
the world investigating a variety of species, diseases, and
experimental conditions. It has served as a primary re-
source for investigators to query past experiments to
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large-scale meta-analyses [2]. Although GEO, as indi-
cated by its name, was originally created to archive gene
expression microarray experiments, it has grown in
scope to include data from methylation arrays and high-
throughput sequencing experiments, among other data
types (Figs. 1 and 2). As GEO continues to grow rapidly
in size, it remains a relevant and important source of
data even as the biomedical research community shifts
from array-based to sequencing-based approaches.

For each archived experimental sample, GEO provides
both the data itself, consisting of a vector of counts or
probe intensities, as well as the metadata associated with
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Fig. 1 Distribution of molecule types in GEO. GEO consists of a
variety of assay types, most predominantly RNA expression
quantification by array. Note the Y-axis is in units of 10°. Data

retrieved and analyzed using database and software from [9]

the sample. The metadata usually contains valuable infor-
mation regarding the nature of the sample, for example the
species of origin, array or sequencing platform, as well as
the age, gender, tissue of origin, and experimental perturba-
tion(s), mutations, or disease state applied to the sample.
Unfortunately, most of this metadata is not provided in a
standardized format directly amenable to larger-scale ana-
lyses. Rather, it is provided as free-text descriptions which
are optionally provided by the investigator. Therefore, these
textual fields have a potential to be missing, misspelled, or
described in a variety of ways with various synonyms and
identifiers. For example, the binary variable representing
“gender” can be described in a variety of ways, e.g, “M”,
“male”, “1” (in 0-1 coding), and so on. For other fields
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Fig. 2 Size increase of GEOmetadb over time. Number of Data
Samples from GEOmetadb. Data retrieved and analyzed using
database and software from a GEOmetadb package in R [9]
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which may contain a larger variety of values, such as tissue
type, the heterogeneity is even larger. This heterogeneity in
data documentation in the GEO metadata causes difficulty
or completely disables the ability to query the GEO data-
base effectively for large scale comparisons of this large
amount of biological data.

Furthermore, in compiling our gold-standard for
annotation of GEO records, we found 86% of metadata
descriptors contained tissue information provided by the
investigator, while only 26 and 21% contained gender
and age information respectively. This suggests that a
machine-learning approach to predicting age and gender
labels is needed in addition to text-based classification,
because there is otherwise no way of obtaining this data
apart from time-consuming measures such as contacting
the original investigator on a case-by-case basis. There-
fore, we present a system which enables researchers to
more easily obtain labels and compare datasets within
GEO via similar groupings such as age, tissue, and sex.

Similar work

The need for automated metadata structuring and error
correcting in large biological databases has been acknowl-
edged within the field, and there have been attempts to
ameliorate these problems with several tools in the past
few years. Various methods have been developed to infer
labels from GEO for downstream meta-analysis or other
large-scale uses of GEO data whereby the sheer volume of
samples makes it infeasible to manually curate labels for
all samples. Crowdsourcing is one means of doing this
cheaply, but will require continued effort as new data
comes out [3].

Methods have also been developed to not only extract
labels from text, but to infer the labels from the gene
expression data itself. Lee et al. developed URSA (Unveil-
ing RNA Sample Annotation) as an automated method,
which utilized one-vs-all or one-vs-rest (OVR) support
vector machines (SVMs) on gene expression data in order
to infer labels from the gene expression data [4]. They
then mapped the SVMs to the directed acyclic graph
(DAG) of the BRENDA Tissue Ontology and assigned the
probability of being associated with a certain class by
selecting the highest Bayesian conditional probability.

Buckberry et al. developed a method to infer sex from
gene expression data by clustering the expression data,
and inferring the labels from the expression of Y chromo-
somes. Unfortunately, this assumes that the data consists
of samples from both sexes, and that the Y chromosome
expression is one of the main data features for which the
data will cluster [5]. Other works have focused on finding
semantic similarity between ontologies and metadata in
ChIP-seq data from GEO, or have broadened their impact
to several different database sources including PubMed,
ArrayExpress, GEO, and others [6].
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In addition to label extraction from GEO, a recent study
has provided a tool for label extraction from the Sequence
Read Archive (SRA) metadata as well [7]. The database
yielded from this work (MetaSRA) was created using a
slightly different set of algorithms in order to achieve a
goal similar to the GEO metadata projects. First, they
structure the database schema similarly to the schema in
the ENCODE project [8]. The MetaSRA system is con-
structed by mapping terms to ontologies, which is com-
parable to the methods used within the work we present
here; however, the MetaSRA system uses filtering mecha-
nisms for the mapped ontologies which delineate term
mentions vs. term mappings.

Methods
A graphical overview of our algorithmic process is shown
in Fig. 3.

GEO expression data and metadata

Human gene expression data (159,370 samples from
GPL570 and GPL96) were downloaded from GEO and
values log transformed (if not already log transformed).
Probes were collapsed to gene-level (Entrez Gene ID) by
choosing the probe with the highest mean expression
per gene, and normalized between arrays by quantile
normalization. Imputation of missing values was done
using k-nearest neighbors with k = 5. Metadata text for
the downloaded GEO data was obtained from the GEO-
metadb package [9] which contains several key fields with
the label and experiment types of interest, such as “Title”,
“Source Name” (usually referring to the tissue or cell line),
“Organism”, “Description”, “Characteristics” (key value
pairs denoting the attributes of the sample), “Molecule”
(denoting whether the sample is DNA, RNA, poly-A
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RNA, etc.), and several other fields such as sample and
platform ID. This database was queried using the SQLite
command-line client for the fields “title”, “description”,
and “characteristics chN”, where N is the microarray
channel number (one-color arrays, which comprise most
of GEO, will have one channel, whereas the older two-
color arrays will have two). A typical “characteristics” field
with its key-value pairs is provided in Table 1.

In terms of problem difficulty, we hypothesized that
gender would be the simplest label to extract using text-
mining methods, and would therefore yield the highest
performance, because of the limited number of possible
values and limited number of ways it can be described.
Similarly, in GEO metadata, age is generally clearly
signaled by an “Age:” prefix, but there is additional diffi-
culty because a variety of units can be used (months,
years, etc.), sometimes it is implicit in the wording (e.g.,
“patient X (34, F, non-smoker)”), and occasionally units of
age are misspelled. Tissue extraction should be the most
difficult problem, because there are thousands of potential
tissue types or cell lines, with a variety of synonyms.

Heuristic extraction of labels from text

In order to extract labels from the unstructured metadata
text, two broad approaches are used. For sex and age ex-
traction, simple regular-expression based approaches are
used, because these label types consist of a small vocabu-
lary and the presentation of this type of data is relatively
consistent within the metadata. For tissue extraction, a
string-matching approach is used to map metadata to
ontology term names and synonyms. For all problem
types, the parsed “Characteristics” fields are searched first,
because they contain attributes the experimenter has
explicitly labeled as such, and if a match is found for that

e —e

(F, 28, blood) (M, 22, pancreas)
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BT0:0000988
| BTO:0000988
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(F.2,22) (F, 24, blood)

Fig. 3 Graphical overview of the algorithmic process
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Table 1 Characteristics field example from a GEOmetaDB
sample (GSM17122)

Key Value
NOD

Genetic Background

Transgene BDC2.5 T cell receptor genes

Age 25 days

Tissue Pancreas

Isolation FACS on CD45+ Hoechst- (viable) cells

label-sample combination in the “Characteristics”, the
search is terminated. Otherwise, it continues to the other
fields in the order “Description”, “Source Name”, “Title”,
and finally, all other fields.

Sex labels from text

Heuristic extraction of gender was performed using regu-
lar expressions searching for patterns such as “gender:
male”, “sex: M”, or “sex: 1” for numerical, abbreviations,

or complete text encodings.

Age labels from text

Similarly, extraction of age was also performed using regu-
lar expressions; however, in this case, the regular expres-
sion also attempts to extract the units in text such as “age:
29 y”, “age (mo): 5207, etc. Where an age number was
extracted, but not a unit, a default unit was assigned
depending on the species. For humans, this is years, but
the software can also extract labels for nonhuman species,
although the current paper does not address this topic. In
the case of rodents, for example, the default is months.
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Tissue / ontology labels from text

To extract tissue types, the metadata was searched for
term names or synonyms from the BRENDA Tissue
Ontology (BTO) [10] using the Aho-Corasick multiple
string search algorithm [11]. In the case of multiple
matches, the node which is shallowest, or most general, in
the ontology was selected; while this may lead to some
uninformative matches, we chose to focus on high accur-
acy annotations rather than potentially erroneous matches
from a less conservative approach. Preliminary experi-
ments showed that this approach yielded better perform-
ance than choosing the most specific node (data not
shown). This is likely because the BRENDA Tissue Ontol-
ogy contains many short-term synonyms such as “bud”,
“cap”, and so forth which lead to false positives. Figure 4
shows an example of the BRENDA ontology structure.

Label prediction from gene expression data
In addition to the extraction of labels from text, we per-
form inference of labels from gene expression. Because
the problem types are different, we use different classifier/
regression algorithms for each label type. The input data
to the classifier is gene expression data normalized as
described above, and the most informative 100 genes are
selected to reduce dimensionality. To predict gender and
tissue type, we used one-vs-rest (OVR) logistic regression.
The choice between multi-class (one-to-one mapping)
vs multi-label (one-to-many mapping) is important, as
some samples may be comprised of multiple tissues, and
therefore will be more suited to a multi-label approach.
However, the benefit of using the BRENDA Tissue
Ontology is that it contains nodes for tissue/cell types,
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Fig. 4 lllustration of matched terms in BRENDA ontology. Created with the visualization package in bioportal.bioontology.org
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such as blood, that are actually composed of multiple
cell types, yet one node may imply many labels that are
associated with the parent node within the ontology
structure. This helps reduce the problem to a multi-class
problem, wherein the single parent node may be used to
retrieve any tissue belonging to this tree structure.
Therefore, we utilize this ontological structure to reduce
the problem to that of a multiclass problem and con-
sider the tissue prediction in a multiclass context.

Expression matrices were pre-processed using two
feature selection methods, first using scitkitlearn’s
VarianceThreshold() function to exclude genes with
the low expression variance, then f classif{) was utilized to
pick the top 100 F-scores among the remaining sites for
downstream usage. Lastly, LogisticRegression() was used to
predict the probability a sample belonged to any given
feature (such as tissue).

System design

To extract metadata labels from GEO, our system uses
both the textual metadata provided by the investigator with
each sample, and the sample’s expression data itself. It first
applies pattern-matching algorithms to the investigator-
supplied textual metadata to attempt to extract each label
type (e.g., age, gender, and tissue type). If this fails, either
because the pattern-matching was insufficiently robust or
because the investigator did not provide the label, the sys-
tem uses a machine-learning classifier, trained on manually
curated labels or labels extracted from pattern-matching, to
predict the label from that particular sample’s gene expres-
sion vector itself, similar to ontology-mapping OVR SVM
approaches used in previous works [4]. At the outset, we
hypothesized that using pattern-matching based approaches
on the textual metadata would result in greater extraction
precision than machine learning approaches, at the expense
of recall. This is a typical tradeoff for heuristic approaches
[12]. By combining the two approaches, we intended to
achieve a better overall balance between precision and recall.

Gold standard

We manually labeled 38,188 samples from GEO from
human gene expression experiments with gender, age,
and tissue (using the BRENDA Tissue Ontology [10]).
This data and the characteristics of the data are summa-
rized in Table 2.

Results

The evaluation of performance for each method was de-
termined using manually curated gold standard labels, as
described in the methods. To train the machine-learning
classifiers, we used the labels extracted from the heuristic
approach which were not part of the manually curated set,
and tested the results against the manually curated labels,
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Table 2 Gold standard - Summary of manually annotated

samples
Gender  Age Tissue
Samples Annotated 17,065 9696 38,099
% Samples Containing Label 44.7% 254% 99.8%
Most frequent label (mean for age) ~ Male 46.7 (SD 216)  Lung
(52.7%) years (6.8%)

using 10-fold cross-validation. A summary of the labels
extracted with the heuristic approach is given in Table 3.

Label extraction for tissue, age and gender

The results demonstrating the performance of each label
category are summarized in Fig. 5. The gender label cat-
egory achieved a precision/recall of 0.94/0.98 for males
and 0.95/0.90 for females using the heuristic method for
extraction. Age was extracted with a mean absolute devi-
ation (MAD) of 1.01 years, a mean squared error (MSE)
of 225.6 years. In general, errors for age were rare (98%
of samples with extracted values had results within 1
month of the correct value), but generally when errors
occurred, they were large in magnitude and resulted from
a failure in time unit conversion. Many of these erroneous
extractions can be excluded in practice by bounding ages
within realistic human age intervals. Recall for age was
considerably lower than that for gender.

Tissue label extraction performance in Fig. 6 shows
the precision for both micro and macro averaged tissue
to be similar, while the recall diverges. Micro-average
precision and recall over the 108 tissue types which had
at least 10 samples was 0.77 and 0.54, whereas within
the top 25 most frequent gold-standard tissues, it was
0.85 and 0.75. Figure 7 shows the precision and recall
for a selection of common individual tissues and a con-
fusion matrix for the predictions on the top 25 most
common tissue labels within the BRENDA Tissue Ontol-
ogy is shown in Fig. 8.

Label prediction from GEO expression

The ML approach was able to predict gender from gene
expression data with a high macro precision (0.915) and
recall (0.917). Tissue was not as accurate, but during
cross-validation on the top 25 most frequently occurring

Table 3 Training data - summary of the labels extracted using
the heuristic (regular expression based) approach, which were
supplied to the machine learning algorithm as training data

Gender Age Tissue
Samples Annotated 441311 299,878 861,703
% Samples Containing Label 51.2% 34.8% 100.0%
Most frequent label (mean for age) Female 51.0 years Blood

(50.3%) (12.5%)
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Fig. 5 Precision-recall metrics for extracting age, gender, and tissue labels from text. Macro-average and micro-average metrics are shown for tissue
label prediction, using the top 25 most frequently occurring labels in the gold standard. For Age, if an age value was extracted, it was considered as a
true positive if the extracted value was within 1 month of the gold standard value, otherwise a false positive

B Precision

tissues, we achieved a macro precision of 0.70 and
macro recall of 0.67. Micro-precision was 0.73 and
micro-recall was 0.77. The macro AUC for ML classifi-
cation was 0.83, contrasted with a baseline 0.49 for a
naive “dummy classifier”, which makes predictions based
purely on the distribution of training class labels (without
using expression data).

Discussion

Label extraction for tissue, age and gender

The extraction of labels from the textual metadata was
performed using pattern matching, which is appropriate
for tuning performance metrics towards high precision

B Precision
m Recall
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value
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Gender Tissue (micro)

Tissue (macro)
label type

Fig. 6 Precision-recall metrics for the gender, and tissue label types
for the expression-based machine learning predictions. Age was not
predicted with gene expression. Macro-average and micro-average
metrics are shown for tissue label prediction using the top 25 most
frequently occurring labels in the gold standard

at the expense of recall. This choice allows for more cer-
tainty in the results, which are used as training data pro-
vided to the GEO expression machine learning
algorithm. While the precision and recall within gender
and tissue are within ~20%, the recall for age is noticeably
lower than gender. We attribute this to a greater variation
in the patterns used to describe age, and to the fact that
the variable placement of the age unit often interferes with
heuristic extraction.

Tissue label extraction performance is evaluated in terms
of micro- and macro- precision and recall, whereby micro-
averaging will be the overall precision/recall across all pre-
dictions, not taking into account label imbalance (Fig. 9
shows how tissue type labels are imbalanced), and macro-
averaging is the average of precision/recall across labels.
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The imbalance of tissue type prevalence within GEO
shown in Fig. 9 affects the micro-precision and micro-
recall, as decreasing the number of tissues considered
from the most common 108 tissues to the most com-
mon 25 tissues increases the precision and recall by 8%
and 21%, respectively. This divergence suggests the
method performs better on the more common tissue
types. Fig. 7 displays the precision and recall for individ-
ual tissue types selected from some common tissues,
which indicates the precision and recall tend towards
higher values for samples which are more frequently

occurring within the data, and therefore have more
samples for which the algorithm may train.

We also evaluate the distribution of distances from the
predicted label node to that of the correct label node within
the ontology. This provides a more complete view of the
errors within the system, as a match between hippocampal
pyramidal layer and hippocampus is “more correct” than
hippocampal pyramidal layer matching to hematopoietic
system. The distances measured between predicted tissue
ontology nodes from GEO metadata and their gold stand-
ard label nodes is shown in Fig. 10, whereby a distance of
zero indicates the predicted ontology category is the same
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Fig. 9 BRENDA ontology categories for the top 10 most common tissues in GEO
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Fig. 10 Ontology distance between extracted and gold standard tissue labels. The histogram on the left displays the distance distributions between
randomly selected nodes and that of the gold standard, whereas on the right side is the distribution of shortest path lengths between the predicted
label and the gold standard label using our approach

as the gold standard ontology category. It can also be seen
that the spread of distances is far reduced compared to
randomly selected BTO IDs.

In order to get a more detailed understanding of the com-
mon tissue labels and the predictions made, we constructed
a confusion matrix (Fig. 8) of the top 25 most common
tissue labels within the BRENDA Tissue Ontology. Some of
the complexity in accurate label identification can be seen in
this figure. For example, there is a variety of ways an author
can write “diffuse B-cell lymphoma”, and so the least variant
term “B-cell” will tend to be identified as the best match.
Synonyms also tend to be problematic, such as “ovarian”
not being correctly mapped to “ovary”. This turns out to be
due to the direct string matching algorithm used, which was
chosen for speed (in order to process the large amount of
data available in GEO) and because it allows for high preci-
sion at the expense of recall. It is assumed that, due to the
large amount of data available, the low recall will still pro-
vide an ample number of samples from the entire GEO
database, and therefore still allow for decent insights to be
drawn from the data. Further improvement of false-negative
rates will require either fuzzy string matching (which could
increase false-positives) or manual expansion of synonyms
for tissue types.

Label prediction from GEO expression

We evaluated the results of the ML-based approach using
10-fold cross-validation stratified on experiment, using the
data extracted from the text mining approach. That is, all
samples from any individual experiment were either used
for training or testing in any particular cross-validation fold.
This is very important, as samples within any particular ex-
periment tend to be highly similar to each other, relative to
other samples in GEO, and thus cross-validation without
this type of stratification will overestimate performance, as

the classifier will be able to indirectly predict “labels” by in
fact predicting membership in a particular experiment. In
addition, this procedure enabled us to be more confident
that a given classifier can generalize to unseen experi-
ments. The following results were computed on the subset
of samples from GPL96 which fit two criteria: a) anno-
tated with the label type under query (gender or tissue),
and b) expression data was available. Additionally, for tis-
sue, evaluation was performed only on the top 10 most
frequently occurring tissue types, as assessed during text-
based label extraction. In total, cross-validation was
performed on 10,129 samples for gender and 13,427
samples for tissue.

The choice to evaluate tissue label predictions for the
most frequently occurring tissue types is due to lower
micro-precision and micro-recall (0.73-0.77) received for
these performance metrics. The lower relative cross-
validation performance on tissue likely reflects several
issues. First, a multiclass problem with more classes is
an inherently more difficult classification task. Secondly,
our feature selection approach of selecting the most inform-
ative 100 genes for downstream training and classification
may be more applicable to extraction of gender, which is
reflected largely by expression of X and Y chromosome
genes, than the case of tissue, as tissue-specific or tissue-
predictive genes are more heterogeneous and scattered
throughout the genome, therefore 100 genes may not be
sufficient for this task. Finally, errors during text-based label
extraction will be propagated to some extent to the classifi-
cation stage. This last issue highlights the importance of
attaining maximum accuracy during the initial text extrac-
tion phase to maximize performance on the downstream
ML classification stage, and we would expect precision
improvements in the text extraction method to result in
improved ML classification performance.
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Further applications

Although the current study is limited to a relatively
constrained set of three types of labels, it lays the
groundwork for a broader range of label type. For
example, many other label types of interest, such as dis-
ease state, drug application, or diet, are specified in other
ontologies, and our ontology-based approach could be
applied with minimal modification to novel label types.
Although we have not assessed performance on other
label types, the code library for label extraction provides
generic methods for extracting labels from any ontology
in Open Biomedical Ontology (OBO) format.

Similarly, although the current study is limited in
scope to expression data from humans, the text-based
approaches in particular may be suitable for future
extraction of labels from other species and data types,
because the format of metadata is relatively independent
of the underlying type of high-throughput data in GEO
or the species. However, in the process of developing
this tool, we did anecdotally notice minor differences
between metadata between species, which would require
additional work to make the tool fully applicable to
model organisms such as mouse. For example, while
human ages are usually expressed in terms of years,
there is much more variety in terms of the time unit
used to express mouse age: days, weeks, and months are
all common, making the accurate detection and conver-
sion of time unit difficult but necessary to properly
expand our tool to model organisms. We also observed
that the distribution of tissue type is somewhat different
in humans compared to model organisms, in the sense
that tissue samples derived from non-invasive proce-
dures (such as blood samples from a blood draw) are
relatively more common in humans compared to tissues,
such as brain, that can only be obtained from invasive
procedures. These observations imply that evaluation
metrics and extraction methods would likely require
additional tuning to apply fully to model organisms.

Previous work by other authors, e.g. [4], has leveraged
the directed acyclic graph (DAG) structure of ontologies
to share information from tissues or other ontological
terms which are conceptually or structurally related, but
not identical. For the purposes of simplicity, we did not
pursue such an approach in this work, but we expect
that such an extension would prove especially valuable
in the case of label prediction from gene expression, as
it seems reasonable to expect that related tissues, disease
states, etc., would be related in terms of gene expression
as well. Thus, for example, if an expression-trained classi-
fier assessed a high probability that a sample should be
assigned the label “whole blood”, the likelihood that the
sample is comprised of PBMCs would likely be conse-
quently higher; i.e, nodes in an ontology structure would
be expected to be somewhat conditionally dependent.
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Conclusion

We have presented a tool for the extraction of gender,
tissue, and age labels for GEO data from the associated
metadata, as well as a label prediction tool to probabilis-
tically assign missing labels based on gene expression
data. Broadly, we found that relatively simple heuristic
text-extraction approaches based on regular expression
and string matching can identify labels, especially those
consisting of small vocabularies, such as age and gender,
with high precision and moderate recall. The labels from
heuristic extraction can then be used to provide larger
training sets to train ML models on expression data to
expand the range of samples that can be categorized, in
case heuristic extraction fails, or the sample metadata does
not contain the required information. Thus, by combining
the two approaches, we retrieve accurate labels without
sacrificing too many samples (maintaining precision and
improving recall), greatly enhancing the ease by which
large scale analysis can be performed using GEO data
spanning across many studies. Another advantage of this
two-pronged approach is that ML models can be trained
on newly released transcriptional profiling platforms with-
out the need for manual annotation of labels for each
individual platform.
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