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Abstract

Background: Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain
medical images for diagnosis. In the image analysis field, corners are one of the most important features, which
makes corner detection and matching studies essential. However, existing corner detection studies do not
consider the domain information of brain. This leads to many useless corners and the loss of significant
information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing
methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for
2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel
corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture
images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching
method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we
propose a similarity calculation method for diagnosis.

Results: Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in
N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to
evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification
studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8%
on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the
comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the
proposed method is robust to different intensity ranges of brain medical image.

Conclusions: In this study, we develop a robust corner-based brain medical image classifier. Specifically, we
propose a corner detection method utilizing the diagnostic information from neurologists and a corner matching
method based on the uncertainty and structure of brain medical images. Additionally, we present a similarity
calculation method for brain image classification. Experimental results on two brain image sets show the proposed
corner-based brain medical image classifier outperforms the state-of-the-art studies.
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Background
Image-based brain disorder diagnosis has attracted in-
creasing interest in computer-assisted interventions
[1]. This study has been handled efficiently with the
application of machine learning methods [2]. Among
numerous machine learning methods, deep learning
has been showing the state-of-the-art performance in
the recent years. It has been applied in many fields of
computer vision, natural language process, and med-
ical image analysis. However, deep learning is still lim-
ited because of its vast number of network parameters
that must be learned from a large amount of data. It is
noteworthy that data sets collected in brain imaging
studies are commonly very small. Thus deep learning
is still a challenging method in brain image analysis. In
the prevalent framework of machine learning for brain im-
aging data diagnosis, feature extraction is an essential step
[1]. Rong et al. have proposed a symmetry-based brain CT
image classification method consisting of three stages [3].
First, the weak symmetry of the histograms of two hemi-
spheres is used to classify brain CT images into normal or
abnormal categories. Second, the strong symmetry of the
textures between two hemispheres in abnormal images are
extracted to locate lesions. At last, the abnormal images
are classified into benign or malignant ones based on the
features of lesions. A few caveats exist in this method. For
instance, for abnormal images with similar lesions in both
hemispheres or with lesions in the middle of brain, the
weak or strong symmetry features are insufficient to
distinguish normal and abnormal images. Ding et al.
have proposed a joint feature selection method from
voxel-based morphometry (VBM) and texture analysis
to distinguish Alzheimer’s disease (AD) from the nor-
mal controls [4]. However, this method is not stable for
brain disease diagnosis using brain medical images with
different intensity ranges.
Corners are the small points of interest with variation

in two dimensions [5]. They are essential features of
images and play a critical role in grasping objects. Tre-
mendous progress has been made over corner research
[5–8], but many fundamental problems are still open,
such as corner detection, matching, and corner-based
image classification.
As a fundamental and important step in many vision

tasks such as image matching, recognition and tracking
[5, 6, 9], corner detection has been well studied for many
years. Existing methods are divided into three main
categories: gray intensity-based, contour-based, and
model-based methods [10]. One of the most classical
gray intensity-based methods is the Harris method
[11]. It is broadly applied in many cases due to its ad-
vantages of rotation, translation, and illumination in-
variance [10]. Nevertheless, Harris is prone to produce
numerous useless corners when used over a whole

grayscale image. In the field of medical image analysis,
doctors generally pay considerable attention to the
morphology of ROIs (Regions of Interest). Thus, cor-
ners detected from those uninteresting regions are
prone to be useless. Moreover, Harris only stores the
coordinates of corners, leading to the loss of important
medical domain knowledge. Concretely, these corners do
not preserve the uncertainty and structure of pixels in
brain medical images [12]. To address the above inad-
equacy, contour-based corner detection methods [13–15]
might be considered. This type of methods first extracts
curves of images using edge detectors, and then searches
for the curvature maxima along those curves as corners.
Though these methods detect corners on image contours
to reduce useless corners, the extracted contours are
regarded equally. This does not integrate doctors’ diagnos-
tic information. Thus, the detected corners lose the essen-
tial domain knowledge. In terms of the model-based
methods, existing methods are required to fit images into
a predefined model. These methods are often limited to
specific types of points [16]. Moreover, these methods are
time-consuming and detected corners do not have the sig-
nificant diagnostic information either.
Corner matching is to realize the correspondences of

two corner sets by estimating the transformation from a
corner set to the other [17]. Existing corner matching
studies mainly fall into two categories: rigid and non-
rigid. Rigid methods are mainly developed based on the
classical iterative closest point (ICP) [18], which uses af-
fine transformations to find the closest corresponding
points between two surfaces. Nonetheless, methods
based on the ICP do not fully capture the anatomical
variability, especially comparing shape with significant
differences [19]. Thus, rigid methods are less applicable
in real-world problems [20]. Non-rigid corner matching
methods generally produce an initial matched corner
pair sequence first. Then these methods evaluate the
transformation between initial matched corner pair se-
quences to generate a final matched corner pair se-
quence. Yi et al. [17] have used l1-norm to formalize
the transformation between initial matched corner
pair sequences. However, they have not argued the
generation of initial matched corner pair sequences.
Thus, the uncertainty of corners is not taken into ac-
count in the corner matching process. Myronen and
Song [20] have proposed a probabilistic method to
realize the alignment between corner sets. They regard
corners as a group and move a group of corners co-
herently to keep the topological structure among cor-
ners. Since the deformations of human brains usually
happen in local regions, coherent movement causes
improper matching among corners from other regions.
This would lead to the failure of the generation of the
best correspondence. Thus, this method is inappropriate
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for corner matching in brain medical images. Moreover,
the above corner matching methods are used for 3D
image registration. They are to match corners of the im-
ages from the same object or person, unlike the corner
matching of the brain medical images from different
patients.
To address these problems, an automatic multilayer

texture image (MTI) extraction method is first proposed
for corner detection. The method integrates the diag-
nostic knowledge from neurologists and assigns each
corner an importance-value representing the uncer-
tainty of a pixel. Second, a corner matching method is
presented combining the uncertainty and structure of
brain medical images. It generates an initial matched
corner pair sequence based on the definition of
matched corner pairs and utilizes a bipartite graph
model to reduce the redundancy of the initial matched
corner pair sequence. At last, a similarity function is
proposed based on the matched and unmatched corner
pairs to make diagnoses for brain medical images. Ex-
perimental results on brain CT and MRI image sets
show that the proposed corner-based brain medical
image diagnosis method outperforms three state-of-
the-art methods on accuracy and F1-score. Addition-
ally, it is more robust to different intensity ranges of
brain medical image.

Methods
Workflow
The workflow is schematically illustrated in Fig. 1. It
comprises two parts. The first part is to train a classifier
with blue arrows as guidance. A set of labeled brain
medical images are divided into training and validation
images to train the classifier. First, each image is nor-
malized into uniform size. Second, each normalized
image generates a MTI and corners with importance-
values are detected on the MTI under a specific θ.
Third, each group of corner sequences, one from the
validation images and the other from the training im-
ages, is matched to generate an initial matched corner
pair sequence. The initial matched corner pair sequence
is transformed to a bipartite graph to yield the final
matched corner pair sequence. After that, the similarity
between validation and training images is determined
based on their final matched corner sequence. The labels
of validation images are predicted based on the KNN
model to validate the values of θ and K. Finally, the best
θc of θ and Kc of K are utilized to construct the classi-
fier. From the above steps, a corner-based classifier with
θc and Kc is generated. In the second part (with black
arrows as guidance), given a test image set, after prepro-
cessing, corners are detected and matched with the cor-
ners of the training images. Then, the labels of testing

Fig. 1 Workflow of the analysis. The sequence with the blue arrows depicts the training of the classifier with the corner response threshold
θ in corner detection and with the K in the K-nearest neighbor model. The other sequence with the black arrows aims to test the
trained classifier.
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images can be predicted based on the trained classifier.
Table 1 displays the frequently used symbols.

Brain medical image sets
Two brain medical image sets are used in this study.
The first one consists of 500 brain CT images and is de-
noted as Dct (Images are detailed in Additional file 1). It is
made up of 3 types of images: 380 normal, 92 cerebral in-
farction (CI), and 28 cerebral hemorrhage (CH) images.
These images are divided into two categories: “Normal”
and “Abnormal”. The 380 normal images belong to the
“Normal” category and the others comprise the “Abnor-
mal” one. Each image in Dct has 256 grayscale values and
is labeled by specialists from a neurological department.
The second image set is made of 850 brain MRI images
and is denoted as the Dmri. These images are downloaded
from ADNI (http://adni.loni.usc.edu/). The ADNI was
launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The pri-
mary goal of ADNI has been to test whether serial MRI,
positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early Alzheimer’s disease
(AD). For up-to-date information, see www.adni-info.org.
The downloaded Dmri contains two categories of MRI im-
ages: 430 normal and 420 AD images. Each image in Dmri
has 65536 grayscale values. Additionally, all of the images
in Dct and Dmri contain the ventricle portion. Figure 2
shows some “Normal” and “Abnormal” image examples.

Brain medical image normalization
Original brain medical images are usually produced in
different sizes and angles and also display some useless

information. These original brain images consist of three
portions: background, skull and the intracranial portion.
Background is useless for doctors’ diagnosis and always
contains noise. Moreover, when doctors make diagnoses,
they usually focus on the intracranial portion. Thus,
these original images need to be preprocessed as follows:
extracting the intracranial portion using the Canny oper-
ator [21] because of the clear disparity of the grayscale
values between the skull and the intracranial portion, ro-
tating the intracranial portion into the vertical direction
using the method in [22], cropping the image based on
the vertical external matrix of its intracranial portion
and unifying image size into Row ×Column, where Row/
Column is the mean of all the row/column numbers of
the brain medical image set. Counting the image size
of the two brain medical image sets seperately, we
normalize all brain CT images into 285×260 and all the
brain MRI images into 175×141.
Figure 3 is an example of normalizing a brain CT

image. Figure 3a is an original brain CT image with
background and skull. Its intracranial portion is ex-
tracted as shown in Fig. 3b. Then its angle is rectified
into roughly vertical direction shown in Fig. 3c. After
that, the rectified image is cropped and unified into
Row×Column size. The final normalized grayscale image
GI is displayed in Fig. 3e, where GI(m, n) is the grayscale
value of the pixel located in (m, n).

Corner detection based on multilayer texture images
In the diagnostic process of brain medical images, doc-
tors generally pay more attention to the morphology of
the hypodense (dark) and hyperdense (bright) regions
than that of other regions [23]. That means different re-
gions in brain medical image embody diverse diagnostic
information. Thus, corners detected from these more
hypodense and hyperdense regions are more essential
than those detected from other regions. Under this guid-
ance, a multilayer texture image (MTI) is first proposed
to distinguish the significance of regions in brain med-
ical images. Then, corners are detected on the MTI and
are assigned different importance-values to show their
significance. Thus, corners detected from MTIs employ
certain diagnostic information.
Given a Row×Column GI, its MTI is comprised of

multiple layers of textures. Each layer of textures have
the same pixel value. The pixel values denote the signifi-
cance of pixels and the pixel value and the significance
of pixels have a direct correlation. The MTI extraction
method is similar to the Canny method [20]. It contains
smoothing an image, discovering its intensity gradient,
determining the hysteresis double thresholds and gener-
ating edges based on the pair of double thresholds.
However, the Canny method can only generate a binary

Table 1 Frequently used symbols

Symbols Meaning

I An original grayscale image

GI Normalized grayscale image

Row The number of the rows in GI

Column The number of the columns in GI

MTI Multilayer texture image

θ A corner response threshold

c A corner

(m,n) A corner that is located in the mth row and nth column

C A corner sequence

Mov(m, n) Mobility of the corner (m, n)

[ci, cj] A matched corner pair

CI An initial matched corner pair sequence

CM The final matched corner pair sequence

K The K of the KNN model
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texture image by using one pair of double thresholds,
and the binary texture image cannot describe the signifi-
cance of different regions. To handle this, we propose an
automatic MTI generation method by using multiple
pairs of double thresholds based on the intensity gradi-
ent of a GI.
The morphology of the hypodense and hyperdense re-

gions is reflected by the pixels with larger variations in a
GI, i.e., the pixels with larger intensity gradient values.
Moreover, the clearness degree of the morphology of a
region has a positive relation to the intensity gradient
values of pixels. Thus, the intensity gradient values of a
GI are utilized to generate the MTI of the GI. First,
pixels of the GI are ordered in descending way based on
the intensity gradient values of the GI. Then, the num-
ber of these ordered pixels is accumulated to generate a
sequence of pairs of double thresholds. Specifically, the

histogram H of the intensity gradient values of a GI is
calculated with Bn bins, where H(j) is the number of
pixels in the jth bin. If

arg min
si∈f1; 2; …;Bng

Xsi

j¼1
HðjÞ≥Ri � Row� Column; ð1Þ

then

highThi ¼ si=Bn; lowThi ¼ rTh� highThi: ð2Þ
[highThi, lowThi] is the ith pair of double thresholds and
is used to extract textures in the ith layer.
In Eqs. 1 and 2, si represents the index value of H(j)

and its maximum value is Bn. The histogram value of
each bin is the number of pixels with several continuous
intensity gradient values. Provided the maximum inten-
sity gradient value of an image is M, each bin counts the

a b c ed

Fig. 3. Example of normalizing a brain CT image a Original image I. b Image with the extracted intracranial portion. c Rotated image. d Image
with its vertical external matrix. e Normalized grayscale image GI.

Fig. 2 Examples of “Normal” and “Abnormal” images. Brain MRI images in the first row belong to “Normal” category and that in the second row
are “Abnormal” ones. Brain CT images in the third row are “Normal” and that in the fourth row are “Abnormal”
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number of pixels with M/Bn continuous intensity gradi-
ent values. Ri is a decimal iterating from R1 to 0 with 0.1
drop. It controls the ratio of pixel number whose index
gradient values are ordered in descending way. For each
Ri, Eq. 1 returns a si value. This indicates that the corre-
sponding pixels in the first si bins of H(j) have clearer
edges than that in the rear bins. Thus, si dividing the
maximum bin number Bn is used to generate the thresh-
olds, as shown in Eq. 2.
In our study, the Bn and rTh are set to 64 and 0.3,

respectively. Generally, the morphology of the ventri-
cles is the clearest part in a brain medical image.
Based on experiments, R1 is set to 0.8 to produce the
first pair of double thresholds [highTh1, lowTh1],
which is used to extract the first layer of textures con-
taining the edges of ventricles. Then Ri is decreased by
0.1 each time until 0 to produce the remaining pairs
of double thresholds. Next these pairs of double
thresholds are used to extract the remaining (N-1)
layers of textures.
It is notable that the pairs of double thresholds are

generated in a descending order, and the preceding
thresholds are used to extract the textures of clearer
regions. Based on this, a MTI is created by setting
MTI(m, n)=1/i when textures in the ith layer pass the
pixel (m, n) yet textures in the preceding (i-1) layers
do not pass (m, n). When no texture passes a pixel,
that means the pixel has no specific diagnostic infor-
mation and is thus set to 0 as the background. From
the MTI extraction process, the textures in preceding
layers have larger importance-values than those in rear
layers. This indicates that the textures in preceding
layers embody more essential diagnostic information.
It can be seen that MTIs can not only describe the
edges of ROIs but also can distinguish the significance
of these ROIs.
After a MTI is generated, corners are detected on the

MTI utilizing the Harris algorithm [11], where the cor-
ner response threshold θ is discussed in the experi-
ment. Besides storing the coordinate of the corner (m, n),
we also preserve MTI(m, n) as the importance-value of
(m, n).
The details of corner detection on a MTI are out-

lined in Algorithm 1. Line 1-13 describes the idea of
MTI extraction, and line 14-21 explains corner detec-
tion on the MTI. F(m, n) is the corner response func-
tion to determine whether the (m, n) is a corner or
not [11]. Through Algorithm 1, a brain medical image
can be represented by a corner sequence C. Since the
loops in terms of Ri, m and n are consistent and si can
also be solved in consistent steps (i.e., less than 64
steps), the time complexity of Algorithm 1 is Ο(1). An
example of corner detection on MTIs is demonstrated
in Fig. 4.

Corner matching based on the uncertainty and structure
of corners
There exist uncertainty and structure in the pixels of
brain medical images [23]. Thus, corners detected
from MTIs also remain the uncertainty and structure.
In detail, the corners from the same regions among
similar brain medical images have similar locations,
i.e., the locations of these corners have certain mobil-
ity. Moreover, the mobility of corners is inversely pro-
portional to the importance-values of corners, i.e., low
importance-value indicates high mobility and vice
versa. Thus, we define the mobility Mov(m, n) of a
corner (m, n) as below:

Mov m; nð Þ ¼ 1
MTI m; nð Þ ð3Þ

Based on the mobility of corners, matched corner pairs
are generated.

Definition 1 Given two corner sequences C and C',
c=((m, n), MTI(m, n))∈C and c′=((m′, n′), MTI'(m',
n'))∈C', c and c′ are defined a matched corner pair
[c, c′] if they satisfy

dis c; c′
� �

≤Mov cð Þ þMov c′
� �

; ð4Þ

where dis(c, c′)=||((m, n), (m′, n′)||2.
Initial matched corner pair sequences are generated

based on Definition 1. Nevertheless, the sequences have
redundant matched corner pairs. In order to remove
the redundancy and meanwhile preserve information to
maximum extent, we propose a finial matched corner
pair sequence.

Definition 2 Given an initial matched corner pair se-
quence CI={([cIi, cIj′], dis(cIi, cIj′)) | cIi∈C, cIj′∈C′},
CM={([cMi, cMj′], dis(cMi, cMj′)) | cMi∈C, cMj′∈C′} is the
corresponding final matched corner pair sequence satis-
fying: (1) each corner pair [cMi, cMj'] is one-to-one; (2)

Fig. 4 Example of corner detection over a MTI. a GI. b MTI of the GI.
c Detected Corners mapped to the GI.
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|CM| is the maximum; (3) ∑[cMi, cMj′] ∈CMdis(cMi, cMj
′ ) is

the minimum.

The first case in Definition 2 is to eliminate redundant
matched corner pairs. The second and third cases ensure
to preserve the longest and most matched corner pairs.

In order to realize CM, a biparitite graph G=(V, E, We)
is generated based on CI. The problem of generating the
final matched corner pair sequence is transferred to
solve the maximum matching of G, which has been
solved by using the Hungarian method [24, 25].
Algorithm 2 outlines the main ideas of the proposed

corner matching method. The vertex number of G is
(|C|+|C′|), the maximum edge number of G is |C|×|C′|,
and the time complexity of the Hungarian method is
Ο(|C|×|C′|×(|C|+|C′|)), thus the time complexity of our
corner matching is Ο(|C|×|C′|× (|C|+|C′|)).
Figure 5 is a corner matching example. Figure 5a and

b show two corner sequences C and C′ in a normalized
coordinate system, where |C|=12 and |C′|=9 and the
dotted circles around these corners reflect their mobility.
Figure 5c is the overlapping of C and C′ in the same

a b

c

e

d

Fig. 5 Corner matching example. a Corner sequence C b Corner
sequence C' c Overlaying of C and C'. d Bipartite graph G based on
C and C'. e Final matching result of the G
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normalized coordinate system. If the circles around two
corners overlap, which means the two corners satisfy Eq.
4, then they are a matched corner pair. Thus, we obtain an
initial matched corner sequential CI={([c1, c1′], dis(c1,
c1′)), ([c2, c1′], dis(c2, c1′)), ([c3, c2′], dis(c3, c2′)), ([c4, c3′],
dis(c4, c3′)), ([c6, c5′], dis(c6, c5′ )), ([c7, c5′], dis(c7, c5′ )),
([c8, c6′], dis(c8, c6′ )), ([c9, c7′], dis(c9, c7′ )), ([c10, c7′],
dis(c10, c7′ )), ([c10, c8′], dis(c10, c8′)), ([c11, c8′], dis(c11,
c8′)), ([c12, c9′], dis(c12, c9′))}. We can see that CI has re-
dundant matched corner pairs, i.e., one-to-many matched
corner pairs. For instance, [c1, c1′] and [c2, c1′], [c6, c5′]
and [c7, c5′]. Then a bipartite graph G=(V, E, We) is con-
structed based on CI as showed in Fig. 5d. In G, V=V1∪V2,
V1={v1, v2, v3, v4, v6, v7, v8, v9, v10, v11, v12}, V2={v1′, v2′,
v3′, v5′, v6′, v7′, v8′, v9′}, E={(v1, v1′), (v2, v1′), (v3, v2′),
(v4, v3′), (v6, v5′), (v7, v5′), (v8, v6′), (v9, v7′), (v10, v7′), (v10,
c8′), (v11, v8′), (v12, v9′)} and We={we1, we2, we3, we4, we5,
we6, we7, we8, we9, we10, we11}. Based on the Hungarian
method, Fig. 5e shows the maximum matching result of
G, i.e., the vertex pairs connected by edges. Thus, the final
matched corner pair sequence CM = {[c1, c1′], [c3, c2′]
[c4, c3′], [c6, c5′] [c8, c6′], [c9, c7′], [c11, c8′], [c12, c9′]}.

Corner-based brain image classification
In two brain medical images, when location of the cor-
ners in each matched corner pair is close and the num-
ber of unmatched corner pairs is small, the two images
tend to be more similar. Based on this, the similarity
calculation between brain medical images I and I′ is
proposed based on the CM={([cMi, cMj′], dis(cMi, cMj′)) |
cMi∈C, cMj′∈C′} of I and I′, as shown in Eq. 5.

SIM I; I
0

� �
¼ W I; I

0
� �

�
X

cMi;cMj
0½ �∈CMMD cMi; cMj

0
� �

ð5Þ
MD cMi; cMj

0
� �

¼ 1

dis cMi; cMj
0� �

W I; I
0

� �
¼

0; if ∣C∣ ¼ ∣C
0
∣

1

log jCj−jCMjð Þ− jC 0 j−jCMj� ��� ��

¼ 1

log jCj−jC 0 j� ��� �� ; else

8>>>>>><
>>>>>>:

In Eq. 5, MD(cMi, cMj′) is the matched degree of
[cMi, cMj′]. It indicates that the smaller the distance of
[cMi, cMj′] is, the larger the matched degree of [cMi, cMj′]
will be. W(I, I′) is a weight, where |C| and |C′| are the
number of corners detected from I and I′, respectively;
|(|C|-|CM|)-(|C′|-|CM|)| is the number diversity of the
unmatched corners between I and I′. The value of W(I, I′)
indicates that a small number of the unmatched corners
between I and I′ makes a large effect on the similarity be-
tween images.

Based on Eq. 5, I can be classified using the KNN
model. Specifically, the K most similar images of I among
the training images are selected first. Then I is assigned a
label whose number among the K most-similar images is
the largest.

Results
Experimental environment
We evaluated the proposed corner-based brain medical
image classification method (denoted as the Corner-
based method) on the two brain medical image sets: Dct
and Dmri. All the experiments were implemented on a
computer with an Intel Core (7) processor of 2.60 GHZ
and a RAM of 16GB. The development environment in-
cludes Eclipse 4.6 and Matlab 2015a.

Evaluation of the corner-based brain medical image
classification
The proposed Corner-based method is evaluated on Dct
and Dmri, respectively. First, Dct is randomly divided
into two groups of images to generate the training and
test image sets. Concretely, 70% of images are separately
selected from each of the three types (normal, CI, and
CH) of images to form the training set; the remaining
30% of images comprise the test set. In both the training
and test sets, the normal type of images are labeled with
the “Normal” labels and other two types of images are
labeled with the “Abnormal” labels. In this study, the
“Normal” category is regarded as positive one and the
“Abnormal” category as the negative one. Second, im-
ages in the training set are used to construct a classifier.
In this process, the 5-folder cross validation approach is
employed to measure the performance of the classifier
with different θ and K values. The specific θ and K with
the best experimental performance are chosen to gener-
ate the ultimate classifier. Finally, the ultimate classifier
is evaluated by predicting the labels of the independent
test set. The above steps are repeated on Dmri. Different
from Dct, Dmri uses 88% of images as the training set
and the others as the test set. The detailed information
of the two image sets is summarized in Table 2.
The performance of the classifiers is evaluated based

on four standard indictors: accuracy, precision, recall
and F1-score [26]. They are formalized as follows, where
TP, FP, TN and FN stand for True Positive, False Posi-
tive, True Negative, and False Negative, respectively.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Precision ¼ TP
TP þ FP

Recall ¼ TP
TP þ FN
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F1−score ¼ 2� precision� recall
precisionþ recall

Two parameters, θ and K, are required to be trained.
Specifically, the best θ and K values are selected based
on the accuracy of the validation images to construct
classifiers. Figure 6 displays the accuracy of the valid-
ation images in Dct and Dmri using the proposed
method, respectively. In Dct, θ iterates from 0.01 to 0.1
with the growth of 0.01 each time and K increases from
3 to 21 with 2 intervals. It can be seen that when θ=0.04
and K=7, the accuracy reaches the highest point of 0.826
(the red × in the figure). In Dmri, the range of K is the
same as that in Dct, while the range of θ is from 0.03 to
0.12 with the growth of 0.01 each time. It can be seen

that θ is set to 0.05 and K is set to 3 to attain the highest
accuracy of 0.828. The two groups of θ and K are used
to construct our two classifiers for Dct and Dmri classi-
fication, respectively.
To validate the effectiveness of the proposed method,

the method is compared with three baseline brain med-
ical image classification methods: Harris-based method,
Texture-based method and Symmetry-based method.
The procedure of the Harris-based method is similar

to that of the proposed method. It also includes corner
detection, corner matching and θ and K selection for
classifiers. However, its corners are detected using Harris
[11] directly. Since Harris only preserves the coordinates
of corners, the importance-values of the detected cor-
ners are set to 0 for corner matching. Figure 7 show the
accuracy of the validation images in Dct and Dmri using
the Harris-based method, respectively. The range of K
keeps the same. In Dct, θ varies from 0.001 to 0.01 with
the growth of 0.001 each time. It can be seen that the
accuracy reaches the highest point of 0.758 (the red × in
the figure) when θ=0.04 and K=5. In Dmri, θ varies from
0.0001 to 0.001 with the growth of 0.001 each time. It
can be seen that the highest accuracy is 0.721 when θ is
set to 0.0006 and K is set to 5. The two groups of θ and
K are used to construct two Harris-based classifiers for
Dct and Dmri classification, respectively.
The other two comparison methods are based on the

methods in [3, 4]. In this study, all the images are 2-D.
Since the VBM in [4] is 3-D features, only the texture
features are used in the comparison experiment. This
method is referred as the Texture-based method. There
is no threshold in the Texture-based method according
to [4]. In [3], brain medical images are classified into
“Normal” or “Abnormal” categories in the first stage by
using the symmetry of brain medical images. The
method applied in the first stage of [3] is used as another
comparison method. It is denoted as the Symmetry-
based method. Based on [3], the threshold of the
Symmetry-based method is set to 0.88 for brain CT
image classification.
We compare the performance of the proposed method

with that of the three comparison methods in terms of
the test set in Dct. The results are summarized in Table
3. The proposed method is evaluated with θ=0.04 and
K=7 and the Harris-based method is measured with
θ=0.004 and K=5. As can be seen from the table, the

Table 2 All brain medical image sets

Image sets Dct Dmri

Normal Abnormal Normal Abnormal

normal CI CH normal AD

training set (training and validation images) 266 (70%) 64 (70%) 20 (30%) 380 (88%) 370 (88%)

test set 114 (30%) 28 (30%) 8 (30%) 50 (12%) 50 (12%)

Fig. 6 Accuracy of the validation images using the proposed
method. K is the parameter of the KNN model and θ is the corner
response threshold for corner detection. a Dct. b Dmri.
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proposed method achieves the highest accuracy and
F1-score compared with the three comparison methods.
This indicates the best performance and good balance of
precision and recall of the proposed method. The Harris-
based method obtains the best recall, but lowest precision.
The Symmetry-based method and the Texture-based
method have the leading precision, yet their accuracy,
recall and F1-score are all much lower than that of the
proposed method.
The performance of the four comparison methods re-

garding the test set in Dmri is compared in Table 4. It is
noteworthy that θ=0.05 and K=3 in the proposed
method and θ=0.0006 and K=5 in the Harris-based
method. Since the Symmetry-based method was not

evaluated on Dmri, we iterated its threshold from 0.01
to 1.0 with the growth of 0.01 at each time. The accur-
acy reaches the maximum value when the threshold of
the Symmetry-based method is between 0.5 and 1.0. It can
be seen from the table that the accuracy and F1-score of
the proposed method still outweigh that of the three com-
parison methods. In addition, the recall of the proposed
method is also the highest. Though the precision of the
Symmetry-based method is larger than that of the pro-
posed method, the other measurements of the Symmetry-
based method fall behind that of the proposed method
greatly. The results also indicate that the proposed method
can achieve the best comprehensive performance on Dmri.
Table 5 displays the runtime of the four comparison

methods when they perform on the test sets of Dct and
Dmri. The number in the front of / denotes the entire
runtime of testing Dct or Dmri and the rear number de-
notes the average runtime of testing Dct or Dmri. It can
be seen that in both Dct and Dmri, the trends in run-
time among the four methods are the same. The pro-
posed method is less efficient than the Symmetry-based
method yet more efficient than both the Harris-based
method and the Texture-based method. Though the effi-
ciency of the proposed method is not as good as that of
the Symmetry-based method, its average runtime for
classifying each brain CT and MRI image is 1.73s and
0.61s, respectively. Thus, the proposed method is still
acceptable.

Discussion
In this study, we develop a robust corner-based brain
medical image classifier. First, we propose a corner de-
tection method combing diagnostic information from
neurologists. This method consists of MTI extraction
and corners detection on MTIs. Second, we present the
definition of matched corner pairs and put forward a bi-
partite model to generate the final matched corner pair
sequence. Finally, we propose a similarity calculation
method based on the matched and unmatched corner
pairs for brain medical image diagnosis. We demonstrate
that the proposed corner-based classifier can efficiently
achieve the highest accuracy and F1-score for brain
medical image classification and is robust to the inten-
sity ranges of brain medical images caused by different
brain imaging modalities.

Fig. 7 Accuracy of the validation images using the Harris-based
method. K is the parameter of the KNN model and θ is the corner
response threshold for corner detection. a Dct. b Dmri.

Table 3 Performance of the four comparison methods on Dct

Proposed method Harris-based method Symmetry-based method Texture-based method

Accuracy 82.6% 75.8% 76.2% 50.0%

Precision 84.4% 76.7% 100% 100%

Recall 94.7% 98.3% 76.2% 50.0%

F1-score 89.3% 86.2% 86.5% 66.7%
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Based on the priori diagnostic information that different
regions in brain medical images have diverse diagnostic
information, we extract MTIs. Specifically, we utilize
multiple groups of thresholds to separately extract the
multilayers of textures from different regions and as-
sign these textures different significance to form MTIs.
Then, corners are detected on MTIs and are assigned
specific importance-values based on the corresponding
significance in MTIs. Thus, these detected corners can
not only describe the morphology of brain medical images
but also demonstrate their specific significance. Moreover,
since brain medical images have the uncertainty and struc-
ture, corners also inherit these characteristics. The uncer-
tainty makes corners have mobility, yet the structure limits
the movable ranges of corners. Specifically, the movable
ranges of significant corners are relative small yet the mov-
able ranges of insignificant corners are comparative large.
Based on the movable ranges and importance-values of cor-
ners, we define a matched corner pair to produce an initial
matched corner pair sequence. We further propose a bi-
partite graph to reduce the redundancy of the initial
matched corner pair sequence and generate the final
matched corner pair sequence for classification. The pro-
posed method takes advantage of the priori diagnostic in-
formation and the characteristics of brain medical images.
This makes it achieve great performance and robust to
different intensity ranges of brain medical images.
Different from the Texture-based method [4] and

Symmetry-based method [3], both the proposed method
and the Harris-based method utilizes corners as features
to classify brain medical images. Moreover, compared
with the Harris-based method, the proposed method as-
signs corners importance-values by employing the priori
diagnostic information. In Dct, the proposed method
outperforms the three comparison methods in terms of
accuracy and F1-score. The Harris-based method achieves
better accuracy and F1-score than the Texture-based
method and attains competitive accuracy and F1-score
compared with the Symmetry-based method. In Dmri,
both the proposed method and the Harris-based method

gain higher accuracy and F1-score compared with the
Texture-based method and the Symmetry-based method.
The proposed method still outweighs the Harris-based
method. These results indicate that (1) corners are dis-
criminative features for both brain CT and brain MRI
image classification; (2) employing the diagnostic informa-
tion and the characteristics of brain medical images en-
hances the performance of the proposed method. These
results are because corners are the key points of the
morphology of images and the morphology of organs or
lesions in brain medical images are the main evidence of
doctors’ diagnosis. Though textures can reflect the morph-
ology of images, the Texture-based method regards the
textures of different regions equally while the proposed
method distinguish the significance of the textures of dif-
ferent regions. Moreover, in terms of the proposed
method, its accuracy and F1-score on Dmri decrease 4.4%
and 8.3% compared with that on Dct. In terms of the
Harris-based method, its accuracy and F1-score on Dmri
decrease 4.9% and 10.1% compared with that on Dct. In
terms of the Symmetry-based method, its accuracy and
F1-score on Dmri decrease 11.1% and 21.4% compared
with that on Dct. In terms of the Texture-based method,
its F1-score on Dmri decreases 66.7%; though its accuracy
keep the same, the accuracy values on both Dct and Dmri
are 50%, which is a random value in binary classification.
These results indicate that (1) the corner-based methods
(i.e., the proposed method and the Harris-based method)
are more robust to different intensity ranges of brain med-
ical images caused by the different imaging modalities in
this study (the maximum intensity value of Dct is 256 and
the Dmri’s is 65536); (2) employing the diagnostic infor-
mation in the proposed method enhances the robustness
compared with the Harris-based method. These are be-
cause of the following reasons: during the process of MTI
extraction based on the diagnostic information, different
layers of textures are assigned different importance-values
to reflect the diagnostic information. These importance-
values are calculated based on the histogram of an image’
gradient values not an image’s intensity values. Since

Table 4 Performance of the four comparison methods on Dmri

Proposed method Harris-based method Symmetry-based method Texture-based method

Accuracy 78.2% 70.9% 65.1% 50.0%

Precision 92.2% 91.8% 95.3% 0%

Recall 72.3% 65.0% 49.4% NaN

F1-score 81.0% 76.1% 65.1% NaN

Table 5 Runtime(s) of the four comparison methods on Dct and Dmri

Proposed method Harris-based method Symmetry-based method Texture-based method

Dct 260/1.73 387/2.58 26/0.17 3104/20.69

Dmri 61/0.61 214/2.14 2/0.02 1590/15.90
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corners are detected on MTIs, this alleviates the depend-
ence of the proposed corner detection method on the in-
tensity values of images. Thus, the proposed method can
endure the variability of the intensity ranges caused by dif-
ferent brain imaging modalities in this study. Furthermore,
the proposed method is more efficient than the Harris-
based method and Texture-based method yet less efficient
than the Symmetry-based method. However, the proposed
method does not use any optimization, which will be han-
dled in our future work.

Conclusion
In this study, we first propose a corner detection method
combining the diagnostic information of brain medical
images. It consists of two steps: MTI extraction and cor-
ner detection based on MTIs. These detected corners are
assigned different importance-values to distinguish their
significance. Second, we put forward a corner matching
method. It produces an initial matched corner pair se-
quence based on the uncertainty and structure of brain
medical images and further generates a final matched cor-
ner pair sequence via a bipartite graph model. Finally, a
similarity function is proposed based on the final matched
corner pair sequence and is used to make diagnoses for
brain medical images. Experimental results on brain CT
and MRI medical image sets show that the proposed cor-
ner-based brain medical image diagnosis method out-
performs the three comparison methods, and is more
robust to the intensity ranges of brain medical images
caused by different brain imaging modalities.
Recent studies have shown multimodal medical images

can provide complementary information to enhance diag-
nostic accuracy. In the future, we will focus on corner
detection and matching based on the multimodal brain
medical images. Moreover, the proposed method does not
take parallel computing into account, we will boost the ef-
ficiency of the proposed method in a parallel way.
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