Mikailov et al. BMIC Bioinformatics 2017, 18(Suppl 14):501

DOI 10.1186/512859-017-1902-7 BMC BiOinfO rmatiCS

CrossMark

Scaling bioinformatics applications on HPC ®

Mike Mikailov', Fu-Jyh Luo', Stuart Barkley', Lohit Valleru', Stephen Whitney', Zhichao Liu?, Shraddha Thakkar?,
Weida Tong? and Nicholas Petrick’”

From The 14th Annual MCBIOS Conference
Little Rock, AR, USA. 23-25 March 2017

Abstract

Background: Recent breakthroughs in molecular biology and next generation sequencing technologies have led
to the expenential growh of the sequence databases. Researchrs use BLAST for processing these sequences.
However traditional software parallelization techniques (threads, message passing interface) applied in newer
versios of BLAST are not adequate for processing these sequences in timely manner.

Methods: A new method for array job parallelization has been developed which offers O(T) theoretical speed-up in
comparison to multi-threading and MPI techniques. Here T is the number of array job tasks. (The number of CPUs that
will be used to complete the job equals the product of T multiplied by the number of CPUs used by a single task) The
approach is based on segmentation of both input datasets to the BLAST process, combining partial solutions published
earlier (Dhanker and Gupta, Int J Comput Sci Inf Technol_5:4818-4820, 2014), (Grant et al,, Bioinformatics_18:765-766, 2002)
, (Mathog, Bioinformatics_19:1865-1866, 2003). It is accordingly referred to as a “dual segmentation” method. In order to
implement the new method, the BLAST source code was modified to allow the researcher to pass to the program the
number of records (effective number of sequences) in the original database. The team also developed methods to manage
and consolidate the large number of partial results that get produced. Dual segmentation allows for massive parallelization,
which lifts the scaling ceiling in exciting ways.

Results: BLAST jobs that hitherto failed or slogged inefficiently to completion now finish with speeds that characteristically
reduce wallclock time from 27 days on 40 CPUs to a single day using 4104 tasks, each task utilizing eight CPUs and taking
less than 7 minutes to complete.

Conclusions: The massive increase in the number of tasks when running an analysis job with dual segmentation
reduces the size, scope and execution time of each task. Besides significant speed of completion, additional benefits
include fine-grained checkpointing and increased flexibility of job submission. “Trickling in” a swarm of individual small
tasks tempers competition for CPU time in the shared HPC environment, and jobs submitted during quiet periods can
complete in extraordinarily short time frames. The smaller task size also allows the use of older and less powerful hardware.
The CDRH workhorse cluster was commissioned in 2010, yet its eight-core CPUs with only 24GB RAM work well in 2017 for
these dual segmentation jobs. Finally, these techniques are excitingly friendly to budget conscious scientific
research organizations where probabilistic algorithms such as BLAST might discourage attempts at greater
certainty because single runs represent a major resource drain. If a job that used to take 24 days can now
be completed in less than an hour or on a space available basis (which is the case at CDRH), repeated runs
for more exhaustive analyses can be usefully contemplated.

Keywords: HPC, Blast, Parallelization, MPI, Multi-threading, Bioinformatics, Array jobs, Next generation
sequencing, Grid engine, Cluster

* Correspondence: Nicholas.Petrick@fda.hhs.gov

'Office of Science and Engineering Labs, Center for Devices and Radiological
Health, US Food and Drug Administration, 10903 New Hampshire Ave, Silver
Spring, MD 20993, USA

Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
(B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1902-7&domain=pdf
mailto:Nicholas.Petrick@fda.hhs.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Mikailov et al. BMIC Bioinformatics 2017, 18(Suppl 14):501

Background

One of the most widely used bioinformatics applications
is Basic Local Alignment Search Tool (BLAST) from the
National Institute of Health [1]. BLAST [2] and its many
variants (BLASTN, BLASTP, BLASTX, BLASTZ, etc.)
are used by more scientists than any other bioinformat-
ics application [3]. The BLAST family of programs is
used to address a fundamental problem in bioinformat-
ics research: sequence search and alignment. Using these
programs scientists compare query sequences with a
library or database of sequences like GenBank [4] to iden-
tify library sequences that resemble each query sequence.
To be practical, developers of BLAST apply a heuris-
tic algorithm using a statistical model to speed up the
search process and achieve linear time complexity.
This approach produces less accurate results than the
exhaustive Needleman-Wunch [5] and Smith-Waterman
[6] algorithms created earlier for the same purposes.
These exhaustive algorithms are based on dynamic pro-
gramming and have time complexity of O(1®). They are
therefore problematic for practical use in resource-
constrained environments.

Recent developments in molecular biology and next
generation sequencing technologies have led to the
exponential growth of the sequence database. Figure 1
shows the exponential growth of the GenBank data-
base, an annotated collection of all publicly available DNA
sequences. Growth in the last 13 years has been thirteen
fold. The BLAST family of algorithms has been slow keep-
ing up with the current rate of sequence acquisition [7].

Parallel versions of BLAST — mpiBLAST and BLAST
+ — have been developed using MPI [8] and Pthreads [9] to
meet the challenges of the growing number of sequences.
Nisha Dhanker et al. [1] have investigated the performance of
the parallel implementations of the BLAST algorithm in HPC
environments. Their research indicates that starting with re-
lease 1.6, mpiBLAST improves BLAST performance by sev-
eral orders of magnitude through database fragmentation,
query segmentation, intelligent scheduling and parallel I/O.

However, multi-threading using Pthreads is confined
to only one node, while MPI suffers from its centralized
architecture — only one master core serves potentially thou-
sands of worker nodes causing congestion and slowing exe-
cution times. Dhanker et al. [1] address in detail the
scalability limits of mpiBLAST and recommend a combin-
ation of enhancements such as a software remediation
using mpiBLAST-PIO as well as hardware power in the
form of 40Gb InfiniBand networking. Most intriguingly,
Dhanker et al. also investigate segmentation of both the
query database and the reference database, but did not fully
explore its potential using the array job technique.

The other shortfalls of MPI include the lack of check-
pointing to reduce the portion of a job that needs to be
rerun in case of a system failure. MPI also limits scaling

Page 164 of 169

to the maximum number of cores available in the clus-
ter. Finally, if the database cannot be completely cached
in the available memory of a computing node, perform-
ance decreases drastically.

All BLAST applications perform pair-wise comparisons
of query and database sequences. This has led to separate
research into “query slicing” [10] and “database splitting”
[11] to speed up performance on HPC clusters. The query
slicing and database splitting approaches are exciting par-
tial solutions. The dual segmentation approach explored
on the CDRH HPC combines both approaches to take
advantage of their respective benefits.

It should be noted that when using the database split-
ting approach [9] with some of the BLAST+ family appli-
cations (for instance, BLASTN), the application requires
the effective number of sequences in the original database
being split so it can compute the Expect value (E) while
processing each database fragment [12]. However, BLAST
+ does not provide an input parameter option for specify-
ing the number of sequences. The database splitting
approach in [11] does not offer a solution for cases where
E needs to be computed. Our effort to improve BLAST
HPC performance includes a modification of the BLAST +
source codes to provide this option.

Methods

Current BLAST application architecture and deficiencies
for parallelization

Figure 2 shows the current application architecture for
the BLAST+ family of programs along with mpiBLAST
and tntBLAST [13]. In all cases, sequences in a query
and a database are given to the application as input data;
the application conducts alignment and search using
pair-wise comparison of sequences in the query and
database, and finally it outputs the matches. Table 1
summarizes the drawbacks of parallelization techniques
implemented by these applications.

BLAST+ enhancement to allow specification of number of
database sequences
The source codes of BLAST+ can be modified as shown
below to add an input option dbseqnum (“Effective
number of sequences in the database”) for specifying the
effective number of sequences in the original database.
For this study the source codes of BLAST+ in nchi-
blast-2.3.0 + —src.tar.gz file were downloaded from ftp://
ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.3.0/ and
used for the modifications.

Add line #60 in ncbi-blast-2.3.0 + -src/c++/src/
algo/blast/blastinput/cmdline_flags.cpp file:

const string kArgDbSeqNum(“dbseqnum”);

This modification defines a new BLAST+ command
line flag/option dbseqnum.

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.3.0/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.3.0/

Mikailov et al. BMIC Bioinformatics 2017, 18(Suppl 14):501

Page 165 of 169

p
250,000,000 -
200,000,000 -
”
]
]
S 150,000,000 -
o
3
]
£ 100,000,000 -
£
3
4
50,000,000 -
0 eyl
O "W N OO g 1NN O™ DD o N M N O™ 0 O = N & 0 O
2929229292929 382908998 3 g dg
3553223823888 8585858532238:28¢88¢8
Date
Fig. 1 Exponential growth of GenBank [4]. The number of nucleotide sequences stored in GenBank is growing rapidly. Currently the database
holds more than 200 K nucleotide sequences. The size of such reference databases poses a great challenge for the bioinformatics community to
get job completed with available memory in available computational equipment
A\

Add line #60 in ncbi-blast-2.3.0 + -src/c++/in-
clude/algo/blast/blastinput/cmdline_flags.hpp file:

NCBI_BLASTINPUT_EXPORT extern const string
kArgDbSeqNum;

This modification exports (makes visible) the new
command line definition to other source files.

Add lines ## 1763-1766 in ncbi-blast-2.3.0 + —src/c
++/src/algo/blast/blastinput/blast_args.cpp file:

/! DB sequence number.

arg_desc.AddOptionalKey(kArgDbSeqNum,
“num_sequences”,

"Effective number of sequences in the database "

CArgDescriptions::elnteger);

This modification adds the dbseqnum optional key to
command line arguments.

’

Add lines ## 1938-1940 in ncbi-blast-2.3.0 + —src/c
++/src/algo/blast/blastinput/blast_args.cpp file:

if (args[kArgDbSeqNum)]) {.

opts.S
etDbSeqNum(args[kArgDbSeqNum].AsInteger());

}

This modification sets the dbseqnum value in the
program.

After the above modifications, BLAST+ can be built
following the standard build instructions in the BLAST+
documentations.

Proposed dual segmentation method architecture

The proposed method consists of the following high-
level steps:

Sequences in a query

>scaffold1.1|size174461

CCTGCTCGCTCGTCCCGCGGCGAC ...

>scaffold4.1|size 125892

ATACACCAGGGCTTCTTGATGTTTGT ...

Sequences in a database

>Qi|489223532|ref|WWP_003131952.1|..
MAQQRRGGFKRRKKVDFIAANKIEVVDY ..

>gi|66816243|ref]XP_642131.1] ...

MASTQNIVEEVQKMLDTYDTNKDGEITK ...

Fig. 2 Current application architecture. The sequences in the query and the reference database are mapped using BLAST+, mpi BLAST and
thtBLAST. These applications perform pair-wise comparisons of the sequences and conduct alignment to produce the matched output

—

Applications:
BLAST+,
mpiBLAST,
thtBLAST

-

- Results

Mikailov et al. BMIC Bioinformatics 2017, 18(Suppl 14):501

Table 1 Drawbacks of traditional parallelization techniques

Parallelization ~ Application Drawback
Technique
Multi- BLAST+ Scaling is limited to cores on one
threading computing node.
MPI mpiBLAST, « Scaling is limited by the master/core
tntBLAST bottleneck - one master core serves all
worker cores, which may number in
the thousands.
+ Cannot scale beyond the available
cores in the cluster.
Any of the Any of the Performance degrades drastically if the
above above sequences in queries and database
cannot completely fit in the memory of
the computing node.
Any of the Any of the No checkpointing. Failures during long
above above job runs can mean serious schedule

setbacks, a risk that can negatively affect
research design and dilute research
objectives.

1. Use the —info option of the blastdbcmd
program (part of the BLAST+ package) to find the
number of sequences (dbsegnum) in the original
databases. The blastdbcmd —info option returns
an integer. Record the number for use later.

2. Split the query and reference databases into M and N

subsets respectively. The extent of splitting of the

databases must be sufficient so that the combined
size of every M and N subset pair is small enough to
be cached in the memory of any computing node
that will be used during the job execution.

Generate the unique pairs of query and database subsets.

4. Form and launch an array job of M x N pseudo-parallel
tasks on your HPC cluster and provide every task with
a unique pair of query and database subsets. Every task
produces the partial result for its unique pair.

5. Aggregate/merge the partial results after all tasks
are completed.

w

For a test database hs58179009.fasta the
blastdbemd program outputs the following:

“Effective number of sequences in the
database is 523449; effective database
size is 2457100615."

Splitting the query and database can be efficiently ac-
complished using the —pipe functionality of the open
source. GNU Parallel [14] or FASTA Splitter [15]
command-line utilities. The command shown below uses
GNU Parallel and splits (in parallel using eight CPUs) a
test query file query. fasta into subsets of maximum
size 100,000 KB each, and places them into files named
query 1, .., query 152 (M= 152). The generated
subsets are placed in the folder query/split:

Page 166 of 169

cat query.fasta | parallel —j 8 —block
100,000 k —recstart ‘>‘—pipe tee \.

query/split/query {#} > /dev/null.

Shown below is a serial job script file that accomplishes
the query splitting task on an HPC cluster using the open
source Son of Grid Engine (SGE) [16]:

#$ -cwd.

#$ -S /bin/sh.

#$ -o /dev/null.

#$ -1 h_vmem = 2G.

#$ -N split query.

#$ -pe thread 8.

time cat query.fasta | parallel -j
$NSLOTS —tmpdir tmp —block 100,000 k \.

—recstart ‘>‘—pipe tee query/split/
query_{#}.

Using eight CPUs in parallel, the above operation took
less than a minute to split a 15 GB FASTA file query. -
fasta into 152 subsets each of size 100,000 KB maximum.

A similar GNU Parallel script was used to split the
database into 27 subsets db_1, .., db 27 (N = 27),
also of maximum 100,000 KB size each. The segments
are placed in the folder db/split.

The SGE array job script that processes the M x N pairs
thus produced is shown below:

#$ -cwd

5 0 hmenae
z: :;)/’bin/sh

#$ -N blast+

#$ -pe thread 8

#$ -t 1-4104 # =152 x 27

M="1s -1 query/split | wc -1°
N="1s -1 db/split | wc -1°

number of query subsets
number of database subsets

11=$((((((SGE_TASK_ID-1))%$M))+1))
12=$((((((SGE_TASK_ID-1))/$M))+1))

IN=query/split/query_"$I1"
IN_DB=db/split/db_"$12"

APP=blastn
para="-dbseqnum 523449 -dbsize 2457100615 -outfmt 6 -evalue le-3"

time $APP $para -num_threads $NSLOTS -query $IN -db $IN_DB -out results."$I1"_"$I12"

This script performs the following operations:

a) Launches 4104 (152 x 27) tasks in pseudo-parallel
manner.

b) For every task, determines (using unique task ID,
SGE_TASK_ID) a unique pair of query and database
subsets and populates the $IN and $IN DB
variables respectively.

c) For every task, forms additional command line
options in the $para variable which also includes
the dbsegnum.

d) For every task, runs blastn on the unique pair of
query and database subsets.

Table 2 shows how the array job script generates
unique subset pairs (I1, 12) based on SGE_TASK_ID. For

Mikailov et al. BMIC Bioinformatics 2017, 18(Suppl 14):501

Table 2 Generating unique subset pairs (11, 12) based on

SGE_TASK_ID

task ID
SGE_TASK_ID 1 2 3 152 153 154 4104
1 1 2 3 . 152 1 2 .. 152
12 1 1 1 e 1 2 2 .. 27

each of the 27 database subsets in the 12 row (I2 ranges
from 1 ... 27), there are 152 pairs formed with query. -
fasta subsets in row I1:

In the array job used for illustration, the slowest task took
less than seven minutes to complete. All tasks ran in multi-
threaded mode using eight CPUs per task. This entire array
job could be run in less than seven minutes with the avail-
ability of 32,832 (=4104 x 8) CPUs.

Figure 3 demonstrates the scalable application architecture.

Result analysis and checkpointing

The SGE array job mechanism provides natural checkpoint-
ing: if any tasks fail then only those tasks need to be rerun
to recover failed partial results. Following job run comple-
tion, all the M x N partial result files for the array job tasks
must be checked for having been produced. In the above
example the result files are named uniformly based on the
unique pair as results.”$I1” “$I12”. The following
steps reveal if any partial result files were not generated:

1. Create a list of all partial result files generated by the job
run. For instance, the Linux command line below generates
a list of all partial result file names located in the current
working directory and places the list in the file res.txt.

Is -1 results.* > res.txt.

2. Create a list of expected partial result file names. The
list can be automatically generated either before or after
running the array job script. To generate this list, change
to a different directory and run the array job script with
the last line in the script replaced as follows:

touch results.“$I1”_*“$I2".

With this change, the job simply creates a set of empty
files with the same names as the expected partial result files
when the array job is executed.

To collect all the expected partial result file names in a
single file named expect. txt, run the below command
within this other directory:

Is -1 results.* > expect.txt.

3. Finally use the command below to compare the lists of
expected and actual results files, and identify missing files:

sdiff expect.txt res.txt| grep ‘[<]’' |
awk -F: ‘{print “changed: "$1}"

The output from this command look like the sample
lines below and will be in standard Linux “diff” file format:

changed: results.1_2 <.

changed: results.151_1.

Page 167 of 169

4. The two lines in the above example indicate that two
partial result files are missing: for unique pairs (1, 2) and (151,
1). The unique task IDs corresponding to these pairs are 153
and 151 respectively and found using the below formula:

SGE _TASK ID= (I2-1) *M+ Il.

5. Create a text file (name it, for instance, failed.1lst)
and place the failed unique task IDs in this file (one task ID
per line).

Steps (3), (4) and (5) can be automated using, for instance,
a Linux shell script.

The array job must then be re-run for only those miss-
ing pairs. Modify the above SGE script as shown below
and rerun it.

#$ -cwd
#$ -1 h_rt=48:00:00
#$ -1 h_vmem=2G
#$ -S /bin/sh
#-3y
#$ -N blast+
#$ -pe thread 8
#$ -t 1-2
11

number of query subsets
number of database subsets

M="1s -1 query/split | wc -1°
N="1s -1 db/split | wc -1°

TASK_ID="head -n $SGE_TASK_ID failed.lst | tail -n 1°

T1=$((((((TASK_ID-1))%$M))+1))
12=$((((((TASK_ID-1))/$M))+1))

IN=query/split/query_"$I1"
IN_DB=db/split/db_"$12"

APP=blastn
para="-dbseqnum 523449 -dbsize 2457100615 -outfmt 6 -evalue le-3"

time $APP $para -num_threads $NSLOTS -query $IN -db $IN DB -out results."$I1" "$I12"

In the current example, the SGE script runs an array job
of only two tasks corresponding to the two failed partial
results.

Search against nt database
A query test file of 15 GB was used to search against the
NCBI nt database [17] of 126 GB using the proposed
technique. The query file and nt database were split into
152 and 136 segments respectively. Characteristics of
the query test file and #¢ database are shown in Table 3.
An array job of 20,672 (=152 * 136) tasks was created
and launched as described earlier. The slowest task took
less than 30 min (28 min 51.105 s) to complete. Average
completion time per task was 3 min 53 s. Every task was
assigned eight CPUs. On the HPC with a limited number
of CPUs available at a time (3000), all tasks completed in
less than 4 hours (3 h 33 min 41 s). Without applying the
proposed technique the whole job would take more
than 55 days (1335 h 31 min 16 s which is equal to
the sum of the completion times of all 20,672 array
job tasks) using eight CPUs. Figure 4 shows the linear
speed up as the number of available CPUs (or num-
ber of tasks running in parallel) increases.

Results and discussion
Searching for genome sequence similarities is one of the
most important bioinformatics tasks. Bioinformatics

Mikailov et al. BMIC Bioinformatics 2017, 18(Suppl 14):501 Page 168 of 169

Subset-1 in the query
>scaffold1.1|size174461

CCTGCTCGCTCG ... ﬂ

Applications:
BLAST+, Partial
mpiBLAST,
thtBLAST
Subset-1 in the database
>Qi|489223532]ref|... '
MAQQRRGGFKRR...

Merged

Results

Subset-M in the query
>scaffold11.1|size 125999

ACCTACACCAGGGCT ... ﬂ

Applications: .
BLAST+, - . Partial
mpiBLAST, esults-MN

thtBLAST

Subset-N in the database
>Qi|489223532]ref]...
MAQQRRGGFKRR...

Fig. 3 Scalable application architecture. For effective use of time and space, this manuscript proposes a scalable method. Where query and reference
databases are split into M and N subsets respectively. Unique pairs of query and database subsets were generated. An array job of M x N pseudo-parallel
tasks takes place on the HPC cluster produces partial result for its unique pair by every task. After completing all the tasks, all the generated partial results
were aggregated or merged

\

applications such as BLAST+, DIAMOND [18], These techniques could be applied to the exhaustive
VSEARCH [19] and USERACH [20] find matches via Needleman-Wunch [5] and Smith-Waterman [6] algo-
pair-wise comparisons of sequences in queries and refer- rithms to produce even more accurate results than with the
ence databases. The number of sequences that need to BLAST+ family of algorithms.

be compared is a major challenge requiring process The increased flexibility of job submission may be useful
parallelization on HPC clusters. Multithreading and/or in commercial cloud services, allowing the use of spot
MPI are typical parallelization techniques in use. How- queues (also known as “preemptive” queues) which are
ever, these approaches are often inadequate: (a) multi- typically offered at extremely low prices.

threading is confined to a single node, and (b) the single
master in MPI’s centralized architecture limits scalabil-
ity. An alternative O(T) architecture, where T = M x N,

Table 3 Characteristics of the query test file and nt database
developed by CDRH offers significant processing speed-

. K nt database Query test file
up and scalability for the analyses, and provides check- J
.. . . . Number of sequences 39,204,206 73,102,023
pointing benefits. The approach consists of processing
sequence analyses in array mode with segmented query Number of total bases 128,339,311,604 10,209,633,848
and database sets, which can dramatically reduce job Longest sequence, base 774434471 151
runs from months to hours. The inherent checkpointing Size, GB 126 15
feature of the dual segmentation mode is a benefit that \ymper of segments 136 152
can hardly be overstated. The checkpointing is free, a Segrent size, MB 1000 %

part of the method itself.

Mikailov et al. BMIC Bioinformatics 2017, 18(Suppl 14):501

Page 169 of 169

400
350 //
300 /
x 250
g /
=]
5 200
(7]
7] /
& 150 /
100 /
50 /
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500
Number of CPUs
Fig. 4 CPU performance. CPU shows the linear speed up as the number of available CPUs or number of tasks running in parallel increases

Conclusions
The techniques presented in this study are already in use
by Food and Drug Administration scientists. The segmen-
tation of both the query database and the reference data-
base, rather than just one or the other, enables reduction
of the data subset processed by each job task to a size that
fits into the memory of the computing nodes where com-
putations are performed. The resulting reduction in disk
I/O produces excellent, even stunning, results, enabling
drops in BLAST run times from periods such as 27 days
to a single day or even a few hours. The described method
uses only open source code and adds no hardware cost.
Further experimental and theoretical studies are needed
to increase automation of the techniques and broaden
their applicability to more bioinformatics applications.

Acknowledgments

This study used the computational resources of the HPC clusters at the Food
and Drug Administration, Center for Devices and Radiological Health (CDRH).
The views presented in this article do not necessarily reflect the current or
future opinion or policy of the U.S. Food and Drug Administration. Any
mention of commercial products is for clarification and not intended as an
endorsement.

Funding
The publication cost of this article was funded from NCTR.

Availability of data and materials
Not applicable

About this supplement

This article has been published as part of BMC Bioinformatics Volume 18
Supplement 14, 2017: Proceedings of the 14th Annual MCBIOS conference.
The full contents of the supplement are available online at https://
bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-
supplement-14.

Authors’ contributions
All authors have read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Office of Science and Engineering Labs, Center for Devices and Radiological
Health, US Food and Drug Administration, 10903 New Hampshire Ave,, Silver
Spring, MD 20993, USA. 2Division of Bioinformatics and Biostatistics, National
Center for Toxicological Research, U.S. Food and Drug Administration, 3900
NCTR Road, Jefferson, AR 72079, USA.

Published: 28 December 2017

References

1. Dhanker N, Gupta OP. Parallel implementation & performance
evaluation of BLAST algorithm on Linux cluster. Int J Comput Sci Inf
Technol. 2014;5(3):4818-20.

2. Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search
tool. J Mol Biol. 1990;215(3):403. -410-564

3. Casey RM. BLAST sequences aid in genomics and proteomics. Bus Intell Netw;
2005. http://searchbusinessanalytics.techtarget.com/news/2240111116/BLAST-
Sequences-Aid-in-Genomics-and-Proteomics. Accessed 11 Nov 2017.

4. GenBank and WGS statistics: https://www.ncbi.nlm.nih.gov/genbank/
statistics/. Accessed 31 Mar 2017.

5. Needleman SB, Wunsch CD. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J
Mol Biol. 1970;48(3):443-53.

6. Smith TF, Waternan MS. Identification of common molecular subsequences.
J Mol Biol. 1981;147:195-7.

7. Kent WJ. Blat: the BLAST-like alignment tool. Genome Res. 2002;12:656-64.

8. Message passing interface: https://en.wikipedia.org/wiki/Message_
Passing_Interface. Accessed 31 Mar 2017.

9. POSIX threads: https://en.wikipedia.org/wiki/POSIX_Threads. Accessed 31
Mar 2017.

10. Grant JD, Dunbrack RL, Manion FJ, Ochus MF. BeoBLAST: distributed BLAST
and PSI-BLAST on a Beowulf cluster. Bioinformatics. 2002;18:765-6.

11. Mathog DR. Parallel BLAST on split databases. Bioinformatics. 2003;19:1865-6.

12, What is the expect (E) value? https://blast.ncbi.nim.nih.gov/Blast.cgi?CMD=
Web&PAGE_TYPE=BlastDocs&DOC_TYPE=FAQftexpect. Accessed 4 Apr 2017.

13. Assay specific, hybridization-based, parallel searching for nucleic acid sequences:
http//publiclanlgov/jgans/tntblast/tntblast_dochtml. Accessed 4 Apr 2017.

14. Tange O. GNU parallel - the command-line power tool. USENIX Mag.
2011;2011:42-7.

15. FASTA splitter: http:/kirill-kryukov.com/study/tools/fasta-splitter/.
Accessed 16 June 2017.

16. SGE: https://arc.liv.ac.uk/trac/SGE. Accessed 4 Apr 2017.

17. ftp//ftp.ncbinim.nih.gov/blast/db/FASTA/nt.gz. Accessed 16 June 2017.

18. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nature. 2015;12:59-60.

19. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open
source tool for metagenomics. Peer). 2016;4:22584, 1SO 690.

20. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460-1.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-14
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-14
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-18-supplement-14
http://searchbusinessanalytics.techtarget.com/news/2240111116/BLAST-Sequences-Aid-in-Genomics-and-Proteomics
http://searchbusinessanalytics.techtarget.com/news/2240111116/BLAST-Sequences-Aid-in-Genomics-and-Proteomics
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/POSIX_Threads
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=FAQ#expect
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=FAQ#expect
http://public.lanl.gov/jgans/tntblast/tntblast_doc.html
http://kirill-kryukov.com/study/tools/fasta-splitter/
https://arc.liv.ac.uk/trac/SGE
ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nt.gz

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Current BLAST application architecture and deficiencies for parallelization
	BLAST+ enhancement to allow specification of number of database sequences
	Proposed dual segmentation method architecture
	Result analysis and checkpointing
	Search against nt database

	Results and discussion
	Conclusions
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

