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Abstract

Background: Functional modules in biological networks consist of numerous biomolecules and their complicated
interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction
patterns and that such modules are often conserved across biological networks of different species. As a result, such
conserved functional modules can be identified through comparative analysis of biological networks.

Results: In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network
analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient
seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional
modules as small subnetworks in the target network that are expected to perform similar functions to the given query
functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of
biological networks, and it has been applied to pairwise global network alignment, where the framework was shown
to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework
and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection
phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to
predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and
greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other
nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally,
CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the
induced network that includes the fully extended network and its neighboring nodes.

Conclusions: Through extensive performance evaluation based on biological networks with known functional
modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction
accuracy and biological significance of the predictions.
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Background

Proteins have their own functions and identifying their
functions is a critical step to decipher underlying bio-
logical mechanisms in a cell. In addition to investigating
functions of an individual protein, taking a set of pro-
teins and their interactions into account is significantly
effective to identify novel functions of proteins because
particular protein-protein interactions (PPI) can inhibit
or promote a certain biological process. These proteins
and their interactions can form a functional module that
performs a particular biological function, and identifying
functional modules is necessary to understand core bio-
logical mechanisms in a cell and it can be utilized to design
a novel drug, effective diagnosis, and therapy for complex
disease such as cancer [1-3].

The recent advances in high-throughput profiling tech-
niques have enabled systematic analysis of protein inter-
actions, providing abundant prior knowledge for PPI
networks. For instance, as novel protein interactions cor-
responding to a specific regulatory process have been
identified, the number of known functional modules have
been gradually increasing. However, biological experi-
ments to identify such functional modules still require a
huge amount of resources such as labor, cost, and time.
As it has been proved that functional modules or signaling
pathways are often well conserved across different bio-
logical networks [4, 5], comparative network analysis has
been emerging computational means to identify and pre-
dict conserved functional modules in different biological
networks [6].

Network querying is one of comparative network anal-
ysis methods, where it aims to search the large-scale
target network and determine whether the target network
includes the subnetwork that are similar to the given query
network such as signaling pathways or functional mod-
ules in terms of biological functions. Through a network
querying algorithm, we can identify the conserved func-
tional modules and predict the functions of the conserved
network in the target network based on the functions of
the query (i.e., transferring the prior knowledge of the
well-studied species to the under-studied species). Addi-
tionally, network querying can be utilized to predict novel
functional modules.

Several network querying algorithms have been pro-
posed [7-16]. PathBLAST [7] is one of pioneering net-
work querying algorithms, but it can search only linear
pathways and the computational complexity limits the size
of the query network. QPath [8] can search much longer
pathways than PathBLAST and QNet [9] can search both
linear pathways and tree structure, but both algorithms
still require high computational complexity and search-
ing capability is limited to either a pathway or a tree.
PathMatch [10] solves a network querying problem by
finding the longest weighted path in a directed acyclic
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graph (target network) and GraphMatch [10] finds highest
scoring subgraphs in a target network using an exact algo-
rithm. SAGA [11] solves an approximated graph matching
based on the fragment index, where it is the index on
a small substructure of graphs in a database, and SAGA
employs a flexible model for node gaps/mismatches and
network structural variations. NatalieQ [12] identifies
the querying results by solving the integer linear pro-
gramming through Lagrangian relaxation combined with
a branch-and-bound approach. TORQUE [13] proposed
a topology-free network querying algorithm. That is, it
only requires a set of proteins in the query network and
it does not necessary to provide the topological struc-
ture of the query network. TORQUE finds a connected
set of matching proteins through a dynamic and inte-
ger linear programming based on a sequence similarity of
proteins. RESQUE [14] estimates the node-to-node corre-
spondence through a semi-Markov random walk (SMRW)
model [17]. Then, RESQUE iteratively removes less rele-
vant nodes in the target network and identifies the best
matching subnetwork through either a Hungarian method
or identifying the largely connected subnetwork. Corbi
[15] estimates a matching probability of nodes in the query
and target network through a conditional random field
(CRF), and identifies the matching subnetwork through
iterative bi-directional mapping. SEQUOIA [16] adopts
the context-sensitive random walk model [18] to estimate
the node correspondence scores and adopts seed-and-
extension approach to identify the conserved networks.

In this paper, we propose CUFID-query, a novel network
querying algorithm to identify the conserved subnetwork
in the target PPI network that considers both molecular
and topological/structural properties. The proposed net-
work querying algorithm addresses two major challenges
in a network querying problem: high computational com-
plexity and structural variation of the conserved networks.
To tackle the complexity issue, we adopt the CUFID
(Comparative network analysis Using the steady-state net-
work Flow to IDentify orthologous proteins) framework
[19], where it is originally designed to estimate node-to-
node correspondence for large-scale biological networks.
Typically, as a network querying algorithm requires to
examine a large-scale target network in order to find the
best matching subnetwork that is similar to the given
small query network, computationally efficient method
to scan a large searching space is necessary. Addition-
ally, we utilize a seed-and-extension approach in order
to deal with structural variations of conserved networks.
As illustrated in Fig. 1, although the conserved sub-
network performs the similar biological functions, there
are inserted and deleted nodes and edges, and these
structural changes make it difficult to solve a network
querying problem through a classical bipartite matching
problem.



Jeong et al. BMIC Bioinformatics 2017, 18(Suppl 14):500

Page 135 of 169

Query network

Target PPl network

Fig. 1 lllustration of a typical network querying problem. The node marked in red in the query network is deleted in the target network, and the
node marked in blue is not present in the query but inserted in the target network. Note that the terms insertion/deletion are relative, and an
inserted node in one network can be viewed as a deleted node in the other network

In the proposed method, we first estimate the node-to-
node correspondence (i.e., biological relevance or match-
ing probability) between query and target networks. Then,
based on the estimated node correspondence scores, we
select the largely connected seed network through a max-
imum weighted bipartite matching algorithm. Next, we
iteratively extend the seed network by including the node
that meets the following two conditions: 1) larger asso-
ciation probability and 2) minimizing a conductance of
the extending seed network from the rest of the tar-
get network. The association probability could estimate
the frequency of interactions between the nodes in the
extending seed network and the neighboring nodes of
the seed network. Including the neighboring node with
more interactions to the nodes in the seed network can
be advantageous to lead functionally consistent querying
results because proteins having a direct interaction have
more chances to share and perform the similar biologi-
cal functions [20]. Note that since we only consider the
nodes in the target network as a candidate for a network
extension, the searching space for the network exten-
sion is limited to the nodes in the target network. In the
extension step, we list all candidate nodes based on the
association probability and select the winning node that
can maximally minimize the conductance of the extend-
ing seed network. This rule selects the node having a
higher probability to frequently interact with the nodes
in the extending seed network as well as rarely interact
to the rest of the network. Finally, after completing the
extension steps, we remove less relevant nodes in the fully
extended network based on the personalized PageRank

vector [21] in order to increase the functional consistency
of the querying result.

Methods
Problem formulation and overview of the proposed
method
Suppose that we have a query network and it can be rep-
resented as a graph Gg = (Vg, Eg). For example, a node
v; € Vg indicates a protein in the query network and
an edge e;; € Eg represents the interaction or binding
between protein v; and protein v;. In this study, since we
consider protein-protein interactions networks, we limit
our scope to undirected networks. When two proteins v;
and v; interact with each other, hence connected by an
edge e;; in the network, it is assumed that there is a direc-
tional edge from v; to v; and also from v; to v;. Similarly,
suppose that a target network is given and represented
by a graph Gy = (V7,&7). We assume that a pairwise
node similarity score s (vg, v;) is given for Vv, € Vo and
Vv: € V7, where it is proportional to the molecular level
similarity of two proteins (Vq, v¢). In this study, we con-
sidered protein-protein interactions (PPI) networks, and
we utilized BLAST bit scores as pairwise node similar-
ity scores but other types of similarity measurements or
their combination can be utilized. Generally, in a network
querying problem, the size of the target network is sig-
nificantly larger than the size of the query network, i.e.,
[Vol| <« |V7|, where the size of the network is the number
of nodes in the network.

The goal of network querying is to identify the con-
served subnetworks that is expected to perform the same
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or similar biological functions to the given query network.
Hence, the network querying problem is formulated as the
following optimization problem:

0% = sgmasf (6r.6c). W
VGT1€GT
where Gr is a feasible set of all subnetworks in the target
PPInetwork, and f (Gx, Gy) is the function that can quan-
titatively estimate the functional similarity or biological
relevance of two biological networks (Gx, Gy).

Network querying can be viewed as a subgraph isomor-
phism problem, where it determines whether one graph
(query network) is isomorphic to the subgraph of the
target graph (target PPI network). Solving the network
querying problem as the subgraph isomorphism problem,
considering possible node (or edge) insertion and deletion
in each network, is NP-complete [22]. Additionally, iden-
tifying the conserved subnetwork in the target network is
practically difficult because of the following reasons: 1) it
is not straightforward to compute node correspondence
scores as the scale of the biological network is very large
(i.e., complexity problem), 2) quantitatively estimating the
functional similarity f (G, Gy) of two biological networks
is difficult, and 3) we have no prior knowledge whether the
size of the conserved subnetwork is larger or smaller than
the query network because of the structural variations in
biological networks. That is, we have no prior knowledge
for the exact number of inserted/deleted nodes.

To overcome these challenges, we propose a heuristic
network querying algorithm based on the CUFID frame-
work and a seed-and-extension approach. In the pro-
posed network querying algorithm called CUFID-query,
we first compute the node-to-node correspondence scores
through the CUFID framework. The CUFID framework
can effectively deal with the complexity problem as it can
estimate the node correspondences for large-scale net-
works with a low computational cost. Based on the intu-
ition that two proteins in different networks would be an
orthologous pair if they have a high molecular similarity
as well as the similar interaction patterns to its neighbor-
ing nodes [4, 23], the CUFID framework can effectively
estimate a biological relevance between the nodes in the
query and target network by integrating the molecular
and topological similarities in a balanced manner. After
computing the node correspondence scores, we induce a
seed network using the seed nodes that can be identified
through a maximum weighted bipartite matching algo-
rithm. Note that the seed network Gs = (Vs, Es) is always
smaller than the query network (i.e., [Vs| < [Vgl). Then,
we iteratively extend the seed network using a probabilis-
tic framework, where it is designed to select the nodes
that can have more interactions to the nodes in the seed
network and minimize the conductance of the extending
seed network from the rest of the target network. Finally,
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we removed less relevant nodes based on the personal-
ized PageRank vector. Due to the structural variations
between conserved functional modules, solving a sub-
graph isomorphic problem may not the best way to find
the solution to a network querying problem in a practical
point of view, and a seed-and-extension approach could
be a reasonable alternative. However, since the approach is
not the optimal and less relevant nodes could be included
in the network extension steps, effective post-processing
to remove less relevant nodes can increase the accuracy of
a querying result.

Estimating the node correspondence through the CUFID
framework

The proposed network querying algorithm adopts a seed-
and-extension approach to efficiently deal with the struc-
tural variations of functional modules that are conserved
in different biological networks. We utilize the CUFID
framework to select the seed nodes in the target network
that have high correspondence to the query nodes. We
recently proposed the CUFID framework for global com-
parison and alignment of large-scale biological networks
with comparable number of nodes. However, we show in
this study that the framework is also effective for estimat-
ing the node correspondence for biological networks with
significantly different sizes.

In the following, we first briefly review the CUFID
framework that can be utilized to estimate the node-
to-node correspondence between the query and target
networks. As shown in [4, 23], taking the node and topo-
logical similarities into account can lead to an improved
prediction accuracy when comparing different biologi-
cal networks and identifying orthologous proteins. Here,
the node similarity indicates the molecular similarity of
the proteins, and the topological similarity denotes the
likeness of the interaction patterns to its neighboring
nodes. Hence, if the molecular composition of two pro-
teins in different biological networks are highly similar
each other and there are more number of neighboring
nodes with a close composition, they are highly likely to be
orthologous (i.e., performing the same or similar biolog-
ical functions). Recently, random walk based approaches
have been successfully applied to integrate both node
and topological similarities [14, 16—19, 23-26] because
of its distinctive advantages: First, a network comparison
based on a random walk model is flexibility for topological
structures of networks (i.e., it can estimate node corre-
spondences for any network topology such as pathway,
tree, and clique). It is also robust to structural variations
such as node insertions/deletions. Furthermore, random
walk based approaches are typically computationally effi-
cient because the real-world biological networks generally
have sparse interactions. For example, IsoRank [23] and
IsoRankN [24] adopt the Google’s PageRank algorithm [27]
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in order to estimate node correspondence scores. It per-
forms a random walk over the Kronecker product between
two networks, and utilizes the score to derive a global net-
work alignment. SMETANA [25] and RESQUE [14] adopt
a semi-Markov random walk (SMRW) model [17]. In the
SMRW model, the staying time of the random walker at
the pair of nodes is proportional to the topological simi-
larity and the pairwise node similarity between networks.
In the context-sensitive random walk (CSRW) model [18],
the next position of the random walker is determined
by the similarity of the neighboring nodes at the cur-
rent position of the random walker (i.e., context of the
current position of the random walker), and it can accu-
rately estimate the node correspondences by dealing with
the node insertions/deletions [16, 26]. The CUFID frame-
work has been recently proposed to estimate the node
correspondence (steady-state network flow) by effectively
integrating both molecular and topological similarities
using a Markov random walk model, and helped solve a
pairwise global network alignment problem [19].

First, to estimate the node correspondence through
the CUFID framework, we construct the integrated net-
work by combining networks to be compared. Specif-
ically, as shown in Fig. 2, we insert the pseudo-edges
connecting nodes in the query and target networks if
their pairwise node similarity score is greater than a
threshold s;. That is, the integrated network can be rep-
resented as a graph G = (V, &), where V denotes the
union of the nodes in the query and target networks
(ie. V = {Vo,Vr}); € is the union of the edges in
the two networks; and the inserted pseudo-edges such
that &p = {ei,j|vi € Vg,vj € V1,58 (vi, v,') > st}, (ie., & =
{0, &7, Ep)). Then, we allow a random walker to transit
within and across the networks to be compared.

If the random walker performs a random movement
over the edges representing protein-protein interactions,
it can move to its neighboring nodes belonging to the
same PPI network. That is, at the current position of the
random walker, it can transit to its neighboring nodes only
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if they are connected through the edges either £g or &
indicating the protein-protein interactions. The transition
probability for the random walk within either the query or
target PPI networks is given by

Pq = D(_Zl -Aq and Pt = D;l - AT, (2)

where Aq (or Ar) is an adjacency matrix of the query (or
target) network and Dq (or D) is a diagonal matrix such

that Dq [i,i] = Y Aq [i,j] (or D7 [i,i] = Y_ At [i,/]).
vj vj

The random walker can also transit across the query and
target networks through the pseudo-edges £p. When the
random walker transits from the query network to the tar-
get PPI network, the transition probability of the random
walker for this event is given by

Po_t1 = Ds_1 .S, (3)

where S is a |Vg| x |V7| dimensional matrix for
the pairwise node similarity score such that S [i, j] =
s(vi,vj),‘v’vi € Vo,¥v; € Vg, and Ds is a |Vg]
|[Vg| dimensional diagonal matrix such that Ds [i, ]
> S[ij].
vj

Similarly, if the random walker jumps from the tar-
get PPI network to the query network, the transition
probability is given by

X

Pr.q= sT. Dng (4)

We can construct the overall transition probability
matrix for the random walker over the integrated net-
work G by concatenating the above probability matrices as
follows:

Pq  Po-r
P= ) 5
[PT—>Q Pr ] ®

with necessary normalization to make the matrix P a
stochastic matrix. We can compute the corresponding
steady-state probability 7 of the random walker, where it
is equivalent to the expected time of the random walker

Query network Target PPl network

Query network Target PPl network

Fig. 2 lllustration for constructing the integrated network by combining the query and target networks. Dotted lines indicate positive node
similarity scores between pairs of nodes, where the thickness of each line is proportional to the similarity score. We insert a pseudo-edge between a
node in the query network and a node in the target network if the corresponding proteins have a positive node similarity score
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staying at the particular node in long term. Since real PPI
networks have generally sparse interactions, the steady-
state probability can be easily obtained through a power
method [19].

Finally, as shown in Fig. 3, the node-to-node corre-
spondence between the query and target networks can be
obtained by estimating the steady-state network flow (i.e.,
traversal of the random walker) across the pseudo-edges
connecting the nodes in the query and target networks,
which is given by

C=7g-Poo1+Prq- 77, (©6)
where 7o is a [Vg| x |Vg| dimensional diagonal matrix
such that 7g [i,i] = 7 (v;),VYv; € Vg and 7w is a | V7| x
|V7| dimensional diagonal matrix such that 7 [i,i] =
7 (vj), Vv € V7.

Proposed network querying algorithm: CUFID-query

The proposed network querying algorithm — CUFID-
query — has three main steps. First, we compute the
node-to-node correspondence between the query and tar-
get networks through the CUFID framework. Next, we
select the seed network (i.e., high scoring subnetwork) and
iteratively extend the seed network in the target network
until it meets the stop conditions. Finally, we remove less
relevant nodes based on the personalized PageRank (PPR)
vector of the induced network.
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Once we obtained the node correspondence between
the query and target networks through Eq. (6), we select
the seed nodes by maximum weighted bipartite match-
ing implemented in the MATLAB GAIMC toolbox [28].
Then, we construct the induced seed network based on
the selected seed nodes (i.e., the matching nodes in the
target network corresponding to the nodes in the query
network). If the induced network is disconnected, we will
use the largest connected network as the seed network. If
all the seed nodes are disconnected, we will select a sin-
gle node with the maximum correspondence score as the
seed.

Next, we iteratively extend the seed network by adding
a node based on the association probability and the net-
work conductance minimization principle. To this aim, we
define the association probability as the likelihood that the
random walker starting from a node in the seed network
will return to the seed network within 2 hops by pass-
ing through the neighboring nodes of the seed network.
Note that, since we focus on undirected networks, if there
is an edge e;; between two proteins v; and v;, our ran-
dom walker can move from v; to v; as well as from v; to
v; without any restriction. When a neighboring node has
a higher association probability, it can have more interac-
tions to the seed network and it is more likely to share the
similar biological functions to the nodes in the seed net-
work because interacting proteins tend to share the sim-
ilar biological functions [20]. To compute the association

- -

L

Query network

connecting the nodes

Steady state network flow

A

| S Y L b

-

Fig. 3 Estimating the steady-state network flow based on the CUFID framework. Red arrows indicate the random walk within the query or the target
network, while the green arrows represent the random walk across two networks. The correspondence between two nodes — one in the query
network and the other in the target network — can be estimated by measuring the steady-state network flow through the pseudo-edges

Target PPl network
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probability, we compute the initial steady-state probability
s of the random walker for the seed network. Given the
seed network Gs = (Vs, £s), the steady-state probability
for the node v; in the seed network is given by [29]

d ()
> dw)’

viegs

(7)

s (vi) =

where d (v;) is the degree of the node v;.

Then, for each neighboring node v, such that v, =
{velve € N (v),Vv; € Vs}, the probability of the random
walker jumps to the neighboring node v, from any node
in the seed network is given by

Z s (Vi) ®)

P1 (vy) = )
vevarnmn) 400

where N (v,) is the neighboring nodes of the node v.
Finally, the association probability for the neighboring
node vy, is given by

Py (V) = P1 () - %, 9)

where r (v;,) is the number of edges connecting v, and the
nodes in the seed network (i.e., {e,,,jlv,,, vj € gs} |).

We select top K candidate nodes having the high-
est association probability, and select the finalist to be
included to extend the seed network based on the conduc-
tance minimization criterion. Conductance minimization
criterion has been widely utilized in the non-comparative
network analysis algorithms [29, 30] because proteins in
the functional module typically tend to be densely con-
nected to each other while sparsely connected to the rest
of the network. Given a subnetwork Gs in the target net-
work (i.e.,, Gs C G7), the conductance of the subnetwork
is given by [21]

|{ei,j|vi S VQ,V,' [S V\VQH

min (vol (Gs),2m — vol (Gs))’ 10

¢ (Gs) =

where m is the number of undirected edges and vol (G) =
> d (v;). Note that the conductance defined in Eq. (10)

vieg
is applicable only for undirected networks. Since the con-
served subnetwork is typically much smaller than the

target network (i.e., Gs < G7), Eq. (10) becomes

|{ei,j|vi € VQ,V,' S V\VQ”
vol (Gs)
|{e5,j|vi € Vg,vj € V\VQH
Hei,j|Vi S VQ,V]‘ S VQ}’

¢ (Gs) =
(11)
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In the extension steps, we first select the top 20
nodes with the highest association probability, and we
finally select one node that can maximally minimize the
conductance of the seed network. We iteratively extend
the seed network until either one of the following stopping
conditions is satisfied: 1) the size of the extending seed
network exceeds the limits; 2) there are no neighboring
nodes that can decrease the conductance of the extending
network more than 10%.

Once the seed network is fully grown, we finally refine
the extended seed network by removing the less rele-
vant nodes based on the personalized PageRank (PPR)
vector. For this purpose, we construct the induced net-
work Gr based on the extended seed network and its
neighboring nodes (ie, Gz = (V1,&1), where V1 =
Vs, N Vs)} and & = {Es,E4) such that £4 =
{e,;,»lvi €Vs,vj € N(Vs)}). Then, we compute the PPR
vector for the induced network Gz. The standard PPR vec-
tor r is a unique solution of the following equation: [21]

r=a-s+(1—a)-r-M, (12)

where « is a teleportation constant and we set « as 0.5,
M is the normalized adjacency matrix of the induced net-
work G7 and s is a preference vector. We set the preference
vector s as follows:

1/Vsl, vi€ Vs
0, otherwise.

s(vi) :{

Once we obtain the PPR vector for the induced net-
work Gz, we iteratively select the nodes with the highest
PPR vector values until the cumulative sum becomes 0.5.
In this pruning step, it would be possible that the nodes
in the extended seed network could be removed and
other neighboring nodes would be included in the final
querying results. Note that this pruning process could
make the querying results disconnected. If the identi-
fied network is fragmented by the pruning step, CUFID-
query only returns the largest connected network as the
querying results. The steps of CUFID-query are summa-
rized in Algorithm 1. We briefly compare SEQUOIA [16]
and CUFID-query as they both adopt similar seed-and-
extension approaches. One important difference between
the seed extension steps in the two algorithms is that
SEQUOIA extends the intermediate networks only based
on the conductance minimization principle while CUFID-
query adopts the conductance minimization principle and
simultaneously uses the association probability to select
additional nodes. Furthermore, in the post-processing
step, SEQOIA only removes irrelevant nodes in the
extended seed network, but CUFID-query can recruit new
nodes that are originally not included in the extended
seed network by utilizing the PPR vector of the induced
network Gz.
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Algorithm 1: CUFID-query
Data: Query Gg and target G networks and
pairwise node similarity scores
Result: List of nodes in the querying results

begin
1 Compute the node correspondence score C
using Eq. (6)
2 Select seed nodes using a maximum weighted

bipartite matching algorithm

3 Identifying the seed network Gs = (Vs, £s) by
finding the largest connected network based on
the seed nodes

4 Set @y14 = 00

while [Vs| <2- |VQ| Of Quew < B - Yold do

5 Find the set IC of top K candidate nodes
based on the association probability of
neighboring nodes

6 Compute the conductance ¢; for the induced
network {Vs U v;} for each vy, Vv € K

7 Vpx = argmin ¢

t
8 Set Puew = @
9 Check stopping conditions
10 Update Gs such that Vs = {Vs U v} and
Es = {53 Ue;j|Vv; € Vs,j = Vt*}
1 Set 9o1a = ¢r*
end
12 Compute personalized PageRank vector using
Eq. (12)
13 Remove less relevant nodes based on PPR vector

and return the largest connected network
end

Results and discussion

Datasets and experimental set-up

To assess the performance of CUFID-query, we per-
formed experiments based on the known biological com-
plexes and real-world PPI networks for three species: H.
sapiens (human), S. cerevisiae (yeast), and D. melanogaster
(fly). We obtained target PPI networks from STRING v10
[31]. Then, we extracted the protein-protein interactions
classified as a ‘binding’ (direct interaction) and removed
the protein-protein interactions without an experimental
validation. We further removed protein-protein interac-
tions with the confidence score less than 400 that indicates
a medium level confidence. After the aforementioned
pre-processing, the human PPI network includes 12,049
proteins and 95,209 interactions, the mouse PPI network
includes 10,428 proteins and 112,541 interactions, and
the yeast PPI network includes 5726 proteins and 88,308
interactions. To obtain the pairwise node similarity score
for each network pair, we computed BLAST bit scores
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between amino acids sequences for each protein pair
through BLAST version 2.3. Note that the amino acid
sequences for each species were obtained from STRING
v10.

We obtained the known biological complexes for human
and mouse from CORUM [32], and known biological
complexes for yeast are obtained from SGD [33] (accessed
at Feb. 1 2017). Then, we extracted the connected net-
works with the size of 4 to 25. We obtained overall 1242
test cases, where the 371 human complexes were queried
against the mouse PPI network, the 349 human com-
plexes were queried against the yeast PPI network, the
64 mouse complexes were queried against the human PPI
network, the 54 mouse complexes were queried against
the yeast PPI network, the 201 yeast complexes were
queried against the human PPI network, the 203 yeast
complexes were queried against the mouse PPI network.

To assess the biological significance of the querying
results, we performed a GO enrichment test for the query-
ing results. To this aim, we downloaded the GO ontology
and annotation files for each species from Gene Ontology
Consortium [34] (accessed at Feb. 2 2017), and we only
used GO terms with the following experimental evidence
codes: ‘EXP; ‘IDA; ‘IPI, ‘IMP; ‘IGI, and ‘IEP’ Additionally,
we retained GO terms whose information contents (IC)
is greater than 2 in order to perform GO enrichment test
based on the more informative terms as recommended in
[34]. IC is given by

T (13)

where ’g‘ is the number of proteins that are annotated
with the particular GO term g, and |r00t (g)| is the num-
ber of proteins belonging to the root GO term of the
GO term g. Note that, due to the hierarchical structure,
every GO term belongs to one of the root terms: biolog-
ical process (BP, GO:0008150), cellular component (CC,
G0:0005575), and molecular function (MF, GO:0003674).
We used the latest version of GO:TermFinder [35] to
perform the GO enrichment test for the querying results.
We compared the performance of CUFID-query against
state-of-the-art algorithms: NatalieQ [12], Corbi [15],
RESQUE [14], SEQUOIA [16] and HubAlign [36]. We
used default parameters for NatalieQ. In the R package
for Corbi, we used a function for a network querying with
the default parameters and set the query type as a gen-
eral querying because we cannot get the results when
we set the query type as a heuristic querying. Although
HubAlign is a pairwise network alignment algorithm, we
used HubAlign to compare the performance of network
querying algorithm because network querying can be
classified as a special case of a local network alignment.
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Performance assessment metrics

There is no gold standard benchmark for the network
querying problem. Moreover, since the exact node-to-
node mapping between conserved biological complexes is
also unknown, we cannot compute general performance
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metrics such as precision and recall for network query-
ing algorithms. To assess the performance of the query-
ing algorithms, we defined various performance metrics.
First, since network querying algorithms can be uti-
lized to predict novel biological complexes, we performed
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Fig. 4 The number of hits and the number of meaningful hits are shown for each network querying algorithm. The bars shown in solid colors
indicate hits and the shaded bar indicate meaningful hits. Labels in the horizontal axis show the (query species)/(target PPI network) pairs
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GO enrichment test for the querying results through
GO::TermFinder [35], and if the false discovery rate (FDR)
corrected p-value of the querying result is smaller than
0.01, we considered that the querying result is biologi-
cally significant so that it has a potential to be a functional
module. Then, we counted the number of hits, defined
as the querying results whose FDR corrected p-values are
smaller than 0.01. Among these hits, we also counted the
number of meaningful hits that are connected querying
results whose FDR corrected p-value is smaller than 0.01.

Next, we defined a specific hit as the querying result that
is highly overlapped with the know biological complexes.
To determine whether the querying result is well-matched
to the known biological complexes, we computed the
match score of the querying result by comparing it to the
known biological complexes R = {G1,G1,...,Gn}. Given
two biological complexes Gy and Gy, the matching score
is a Jaccard similarity index, which is given by [37]

[V N Vyl
VryUVyl

Given a querying result Go+, we computed the match
score match_score (Gox,Gx) for all Gy in R, and if there
is at least one known complex that yields the match score
greater than a threshold m;, we considered the query
result as a specific hit. In this study, we used a threshold
m; of 0.5 as in [37].

We also checked the specificity of the querying results
because a querying result may contain irrelevant nodes
even though it can detect the functional modules. Query-
ing results including many irrelevant nodes may decrease
the reliability of the querying algorithm, and it may not
be appropriate in practical applications as it requires addi-
tional biological experiments for validation. To this aim, a
specificity was defined as the ratio of the number of anno-
tated nodes to the overall number of nodes in the query-
ing result. In this experiment, we selected the enriched
GO term with the smallest FDR corrected p-value, and
counted the number of nodes annotated with the GO
term.

Finally, we also compared the running time of
each method in order to compare the computational
complexity.

match_score (Gx,Gy) = (14)

Performance assessment: hits and meaningful hits

Figure 4 shows the number of hits and meaningful hits
for all the query and target pairs. As shown in Fig. 4,
although RESQUE-C can identify a slightly larger num-
ber of hits, CUFID-query achieves a comparable number
of hits to the other methods. CUFID-query, SEQUOIA,
HubAlign, and RESQUE-M show the similar perfor-
mances in terms of hits. Among six methods, the sizes of
the querying results for RESQUE-C are mostly larger than
those of other methods. Including more proteins in the
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query results can lead to more enriched GO terms with
biological significance because biological complexes can
be overlapped and proteins can perform multiple func-
tions. As a result, RESQUE-C has a higher chance to
achieve a higher number of hits than the other methods.
Although RESQUE-C achieves the largest number of hits,
we will show later that RESQUE-C includes a larger num-
ber of irrelevant nodes in the querying results that can
decrease the specificity of the querying results. HubAlign
and RESQUE-M show the comparable performance to
CUFID-query, but we will also present that they can iden-
tify a relatively smaller number of annotated nodes. When
considering one of goals for network querying, predicting
and annotating functions of proteins in the target network
based on the functions of the query network, identifying
more annotated proteins is much advantageous. Results in
Fig. 4 implies that CUFID-query has a strong potential to
identify a novel functional module conserved in the target
PPI network.

Next, when considering meaningful hits, CUFID-
query outperforms Corbi, NatalieQ, and RESQUE-M
for all query-target pairs by achieving 52, 42, and 18%
more meaningful hits, respectively. Although RESQUE-M
records a similar number of hits to CUFID-query, the
number of meaningful hits is much smaller than that
of CUFID-query because RESQUE-M does not guaran-
tee the connected querying results. Similarly, Corbi and
NatalieQ may also identify disconnected subnetworks as
their querying results, which can decrease the number of
meaningful hits. Identifying a connected querying result
is practically important because interactions between pro-
teins can trigger or inhibit a particular cellular mechanism
and disconnected querying results may not be helpful
to decipher and interpret the functions of proteins and
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Fig. 5 The number of specific hits for each network querying algorithm.
Labels in the horizontal axis show the (query species)/(target PPI
network) pairs
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Fig. 6 The specificity of the predictions made by different network
querying algorithms. Each box plot shows the specificity of a given
network querying algorithm. Note that the square corresponds to the
mean value and the black diamonds indicate the outliers

their relationships. That is, achieving a higher number of
meaningful hits instead of any hits is more important in
practice. Based on these results, CUFID-query is advanta-
geous to identify and predict protein-protein interactions
that cause particular biological processes.

Performance assessment: specific hits

Figure 5 shows the number of specific hits for each
network querying algorithm. Except the case compar-
ing mouse and human, CUFID-query achieves a higher
number of specific hits. When querying human com-
plexes against the yeast PPI network, CUFID-query clearly
outperforms competing methods. Although RESQUE-
C achieves the largest number of hits and meaning-
ful hits, it records the least number of specific hits
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because RESQUE-C includes a large number of less rel-
evant nodes as we mentioned before. For overall 1242
test cases, CUFID-query achieves 15% more specific hits
than the next best algorithm, SEQUOIA. Since the main
goal of network querying is identifying the conserved
subnetworks in the target network that are similar to the
given query network, achieving a higher number of spe-
cific hits is more appropriate for the goal. These results
mean that CUFID-query has a strong potential to accu-
rately identify the known biological complex conserved in
the target PPI network.

Performance assessment: specificity

We also checked the specificity of each network querying
algorithm. Although the querying algorithm can identify
the highly relevant subnetworks to the given query net-
work, if it includes a larger number of less relevant nodes,
it is difficult to exactly select the conserved subnetwork
corresponding to a particular biological process. Figures 6
and 7 show a box plot and histogram of the specificity
for each method. As shown in Fig. 6, although Corbi
achieves the highest median value, the difference of the
mean specificity for each method is negligible. Note that
the median value for each method is as follows: Corbi
(0.667), CUFID-query (0.625), HubAlign (0.6), NatalieQ
(0.6), RESQUE-M (0.6) and RESQUE-C (0.556). CUFID-
query still achieves higher specificity than HubAlign,
NatalieQ, and RESQUE families. Interestingly, there are
a number of outliers at either 0 or 1. Based on the box
plot for the specificity, it is difficult to select the best algo-
rithm in terms of the specificity because of the outliers.
However, Fig. 7 shows that, although Corbi and NatalieQ
can identify more querying results whose specificity is
greater than 0.8, there are also a remarkably larger number
of querying results whose specificity is smaller than 0.2.
However, for CUFID-query, there are a relatively smaller
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number of querying results with low specificity, and there
are a comparable number of querying results achieving
fairly high specificity. This result indicates that querying
results of the proposed method is comparably accurate
and it includes a relatively smaller number of less relevant
nodes.

Next, we also investigated the number of identified
nodes and annotated nodes. As a network querying
algorithm can be utilized to predict the functions of
proteins in the identified network by transferring the
knowledge about the functions of the querying network,

Page 144 of 169

identifying more annotated nodes would be advantageous
for annotating functions of proteins in the target net-
work (i.e., transferring the prior knowledge of the query
network). Table 1 shows that RESQUE-C can identify a
larger number of annotated nodes but the size of query-
ing results is also relatively larger than the ones obtained
by other methods. Hence, this causes the lowest percent-
age of annotated nodes for RESQUE-C. CUFID-query and
Corbi show the similar percentages of annotated nodes,
but CUFID-query can identify more annotated nodes than
Corbi. This means that CUFID-query is more effective

Table 1 The number of identified nodes and the number of annotated nodes are summarized for different network querying

algorithms and different query/target network pairs

Human/mouse Human/yeast

Annotated Identified % Annotated Annotated Identified % Annotated
NatalieQ 1233 2454 0.502 1382 1753 0.788
Corbi 1357 2493 0.544 1305 1693 0.771
HubAlign 1343 2544 0.528 1692 2461 0.688
RESQUE-C 2019 4530 0.446 2735 3773 0.725
RESQUE-M 1395 2553 0.546 1669 2317 0.720
SEQUOIA 1799 3767 0478 2807 3842 0.731
CUFID-query 1548 2946 0.525 2234 2969 0.752

Mouse/human Mouse/yeast

Annotated |dentified % Annotated Annotated Identified % Annotated
NatalieQ 223 366 0.609 161 193 0.834
Corbi 229 355 0.645 157 193 0813
HubAlign 245 372 0.659 206 329 0.626
RESQUE-C 383 712 0.538 368 499 0.737
RESQUE-M 246 372 0.661 227 290 0.783
SEQUOIA 296 542 0.546 336 491 0.684
CUFID-query 277 447 0.620 274 397 0.690

Yeast/human Yeast/mouse

Annotated Identified % Annotated Annotated Identified 9% Annotated
NatalieQ 767 1250 0614 394 1223 0.322
Corbi 790 1230 0.642 424 1246 0.340
HubAlign 1003 1654 0.606 571 1683 0.339
RESQUE-C 1265 2490 0.508 772 2488 0310
RESQUE-M 881 1574 0.560 543 1571 0.346
SEQUOIA 1171 2234 0.524 704 2337 0.301
CUFID-query 942 1507 0.625 531 1541 0.345

Overall

Annotated Identified % Annotated
NatalieQ 4160 7239 0.575
Corbi 4262 7210 0.591
HubAlign 5060 9043 0.560
RESQUE-C 7542 14,492 0520
RESQUE-M 4961 8677 0572
SEQUOIA 7113 13,213 0538
CUFID-query 5806 9807 0.592
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to accurately annotate protein functions in the novel bio-
logical complex (i.e., identified subnetwork in the target
network).

Performance assessment: computation time and stability
of network querying algorithms

To compare the computational complexity of each
method, we compared the running time of each method.
In this experiment, we tested all network querying algo-
rithms using the same machine equipped with intel i7 dual
core processor (2.9 GHz) and 16 GB memory. Figure 8
shows that CUFID-query, SEQUOIA, and RESQUE fam-
ily are much faster than other algorithms, and NatalieQ
records the next best in terms of the computation time.
Interestingly, although the average of the computation
time for NatalieQ, SEQUOIA and RESQUE family is very
fast, there are a number of outliers. That is, they require
unexpectedly longer time for network querying in some
cases. These may depend on the topological structure of
the query and target networks. That is, particular topo-
logical structures may require longer computation time
for querying. Although CUFID-query also has outliers,
the most cases complete the querying within a few sec-
onds for all 1242 test cases. In addition to the computation
time, NatalieQ fails to identify querying results for 71
queries among 1242 queries (i.e., NatalieQ can not find
any matching nodes for 71 queries). This means NatalieQ
may not be robust for a particular topological struc-
ture, but CUFID-query finds querying results for all 1242
queries and records a stable running time, where it implies
the robustness of CUFID-query.

Conclusions

In this paper, we propose a novel network querying algo-
rithm, CUFID-query. We utilize the CUFID framework
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Fig. 8 Computation time for each algorithm. Note that the black dots
outside the whiskers correspond to outliers
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in order to estimate the correspondence (or biologi-
cal relevance) between nodes in the query and large-
scale target networks. In the CUFID framework, we first
construct the integrated network by inserting pseudo-
edges between nodes in the query and target networks,
and we design a random walker whose random tran-
sition through a pseudo-edge is proportional to both
node and topological similarities. Hence, we can effec-
tively estimate the node correspondence by measuring a
steady-state network flow across the pseudo-edges with a
reduced computational cost. Based on the estimated node
correspondence scores through the CUFID framework,
CUFID-query identifies the seed network (i.e., high corre-
spondence region in the target network). Then, we itera-
tively extend the seed network by adding a selected node,
based on the association probability and the conductance
minimization criterion. Finally, in case that the seed-
and-extension approach may include irrelevant nodes,
we remove less relevant nodes based on the personal-
ized PageRank vector for the induced network. Through
an extensive performance evaluation using 1242 known
biological complexes and large-scale PPI networks, we
have shown that CUFID-query leads to accurate and
functionally consistent querying results. In this study,
we have verified that the CUFID framework is effective
to compare biological networks with significant different
sizes. Additionally, several algorithms require significantly
longer computation time to identify conserved biological
networks. Accommodating structural variations between
conserved networks and insufficient information for pair-
wise node similarity (i.e., protein homology) would be the
major reasons, and this should be taken into account to
develop more advanced network querying algorithms in
the future. More importantly, since there is no gold stan-
dard benchmark dataset that can be used to assess and
compare the performance of different network querying
algorithms, it is important to develop standard perfor-
mance assessment methods based on comprehensive and
balanced benchmark datasets for network querying.
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