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Abstract

Background: With the plummeting cost of the next-generation sequencing technologies, high-density genetic linkage

maps could be constructed in a forest hybrid F; population. However, based on such genetic maps, quantitative trait loci
(QTL) mapping cannot be directly conducted with traditional statistical methods or tools because the linkage phase and

segregation pattern of molecular markers are not always fixed as in inbred lines.

Results: We implemented the traditional composite interval mapping (CIM) method to multivariate trait data in forest
trees and developed the corresponding software, mvqtlcim. Our method not only incorporated the various
segregations and linkage phases of molecular markers, but also applied Takeuchi's information criterion (TIC) to discriminate
the QTL segregation type among several possible alternatives. QTL mapping was performed in a hybrid F; population
of Populus deltoides and P. simonii, and 12 QTLs were detected for tree height over 6 time points. The software package
allowed many options for parameters as well as parallel computing for permutation tests. The features of the software
were demonstrated with the real data analysis and a large number of Monte Carlo simulations.

Conclusions: We provided a powerful tool for QTL mapping of multiple or longitudinal traits in an outbred F; population,
in which the traditional software for QTL mapping cannot be used. This tool will facilitate studying of QTL mapping and
thus will accelerate molecular breeding programs especially in forest trees. The tool package is freely available from https://

github.com/tongchf /mvqtlcim.
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Background

Most forest trees are outbred species and have the
characteristics of high heterozygosity and long gener-
ation times [1]. These properties make it very difficult to
generate inbred lines in forest trees for linkage mapping
and then for quantitative trait loci (QTL) mapping with
traditional statistical methods. However, with the
continuously reducing cost of next-generation sequen-
cing (NGS) technologies and the development of new
genetic mapping strategies, thousands of genetic markers
could be obtained across many individuals and thus
could be used to construct high-density genetic linkage
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maps in a forest hybrid F; population [2, 3]. Such dense
linkage maps would greatly facilitate QTL mapping as
well as comparative genomics in forest trees. Yet, the
statistical methods of QTL mapping used for popula-
tions derived from inbred lines cannot be directly
applied to the outcrossing populations because the link-
age phase and segregation pattern of markers on genetic
maps may vary from locus to locus and are not always
fixed as in inbred lines [4—6].

Over the past three decades, many statistical models
developed for QTL mapping were mainly based on ex-
perimental populations, such as the backcross and F,,
crossed from two inbred lines. These models initiated
with the seminal approach of interval mapping (IM) pro-
posed by Lander and Botstein [7]. To overcome the
problem of possibly generating so-called ‘ghost QTL
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with IM [8], Zeng [9, 10] proposed the composite inter-
val mapping (CIM) method by adding a proper number
of background markers into the model to absorb effects
of other QTLs outside the detected region. Since then,
QTL mapping methods were extended to multiple inter-
val mapping (MIM) [11, 12], and also to mapping binary
and categorical traits [13, 14]. Moreover, Bayesian
models [15-18] and the least absolute shrinkage and se-
lection operator (LASSO) methods [19-23] were applied
to mapping single or multiple QTLs. In addition, ap-
proaches were inherently established by extending from
mapping single trait to multiple traits or longitudinal
trait data [11, 24-26]. Specifically, Wu and colleagues
proposed a so-called functional mapping method in
order to identify QTLs that affect a particular biological
process with trait values over multiple stages [27—-30].
Meanwhile, several great efforts have been made to de-
velop statistical models used for QTL mapping in out-
bred species. Haley et al. [31] proposed a method for
identifying QTLs in an outcrossing population of pigs,
but it has the limitations that it did not consider the
possible changes in marker segregation pattern and the
linkage phase of the parents. Besides the QTL location
and effects, Lin et al. [32] subsequently established an
approach that can estimate the linkage phase between
the linked QTL and a marker in an outcrossed popula-
tion. Tong et al. [6] proposed a model selection method
to discriminate the most likely QTL segregation pattern
within several possible QTL segregation patterns in a
full-sib family generated from two outcrossing parents.
This method actually was implemented in the context of
IM, but it capitalized on the complex genetic architec-
ture of an outcrossing population, such as the various
marker segregation patterns and non-fixed linkage
phases. Recently, Gazaffi et al. [33] presented a CIM
method with a series of hypothesis tests to infer signifi-
cant QTLs and their segregation types in a full-sib pro-
geny. However, their procedure of testing significant
QTLs is similar to the method in the software MapQTL
[34], which could lose the power to detect QTLs segregat-
ing in the test cross or F, pattern in real examples [6].
Although these significant advances have been achieved,
there is still a lot of room to improve for QTL mapping in
a hybrid F; population in outbred species, because of the
complex genetic characteristics of such a mapping popula-
tion. In this study, we developed a model selection
method to implement CIM for mapping tree height with
values at different growth time points in a hybrid F; popu-
lation of Populus deltoides x P. simonii. The two Populus
species display substantially different performance in
growth rate, resistance to diseases and bad conditions,
and rooting ability [2, 35]. Their hybrid progeny provide a
permanent material for constructing genetic linkage maps
and identifying QTLs in Populus. We showed that our
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QTL mapping approach can detect 12 QTLs that affect
tree height, based on the parent-specific high-density link-
age maps constructed in our previous study [2]. Further-
more, the new method can find more QTLs with higher
significance compared with the interval mapping method.
The software developed for implementing the algorithm
can be downloaded from https://github.com/tongchf/
mvqtlcim as package mvgticim.

Methods

Mapping population

The mapping population was an interspecific F; bybrid
population between P. deltoides (P1) and P. simonii (P,),
which was established in 2011 [2]. The parental genetic
linkage maps were constructed by using 1601 and 940
SNPs and covered 4249.12 and 3816.24 cM of the whole
genomes of P; and P,, respectively [2]. A total of 177 in-
dividuals were selected for QTL mapping. The tree
height of each individual was measured at six different
time points during the growth period in 2014. The
phenotype data showed large variation at different devel-
opment stages in the F; hybrid population.

Stepwise regression model

In order to apply CIM into an outbred full-sib family for
multivariate phenotype data, the first step is to choose
background markers to control other QTL effects when
scanning a putative QTL at a specific position on gen-
ome. We used stepwise regression method to choose the
background markers among the whole available molecu-
lar marker data. Considering # individuals with genotype
data of M markers and the phenotypic values of a trait
at T time points, the linear regression model can be
described as

M Kj

yit:ﬂt+zzxijk31kt+eih i= 17 ey, MG
=1 k=1

where y,, is the trait value at the tth time point of the ith
individual; 4, is the overall mean of the trait value at the
tth time point; x; is an indicator variable for the kth
genotype of the jth marker for the ith individual, taking
the value of 1 or 0; By is the effect of the kth genotype of
the jth marker at the zth time point, with the restriction

K;

J B =0 2)

where K; is the number of genotypes of the jth
marker; e;; is a random error at the fth time point for
the ith individual. Because a molecular marker could
segregate in the ratio of 1:1, 1:2:1, or 1:1:1:1 in an
outbred full-sib family [4, 5], the number of geno-
types of the jth marker possibly takes the value of 2,


https://github.com/tongchf/mvqtlcim
https://github.com/tongchf/mvqtlcim

Liu et al. BMC Bioinformatics (2017) 18:515

3, or 4. For the random errors of individual i, let ¢,
= (en, en, ', e7) and assume that ¢;~N(0, X).

The stepwise regression involved starting with no
markers in the model, adding a marker to the model
with the most significance at a specified entry level,
removing a candidate marker from the model if its
significance is reduced below a specified staying level,
and repeating this process until no markers can be
added or deleted. Since model (1) actually belongs to
a multivariate multiple regression model, the signifi-
cance for a candidate marker in the model can be
tested with Wilks’ lambda statistic

A=2|/|Z] (3)

where X is the maximum likelihood estimate of X for
the full model and fo for the reduced model under a
null hypothesis. The lambda statistic can be approxi-
mated by an F or chi-square distribution in some
cases for calculating p-value in testing the significance
of a marker in our regression model [36, 37].

Composite interval mapping model

Unlike in inbred lines, not only molecular markers
but also QTLs may segregate in any patterns in an F;
outcrossing population. In our CIM model, we fo-
cused on the markers segregating in the types of aa x
ab, abxaa, abxab and abxcd, and QTLs
segregating in the types of test cross (i.e. QQ x Qg or
Qg x QQ), F, cross (i.e. Qgx Qq or Qg xqQ) and full
cross (i.e. Q1Qyx Q3Q4) [4, 6]. Assuming that there ex-
ists a QTL in an interval of markers Mg and M, ; on a
chromosome, our CIM model for multivariate phenotype
data can be described by incorporating the QTL genotype
effects into model (1) as

J M K
Y = Zx;}ﬂ;z‘ij Zl Z XijkBjke + eir,
j=1 j=1 k=1

jzs, s+1
i=1, -, m t=1, -, T

(4)

where y;, is the value of the jth QTL genotype at the
tth time point; J is the number of QTL genotypes,
determined by the QTL segregation type, possibly tak-
ing the value of 2, 3 or 4, M is the number of
markers chosen as background markers in CIM; xj; is
an indicator variable for the jth QTL genotype for
the ith individual, taking the value of 1 or 0; The
other variables are defined as in model (1). Let B de-
note the matrix composed of non-redundant parame-
ters of Bj, with the tth column corresponding to the
tth time point, and X; the row vector for individual i
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corresponding to the coefficients of parameter By, s
in any column of matrix B. The likelihood of the
unknown parameters in model (2) can be written as

L<@>:ﬁ :HZPU (v w+BX £)

=1 j=
(5)
where @ = (43, -, pp B, X)is the unknown parameters,
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and p; is the conditional probability of the jth QTL
genotype on the flanking marker genotype. Although
there are many cases for the combination of any two
markers due to several different marker segregation
types, the conditional probability can be calculated in a
uniform procedure [6].

Differentiating eq. (5) with respect to the unknown
parameters of y;s, B and X, and setting these partial

derivatives to zero, we obtained the following
equations as
] "
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To obtain the maximum likelihood estimates (MLEs)
of the unknown parameters, we performed the
expectation-maximization (EM) algorithm [38]. In the
E-step, the posterior probability of the jth QTL genotype
for individual i was calculated by eq. (7) with initial
values of the unknown parameters. In the M-step, the
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estimates of parameters B, y;s and X were calculated by
eqs. (4—6), respectively. The two steps were repeated
until all the parameters converged.

To test if there is a significant QTL at a specified
position of the genome, a null hypothesis was claimed as
(10)

Ho: puy=py=-=uy

The log-likelihood ratio (LR) statistic can be used for
the test as
L(®)
L(8y)

where @ and @, are the two MLE sets of all the parame-
ters under the full model and the reduced model,
respectively. Generally, the critical threshold for
asserting a QTL existence can be determined by per-
forming permutation tests [39, 40].

LR = 2log (11)

QTL model selection

As described above, the QTL at a fixed position of the
genome may segregate in several different patterns, but
the true segregation pattern is unknown a priori. There-
fore, a model selection method will be helpful to infer
the QTL segregation. Here, we applied Akaike’s informa-
tion criterion (AIC) [41], Bayesian information criterion
(BIC) [42] and Takeuchi’s information criterion (TIC)
[43] to infer the best QTL segregation pattern among
the five alternatives. These criteria are defined as

AIC = -21logL(0) +2d (12)
BIC = -2logL(®) + log(n)d (13)
TIC = ~210gL(6) +2tx(/ (6) ' (6)) (14)

where L(6) is the maximum likelihood of the model, d
is the number of parameters to be estimated in the
model, and J (@) and / (@) can be calculated as

i) =3 (a loiL@i(é)> (a log;(;(@)) |

i=1

(15)

1(6) = - 3% logL(®)

00? (16)

The first and second derivatives involved in Egs. (15)
and (16) can be derived as in Additional file 1: Appendixes
S1 and S2. We chose a proper index for discriminating
QTL patterns by assessing the power of each criterion
through computer simulations.
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Monte Carlo simulation
In order to validate the accuracy of parameter estimates
and to evaluate the power of each model selection index,
we performed a large number of computer simulations.
Five chromosomes were considered in our simulations,
each with 100 c¢cM long and six markers evenly distributed.
These simulated markers have the segregation types of
aaxab, abxaa, abxab and abxcd, and the linkage
phases between any two adjacent markers are not fixed.
Five QTLs with segregation patterns of QQ x Qg, Qg x
QQ, Qg xQq, Q7 xqQ and Q1Q> x Q3Q4 were supposed
to control tree height in a growth period, whose positions
on genome and genotype effects at eight sequential time
points were set as shown in Tables 1 and Additional file 2:
Tables S1-S5. Here, for consistency, a QTL genotype effect
is defined as the deviation from the mean of the genotype
values. The phenotype values of the ith individual were
sampled from the multivariate normal distribution as N(v;,
%), where the mean vector v; is the sum of the overall
mean vector

v = (34.46, 69.94, 83.93, 103.54, 114.73, 120.80, 124.01, 125.69)

and the combination genotype effects of all the five
QTLs involved over the eight time points. The covari-
ance matrix X was determined by setting the sum of
the heritabilities of all the five QTLs to 0.9 at each
time point and the correlation coefficient of trait
values between the ith and jth time points equal to
0.9 /I, which can be calculated as

Table 1 The assumed QTL segregation patterns, positions on
genome and the power of detecting the true QTL pattern with
different model selection criteria under different sample sizes

Position AIC  BIC  TIC

Size Pattern Chromosome  Interval

300 QOxQq 1 1 5 972 1000 975
QgxQq 2 6 5 942 1000 947
Q10xQs0Q, 4 2 3 1000 920 1000
QgxQQ 4 5 8 984 1000 988
QgxqQ 5 3 7 918 1000 943

200 QOxQq 1 1 5 957 1000 960
QgxQq 2 6 5 909 969 923
Q10,0504 4 2 3 998 634 991
QgxQQ 4 5 8 967 1000 972
QgxqQ 5 3 7 917 972 950

150 QOxQq 1 1 5 957 1000 950
QgxQq 2 6 5 873 849 904
Q;0,x0Q, 4 2 3 986 426 925
QgxQQ 4 5 8 953 1000 928
QgxqQ 5 3 7 895 839 940
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13.02 18.38 19.03 20.97 21.43 20.81 19.58 18.08
18.38 32.04 33.17 36.55 37.34 36.26 34.12 31.51
19.03 33.17 4240 46.72 47.73 46.36 43.62 40.28
5 20.97 36.55 46.72 63.55 64.92 63.05 59.33 54.79
21.43 37.34 47.73 64.92 81.89 79.53 74.83 69.10
20.81 36.26 46.36 63.05 79.53 9535 89.73 82.85
19.58 34.12 43.62 59.33 74.83 89.73 104.24 96.25
18.08 31.51 40.28 54.79 69.10 82.85 96.25 109.73
(17)

We considered sample sizes of 300, 200 and 150
each with 1000 replicates. For each case, the average
parameter estimates and their standard deviations
were calculated. In addition, under the three different
model selection criteria described above, the power of
detecting a specific QTL segregation pattern for each
QTL model was obtained by counting the number of
runs out of the 1000 repeats in which the correct
pattern was chosen.

Implementation

We developed a command-based software, namely
mvgtlcim, to implement the computing for our CIM
mapping method in an outbred full-sib family. Mvgticim
was written in C++ with Boost C++ 1.62 (http://
www.boost.org) and can run on Windows, Linux and
Mac OS operating systems. The software utilizes a gen-
etic linkage map constructed with different segregation
molecular markers such as 1:1, 1:2:1 and 1:1:1:1, and as-
sumes that QTL may segregate in the five different seg-
regation patterns on a specific position of the genetic
map. It allows users to select the best QTL segregation
pattern with AIC, BIC and TIC for a significant QTL. It
also provides command line parameters to be chosen for
alternative analyses, including the number of back-
ground markers, window size [44], QTL segregation
type, genetic map function and number of permutations.
Specifically, when performing permutations to deter-
mine the empirical threshold of significant QTLs,
mvqtlcim permits to use multithreads to accelerate
computing speed. When an analysis completes, the
software will generate two files for each QTL model,
of which one contains the parameter estimates and
the corresponding statistic values at every 1 ¢cM on
the genome, and the other saves the maximum LR
value of each permutation. With these result files, we
wrote an R script, lrPlot.r, to summarize the signifi-
cant QTL information and generate scatter plots of
LR against genome position. These plots can be op-
tionally saved in pdf, jpg, png, tif or bmp format. The
software and R script with the manuals are available
from https://github.com/tongchf/mvqtlcim.
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Results

Monte Carlo simulation

A large number of computer simulations were per-
formed under different scenarios of sample sizes to as-
sess the power of selecting the optimal QTL segregation
pattern and the accuracy and precision of parameter es-
timates, using our multivariate CIM method with the
background marker number of 5 and the window size of
15.0 ¢cM. Table 1 shows the power of our statistical
model to select the correct QTL segregation pattern
among the five alternatives with AIC, BIC and TIC cri-
teria under three different sample sizes. It is observed
that all the powers for distinguishing the five QTL pat-
terns are very high (293%) when the sample size is 300.
Although the powers of BIC for the QTL segregation
pattern of Q;Q, x Q3Q, are significantly lower (63.4%
and 42.6%) under the sample sizes of 200 and 150, the
powers of all the criteria for the other cases are still high
(283.9%). It is interesting to note that the powers of AIC
and TIC consistently keep high levels whatever the sam-
ple size is large or small, but the powers of TIC are more
stable than those of AIC and keep at high levels of
>90%. Therefore, the TIC criterion is highly recom-
mended to use for selecting the best QTL segregation
pattern with the CIM method developed here for an out-
bred F; population.

Additional file 2: Tables S1-S5 list the parameter esti-
mates in detail of the QTL position and genotype effects
at each time point under the three cases of sample sizes.
Overall, the estimated QTL positions tend towards the
setting locations. But for the three QTL segregation pat-
terns of Q;Q,x Q3Qs QgxQQ and Qg xqQ, which
were set in non-central locations, the position estimates
are a little biased to the interval center. The average esti-
mates of QTL genotype effects at the different time points
for each case of the QTL segregation pattern are well
close to the true values, but the standard deviations ex-
pand as expected when the sample size decreases from
300 to 150. Therefore, on average, the heritability of each
QTL at each time point closes to the previously set value,
and the sum of all the five QTL heritabilities at each time
point is around the set value of 90% (Additional file 2:
Table S6). In contrast, the estimate of the residual covari-
ance matrix X for each QTL segregation pattern under
each sample size expands averagely 2—3 times compared
with the sum of the variances over the eight time points
set in eq. (15) (Additional file 2: Table S7).

QTL mapping in Populus

We performed QTL mapping for the tree heights over 6
time points in the F; hybrid population of P. deltoides x
P. simonii with the new developed tool mvgticim. The
linkage maps used for QTL mapping were two parental
specific maps; All the markers on the maternal map
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segregate in the type of ab x aa, while the markers on
the paternal map in the type of aa x ab [2]. Therefore,
the QTL segregation patterns were assumed to be Qg x
QQ for the maternal map and QQ x Qg for the paternal
map when scanning QTLs. In order to obtain the opti-
mal mapping result, we ran mvqticim with different
number of background markers and different window
sizes, leaving the other optional parameters as defaults.
The number of background markers was iterated from 3
to 39 with a step length of 2 and the window size from
5.0 to 30.0 cM with a step length of 5.0 cM. The optimal
mapping result was defined as the one that all the sig-
nificant QTLs account for the maximum proportion of
the phenotypic variance in the population.

With the maternal linkage map, we found that the op-
timal mapping result corresponding to the run with 29
background markers and the window size of 20.0 cM,
leading to 10 significant QTLs detected. The threshold
determined by 1000 permutations was 35.84 for assert-
ing the existence of a QTL at the significant level of
0.05. Fig. 1(a) displays the scatter plot of the LR against
the position of the linkage map of P. deltoides with the
dashed threshold line. A significant QTL corresponds to
a peak which is above the threshold. If more than one
significant peaks are within the specified window size,
we chose the highest one as a significant QTL and ig-
nored the others. It can be seen that the identified QTLs
are distributed on the linkage groups of 1, 2, 5, 9 and 14.
In the same way, we detected two significant QTLs on
the paternal linkage map of P. simonii under the experi-
ential threshold value of 29.23 with 3 background
markers and the window size of 10.0 cM in running
mvqtlcim (Fig. 1(b)). Table 2 summarizes the position,
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effects at each time point and the average heritability
over the six time points for each significant QTL. These
QTL IDs were named after the linkage group number,
the order within a linkage group and either of the two
parental linkage maps, where D stands for P. deltoides
and S for P. simonii (e.g. Q2D1 indicates the second QTL
located in group 1 on the linkage map of P. deltoides). It is
observed that, on average, Q1D14 explains the maximum
proportion (27.43%) of the phenotypic variance, while
Q1D1 accounts for the minimum (only 1.11%).

Candidate gene investigations

In order to investigate the candidate genes of these
QTLs, we searched for the coding genes within the
physical interval of each QTL in the gene annotation
database of Populus trichocarpa v3.0 at Phytozome
(https://phytozome.jgi.doe.gov). Because of the limited
information in the annotation database [45], the coding
sequences (CDS) of those genes related to each QTL
were re-annotated by first blasting and then mapping on
Gene Ontology (GO) terms with Blast2GO (https://
www.blast2go.com). Consequently, the genomic region
covering a QTL has an average length of 801 kb (Table 2)
and contained 7-247 genes, of which 79% have 19.7 blast
hits and 5.0 GO terms received on average (Additional file 3:
Excel Sheets Q1D1-QS9). Additional file 4: Figures S1-12
showed the biological process GO category for the genes
within the local region of each QTL. Interestingly, we
found that the biological processes (BP) of three genes
(Potri.014G029100, Potri.014G031100, Potri.014G031300)
in the interval of Q1D14 and one gene (Potri.014G041600)
in the interval of Q2D14 involved in brassinosteroids,
which have great effects on plant height [46]. Another

a

1

1

LR
0 10 20 30 40 50 60
1

15 16 17 18 19 20

w _|
~ 15 16 17 18 19 20
o _|
©
v _|
@ <
e |
o _|
A SRR NN ANV NN NN WO N SR N MR MO NN SOV O SN U NN N
“7 A
“] A S AN i\ W
T T T T T T
0 600 1200 1800 2400 3000 3600
Map position

Fig. 1 The profile of the log-likelihood ratios (LR) for detecting QTLs underlying tree height across the 20 linkage groups on each of the two parental
genetic maps of (@) P. deltoides and (b) P. simonii. The threshold values for asserting the existence of a QTL at the significant level p =0.05 are indicated
as horizontal dashed lines that were determined by 1000 permutation tests. The vertical dashed lines separate the linkage groups. Each peak with a
red dot is the highest one within a specified window size and represents a significant QTL
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Table 2 Summary of the identified QTL position, LR, effect of QQ at each time point and the average heritability over the time
points on the two parental linkage maps of P. deltoides and P. simonii

Linkage QTLID Chr/ Marker Map Genome  Region Length® LR Tc T2 T3 T4 T5 T6 Average
Map LG* Interval Position Position®  (kb) Heritability
(cv) (Mb) (%)

P. deltoides Q1D1 1 2 212 1.24 701 4824 -583 -439 534 -732 =889 1159 1.11
Q2D1 1 145 34667 3130 332 3911 2701 3086 3504 3492 3687 3824 2213
Q301 1 159 390.19 3501 57 3811 —-1024 -1318 -1549 -1851 -2004 -2491 6.00
Qb2 2 99 24474 20.86 739 3814 2604 -2407 -2274 -2200 -2180 -2126 10.14
QD2 2 102 26538  19.82 1799 4640 -2944 2821 -=2724 -2636 -2657 -2678 1440
Q3D2 2 m 29605 2372 222 4957 2382 2513 2393 2251 2307 2325 1067
QD5 5 3 2013 224 844 4632 —1764 -=1979 =2167 -2295 -2222 -2374 878
QD9 9 44 119.31 8.18 344 4943 2182 206066 2476 2705 2534 2166 1160
QD14 14 1 16.01 137 1734 5985 -3374 -3742 -3852 -4054 -3865 -38.13 2743
Q2014 14 12 39.12 3.10 529 4103 2296 2629 2936 3096 2858 2943 1503

P. simonii  QS7 7 28 149.75 15.28 1115 7747 7.6 790 1236 1103 1911 2992 525
Qs9 9 31 11218 787 1200 7759 1191 1476 1968 1957 2560 3570 974

2Chr, chromosome; LG, linkage group

PEstimated by the flanking SNPs on the reference sequence of Populus trichocarpa v3.0

T1-T6 are the QTL effects of genotype QQ over six time point

interesting finding was that two candidate genes
(Potri.014G016500, Potri.014G027200) in the interval of
Q1D14 and one gene in the interval of QD5
(Potri.005G021800) were related to shoot formation or de-
velopment. Moreover, candidate genes for embryo or root
development can be found in the flanking regions of
Q1D14, QD5, QDY9, QS7 and QS9, and for response to
stress such as salt and heat in the regions of Q1D1, Q2D1,
Q1D2, Q2D2, Q3D2, Q1D14 and QS9. Additionally, we
also searched the candidate genes associated with photo-
synthesis, which plays the most important role in tree
growth and development [47]. As a result, the candidate
genes related to photosynthesis were located in the regions
of Q1D2, Q2D2, Q1D14, QD5 and QS9. Other interesting
candidate genes could be searched out in the Blast2GO an-
notation results presented in Additional file 3: Excel Sheets
Q1D1-QS9 and Additional file 4: Figures S1-12.

Discussion

Statistical methods for QTL mapping have been greatly
developed for the past three decades, from the seminal
work of interval mapping by Lander and Botstein [7] to
the recent more popular Bayesian LASSO approaches
[19-23]. However, there were few successful examples of
identifying QTLs in outbred forest trees. One of the rea-
sons may be due to the fact that most QTL mapping
tools are not for the outbred species in which inbred
lines are difficultly or even impossibly derived. Here, we
implemented the traditional CIM method into an F;
population generated by hybridizing two outbred parents
for mapping multiple or longitudinal traits. It is essen-
tially useful for forest trees because such species have

the characteristic of long generation times and high het-
erozygosity so that phenotypic data over long time can
be easily observed but the genetic structures are more
complicated. With the model selection criterion of TIC,
our method could discriminate a QTL segregation type
among five alternatives with a higher power (see section
3.2). In contrast to our previous work [6], the IM method
with the LEC criterion for mapping a single trait could se-
lect an appropriate QTL segregation type by considering
only three alternative patterns. Compared with the recent
work of Gazaffi et al. [33], our work has a great advantage
in the aspect of inferring a QTL segregation pattern (as
described in introduction). We also provided the software
mvqticim to put our method into practice. The software
permits to use multithreads for performing a large num-
ber of permutations to determine the experimental
threshold of LR for a significant QTL.

With the multivariate linear model method and EM al-
gorithm, our CIM approach for mapping multivariate
data traits has the advantage that the MLEs of unknown
parameters can be globally obtained with limited itera-
tive steps at each position on genome. However, in most
functional QTL mapping cases [27, 28, 48, 49], owing to
the nonlinear growth curves involved in the statistical
models, the parameter MLEs could not be always ob-
tained globally. This may decrease the power of identify-
ing QTLs or even possibly generate pseudo QTLs. To
overcome the problem in functional QTL mapping, we
could first use the multivariate CIM method proposed
here to identify QTLs and then to find the growth
curves of these QTL genotypes. One strategy is to derive
the nonlinear growth curve using the function mapping



Liu et al. BMC Bioinformatics (2017) 18:515

method within a small region flanking a QTL, which al-
lows to obtain the optimal solution by iterating over dif-
ferent initiative points with intensive computing.
Another way is to directly fit the growth curve with the
QTL genotype values over time estimated from our
multivariate CIM method. The latter method was illus-
trated by fitting the estimated genotype values for the 12
QTLs identified in section 3.3 with the Richards’ growth
curves [50] (Additional file 5: Figure S13).

The results of Monte Carlo simulations indicated that
our QTL mapping approach can provide accurate esti-
mates of genetic parameters and a high power of infer-
ring the actual QTL segregation type, but the estimate
of the residual covariance matrix X expanded several
times (Additional file 2: Table S7) compared with the
setting values. It is noted that the estimate of residual
variance was not assessed and ignored in the pioneer
work of CIM approach [10]. This inconsistency between
the estimates and the setting values in the residual co-
variance matrix could be explained by the fact that the
setting model for simulations contains all the five QTL
effects while the CIM model focuses only one QTL ef-
fect at a specific position on genome. The other QTL ef-
fects cannot be fully absorbed by the background
markers in the CIM model, thus leading to the expanded
estimates of the residual errors.

The application of mapping QTLs in Populus illus-
trated that our new multivariate CIM method could de-
tected more number of QTLs underlying tree height in
this study than in a previous study (12 vs. 8), in which a
modified CIM was applied for tree height measured at a
single time point [2]. These included some small-effect
QTLs, such as Q1D1, QS9 and Q3D1 that averagely
accounted for 1.11%, 5.25% and 6.00% of the phenotypic
variances over the 6 time points, respectively (Table 2).
This may be the main reason that our QTL mapping ap-
proach allows more QTLs to be detected. We also noted
that the QTL effect size was not consistent with the LR
statistic in our multivariate CIM mapping. For example,
Q1D1 has a bigger LR value than Q2D2 (48.24 vs.
39.11), but its heritability is much lower than the later
(1.11% vs. 22.13%) (Table 2). The reason is that the CIM
statistical model may be different for different positions
on genome because the background markers and their
number in the model vary with the detected position.
Therefore, the LR values of QTLs cannot be compared
with each other to determine if one would more signifi-
cant than the other. However, the LR threshold for sig-
nificant QTLs is strictly valid in statistics because it was
determined by the LR values each with the largest value
chosen from a different permutation over the whole gen-
ome positions.

Further compared with other previous studies in map-
ping Populus height, our method may not only find
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more number of QTLs but also increase the genetic
variance explained by them. In the early 1990s, Brad-
shaw and Stettler [51] found one QTL underlying 2-year
height on linkage group D, which accounted for 25.9%
of the phenotypic variance in an F, population derived
by crossing P. trichocarpa and P. deltoides. Later on, Wu
(1998) [52] detected two QTLs for 3-year height on link-
age groups D and M with the same materials, totally
explaining 27.3% of the phenotypic variance. Because
the relationship between Populus linkage groups and
chromosomes was not so clear in the early two studies,
we could not match the QTL positions to our present
results. Recently, Monclus et al. (2012) [45] identified 5
QTLs distributed on chromosomes 1, 5, 6, 10 and 14 for
the first-year height (Heightl) and 7 QTLs on chromo-
somes 4, 6, 10, 12, 13, 16 and 17 for the second-year
height (Height2) using 330 F,P. deltoides x P. tricho-
carpa progeny. These QTLs could explain 20~30% of
the phenotypic variance for Heightl or Height2, but only
two QTLs were located consistently on the same chro-
mosomes (6 and10) for the heights of the 2 years even
with the same mapping materials. Among these QTLs,
three for Heightl estimated in the confidence intervals
of 23.12-54.23 Mb on chromosome 1, 7.11-25.80 Mb on
chromosome 5, and 4.87-12.49 Mb on chromosome 14
seem to be in agreement with the QTLs identified in this
study that were located in the positions of 31.30/35.01 Mb
(Q2D1/Q3D1), 2.24 Mb (QD5), and 1.37 Mb (Q1D14) on
the corresponding chromosomes. More recently, Du et al.
[53] identified three QTLs affecting tree height in an F;
population of Populus, which were located in linkage
groups 8 (Chr01), 12 and 16 (Chr13), and accounted for
34%, 8.0% and 64% of the phenotypic variance,
respectively. One QTL was estimated in the interval of
18.37-21.00 Mb on the same chromosome (Chr01) as the
QTLs of Q1D1, Q2D1 and Q3D1 detected in this study,
but it was over 10 Mb away from any one of the three
QTLs (Table 2). These comparisons between the previous
and current studies displayed a large difference in identify-
ing QTLs for Populus height, though a few consistent
cases existed. The reason may be due to many factors
such as mapping materials, genetic data structures, mea-
sures of phenotypic traits, and statistical methods [54].
Finally, we also conducted QTL analysis for our Popu-
lus real datasets each from one parental linkage map
using the popular LASSO method with the glmnet/R
package (v2.0-10, http://www.stanford.edu/~hastie/Pa-
pers/glmnet.pdf). In order to select a stable optimal
value of the tuning parameter, the leave-one-out cross-
validation was performed for each dataset (Add-
itional file 6: Figure S14). As a result, a total of 12 SNPs
were identified to be associated with the tree height,
exactly half of which come from each SNP dataset.
Among these associated SNPs, three were detected
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consistently by both CIM and LASSO (Additional file 6:
Table S8). The high level of inconsistency between the
results of CIM and LASSO was also observed in the
most recent work of Xu and his colleagues [54], where
they identified 28 and 29 QTLs for eight yield traits in
maize by CIM and LASSO, respectively, but only half
were consistent with both methods. The reason may be
due to the difference in the way to utilize marker infor-
mation in the two methods. The CIM method takes use
of not only the marker segregation information but also
the information of marker linkage as well as linkage
phase, thus capable of detecting a QTL in an interval of
two adjacent markers. However, although LASSO can
handle a whole marker dataset simultaneously, it only
uses the marker genotype information and provides the
associated information between markers and a pheno-
typic trait. Perhaps, each of the two methods has its own
advantages in such a hard task of QTL identification.

Conclusion

The traditional CIM method was implemented for map-
ping multiple or longitudinal traits in a full-sib family
derived by crossing two outbred parents. Our method
not only incorporated various marker segregation ratios,
such as 1:1, 1:2:1 and 1:1:1:1, but also utilized the model
selection index of TIC to discriminate the actual QTL
segregation pattern among several possible alternatives.
We provided a powerful tool package to implement the
algorithms of our method, which is freely available at the
website: https://github.com/tongchf/mvqticim. The soft-
ware package will facilitate studying of QTL mapping
and thus will accelerate molecular breeding programs
especially in forest trees.

Additional files

Additional file 1: Appendices S1 and S2. (DOCX 93 kb)

Additional file 2: Table S1. Average of parameter estimates with the
standard deviation in bracket under different sample sizes when the QTL
segregation type is QQ x Qg, based on 1000 simulation replicates. Table S2.
Average of parameter estimates with the standard deviation in bracket under
different sample sizes when the QTL segregation type is Qg x Qg, based on
1000 simulation replicates. Table S3. Average of parameter estimates with the
standard deviation in bracket under different sample sizes when the QTL
segregation type is Q7102 x Q3Q4, based on 1000 simulation replicates. Table
S4. Average of parameter estimates with the standard deviation in bracket
under different sample sizes when the QTL segregation type is Qg x QQ, based
on 1000 simulation replicates. Table S5. Average of parameter estimates with
the standard deviation in bracket under different sample sizes when the QTL
segregation type is Qg x qQ, based on 1000 simulation replicates. Table S6.
Summary on average estimates of QTL heritabilities (%) with the standard
deviation in brackets under different time points (T1-T8) and different sample
sizes based on 1000 simulation replicates. Table S7. The average estimate of
the residual covariance matrix with standard deviations in brackets when the
sample size is 300 and the QTL segregation type is Qg x gQ, based on 1000
simulation replicates. (DOCX 42 kb)

Additional file 3: Excel Sheets from Q1D1 to QS9. (XLSX 97 kb)

Page 9 of 11

Additional file 4: Figure S1. Biological process GO category for the
genes within the region of QTL Q1D1. Figure S2. Biological process GO
category for the genes within the region of QTL Q2D1. Figure S3.
Biological process GO category for the genes within the region of QTL
Q3D1. Figure S4. Biological process GO category for the genes within
the region of QTL Q1D2. Figure S5. Biological process GO category for
the genes within the region of QTL Q2D2. Figure S6. Biological process
GO category for the genes within the region of QTL Q3D2. Figure S7.
Biological process GO category for the genes within the region of QTL
QD5. Figure S8. Biological process GO category for the genes within the
region of QTL QD9. Figure S9. Biological process GO category for the
genes within the region of QTL Q1D14. Figure S10. Biological process
GO category for the genes within the region of QTL Q2D14. Figure S11.
Biological process GO category for the genes within the region of QTL
QS7. Figure S12. Biological process GO category for the genes within
the region of QTL QS9. (DOCX 642 kb)

Additional file 5: Figure S13. Richards’ growth curves of the 12 QTLs
underlying the tree height of Populus, fitted with their genotype values

(dot) over time estimated from the multivariate CIM method. The red is

for the genotype QQ and the blue for Qq. (PDF 375 kb)

Additional file 6: Figure S14. Plots of the mean cross-validated error
against the log of parameter lambda for the female (a) and male (b) SNP
datasets. Table $8. SNPs identified to be associated with Populus height
by the LASSO method using the two SNP datasets from each parental
linkage map. (DOCX 61 kb)

Abbreviations

AIC: Akaike's information criterion; BIC: Bayesian information criterion;

CIM: Composite interval mapping; EM: Expectation-maximization; IM: Interval
mapping; LASSO: Least absolute shrinkage and selection operator; LR: Log-
likelihood ratio; MLE: Maximum likelihood estimate; NGS: Next-generation
sequencing; QTL: Quantitative trait locus; TIC: Takeuchi’s information criterion

Acknowledgements
Not applicable

Availability of data and material

The software mvgtlcim on different operating systems and an example
input file are available at https//github.com/tongchf/mvgtlicim. Additional file 1
contains Appendixes S1 and S2, Additional file 2: Tables S1-S7, Additional file 3:
Supplementary Excel Sheets Q1D1-QS9, Additional file 4: Figures S1-5S12,
Additional file 5: Figure S13, and Additional file 6: Figure S14 and Table S8.

Funding

This work has been supported by the National Natural Science Foundation
of China (No. 3127076) and the Priority Academic Program Development of
the Jiangsu Higher Education Institutions (PAPD). Neither organization
contributed to the design or conclusions of this study.

Authors’ contributions

CT, HL, and JS conceived of the study. FL and CT developed the software
and wrote the manuscript. FL performed QTL mapping in Populus. ST, JW,
YC, and DY measured the tree height. All authors read and approved the
final version of this manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.



https://github.com/tongchf/mvqtlcim
dx.doi.org/10.1186/s12859-017-1908-1
dx.doi.org/10.1186/s12859-017-1908-1
dx.doi.org/10.1186/s12859-017-1908-1
dx.doi.org/10.1186/s12859-017-1908-1
dx.doi.org/10.1186/s12859-017-1908-1
dx.doi.org/10.1186/s12859-017-1908-1
https://github.com/tongchf/mvqtlcim

Liu et al. BMC Bioinformatics (2017) 18:515

Author details

'The Southern Modern Forestry Collaborative Innovation Center, College of
Forestry, Nanjing Forestry University, Nanjing 210037, China. *College of
Department of Computer Science and Engineering, Sanjiang University,
Nanjing 210012, China.

Received: 11 April 2017 Accepted: 1 November 2017
Published online: 23 November 2017

References

1. Wu RL, Zeng ZB, McKend SE, O'Malley DM. The case for molecular mapping
in forest tree breeding. Plant Breed Rev. 2000;19:41-68.

2. Tong CF, Li HG, Wang Y, Li XR, Ou JJ, Wang DY, et al. Construction of high-
density linkage maps of Populus deltoides x P. simonii using restriction-site
associated DNA sequencing. PLoS One. 2016;11(3):e0150692.

3. Mousavi M, Tong C, Liu F, Tao S, Wu J, Li H, et al. De novo SNP discovery and
genetic linkage mapping in poplar using restriction site associated DNA and
whole-genome sequencing technologies. BMC Genomics. 2016;17:656.

4. Maliepaard C, Jansen J, Van Qoijen JW. Linkage analysis in a full-sib family of
an outbreeding plant species: overview and consequences for applications.
Genet Res. 1997;70:237-50.

5. WuRL, Ma CX, Painter |, Zeng ZB. Simultaneous maximum likelihood
estimation of linkage and linkage phases in outcrossing species. Theor
Popul Biol. 2002,61(3):349-63.

6. Tong CF, Zhang B, Li HG, Shi JS. Model selection for quantitative trait loci
mapping in a full-sib family. Genet Mol Biol. 2012;35(3):622-31.

7. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative
traits using RFLP linkage maps. Genetics. 1989;121:185-99.

8. Doerge RW. Mapping and analysis of quantitative trait loci in experimental
populations. Nat Rev Genet. 2002;3(1):43-52.

9. Zeng Z-B. Theoretical basis for separation of multiple linked gene
effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A.
1993;90(23):10972-6.

10.  Zeng Z-B. Precision mapping of quantitative trait loci. Genetics. 1994;136:
1457-68.

11. Kao C-H, Zeng Z-B, Teasdale RD. Multiple interval mapping for quantitative
trait loci. Genetics. 1999;152(3):1203-16.

12. Zeng Z-B, Kao C-H, Basten CJ. Estimating the genetics architecture of
quantitative traits. Genet Res. 1999,74:279-89.

13. Xu S, Atchley WR. Mapping quantitative trait loci for complex binary
diseases using line crosses. Genetics. 1996;143:1417-24.

14. Xu G, Li Z, Xu S. Joint mapping of quantitative trait loci for multiple binary
characters. Genetics. 2005;169:1045-59.

15. Satagopan JM, Yandell BS, Newton MA, Osborn TC. A Bayesian approach to
detect quantitative trait loci using Markov chain Monte Carlo. Genetics.
1996;144:805-16.

16.  Yi N, Yandell BS, Churchill GA, Allison DB, Eisen EJ, Pomp D. Bayesian model
selection for genome-wide epistatic quantitative trait loci analysis. Genetics.
2005;170(3):1333-44.

17. Xu S. An empirical Bayes method for estimating epistatic effects of
quantitative trait loci. Biometrics. 2007,63(2):513-21.

18. Huang A, Xu S, Cai X. Empirical Bayesian elastic net for multiple quantitative
trait locus mapping. Heredity (Edinb). 2015;114(1):107-15.

19. YiN, Xu S. Bayesian LASSO for quantitative trait loci mapping. Genetics. 2008;
179(2):1045-55.

20.  Mutshinda CM, Sillanpaa MJ. Extended Bayesian LASSO for multiple quantitative
trait loci mapping and unobserved phenotype prediction. Genetics. 2010;186:
1067-75.

21, Cai X, Huang A, Xu S. Fast empirical Bayesian LASSO for multiple quantitative
trait locus mapping. BMC Bioinformatics. 2011;12:211.

22. Fang M, Jiang D, Li D, Yang R, Fu W, Pu L, et al. Improved LASSO priors for
shrinkage quantitative trait loci mapping. Theor Appl Genet. 2012;124(7):
1315-24.

23. LiJ, Wang Z Li R, Wu R. Bayesian group lasso for nonparametric varying-
coefficient models with application to functional genome-wide association
studies. Ann Appl Stat. 2015,9(2):640-64.

24, Jiang C, Zeng Z-B. Multiple trait analysis of genetic mapping for quantitative
trait loci. Genetics. 1995;140(3):1111-27.

25. Da Costa ESL, Wang S, Zeng Z-B. Multiple trait multiple interval mapping of
quantitative trait loci from inbred line crosses. BMC Genet. 2012;13:67.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

42,
43.

45.

46.

47.

48.

49.

50.

52.

Page 10 of 11

Macgregor S, Knott SA, White I, Visscher PM. Quantitative trait locus
analysis of longitudinal quantitative trait data in complex pedigrees.
Genetics. 2005;171(3):1365-76.

Wu RL, Lin M. Functional mapping - how to map and study the
genetic architecture of complex dynamic traits. Nat Rev Genet. 2006;7:
229-37.

Li Y, Wu R. Functional mapping of growth and development. Biol Rev
Camb Philos Soc. 2010;85(2):207-16.

Wang Z, Wang Y, Wang N, Wang J, Wang Z, Vallejos CE, et al. Towards
a comprehensive picture of the genetic landscape of complex traits.
Brief Bioinform. 2014;15(1):30-42.

Cao J, Wang L, Huang Z, Gai J, Wu R. Functional mapping of multiple
dynamic traits. J Agric Biol Environ Stat. 2016;22(1):60-75.

Haley CS, Knott SA, Elsen JM. Mapping quantitative trait loci in crosses
between outbred lines using least squares. Genetics. 1994;136:1195-207.
Lin M, Lou XY, Chang M, Wu R. A general statistical framework for
mapping quantitative trait loci in nonmodel systems: issue for
characterizing linkage phases. Genetics. 2003;165(2):901-13.

Gazaffi R, Margarido GRA, Pastina MM, Mollinari M, Garcia AAF. A model
for quantitative trait loci mapping, linkage phase, and segregation
pattern estimation for a full-sib progeny. Tree Genet Genomes. 2014;
10(4):791-801.

Van Ooijen JW. MapQTL 6, Software for the mapping of quantitative trait
loci in experimental populations of diploid species. Kyazma BV.
Wageningen, Netherlands. https://www.kyazma.nl/index.php/MapQTL.
Accessed 1 Jan 2009.

Zhang B, Tong CF, Yin T, Zhang X, Zhuge Q, Huang M, et al. Detection
of quantitative trait loci influencing growth trajectories of adventitious
roots in Populus using functional mapping. Tree Genet Genomes. 2009;
5:539-52.

Rao CR. Linear statistical inference and its applications. 2nd ed. New York:
Wiley; 1973.

Johnson RA, Wichern DW. Applied multivariate statistical analysis. 6th ed.
Beijing: Tsinghua University Press; 2008.

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete
data via EM algorithm. J R Stat Soc Ser B (Methodological). 1977,39:1-38.
Churchill GA, Doerge RW. Empirical threshold values for quantitative trait
mapping. Genetics. 1994;138:963-71.

Doerge RW, Churchill GA. Permutation tests for multiple loci affecting a
quantitative character. Genetics. 1996;142(1):285-94.

Akaike H. A new look at the statistical model identification. IEEE Trans
Automatic Control AC. 1974;19:716-23.

Schwarz G. Estimating the dimension of a model. Ann Stat. 1978,6:461-4.
Takeuchi K. Distribution of informational statistics and a criterion of
model fitting. Suri-Kagaku (Mathematic Sciences, In Japanese).
1976;153:12-8.

Wang S, Basten CJ, Zeng Z-B. Windows QTL Cartographer 2.5. Department
of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.
edu/qtlcart/WQTLCart.htm.. Accessed 1 July 2006.

Monclus R, Leple JC, Bastien C, Bert PF, Villar M, Marron N, et al. Integrating
genome annotation and QTL position to identify candidate genes for
productivity, architecture and water-use efficiency in Populus spp. BMC
Plant Biol. 2012;12:173.

Dubouzet JG, Strabala TJ, Wagner A. Potential transgenic routes to increase
tree biomass. Plant Sci. 2013;212:72-101.

Wang L, Wang B, Du Q, Chen J, Tian J, Yang X, et al. Allelic variation in
PtoPsbW associated with photosynthesis, growth, and wood properties in
Populus Tomentosa. Mol Gen Genomics. 2016;292(1):77-91.

Huang ZW, Tong CF, Bo WH, Pang XM, Wang Z, Xu JC, et al. An allometric
model for mapping seed development in plants. Brief Bioinform. 2014;15(4):
562-70.

Tong CF, Shen LY, Lv YF, Wang Z, Wang XL, Feng SS, et al. Structural
mapping: how to study the genetic architecture of a phenotypic trait
through its formation mechanism. Brief Bioinform. 2014;15(1):43-53.
Kshirsagar AM, Smith WB. Growth curves. New York: Marcel Dekker; 1995.
Bradshaw HD, Stettler RF. Molecular genetics of growth and development
in Populus. IV. Mapping QTLs with large effects on growth, form, and
phenology traits in a forest tree. Genetics. 1995;139:963-73.

Wu RL. Genetic mapping of QTLs affecting tree growth and
architecture in Populus: implication for ideotype breeding. Theor Appl
Genet. 1998,96:447-57.


https://www.kyazma.nl/index.php/MapQTL
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

Liu et al. BMC Bioinformatics (2017) 18:515

53.

54.

Du Q, Gong C, Wang Q, Zhou D, Yang H, Pan W, et al. Genetic architecture
of growth traits in Populus revealed by integrated quantitative trait locus
(QTL) analysis and association studies. New Phytol. 2016;209(3):1067-82.

Su C, Wang W, Gong S, Zuo J, Li S, Xu S. High density linkage map
construction and mapping of yield trait QTLs in maize (Zea mays) using the
genotyping-by-sequencing (GBS) technology. Front Plant Sci. 2017;8:706.

Page 11 of 11

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit ( BiolVled Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Mapping population
	Stepwise regression model
	Composite interval mapping model
	QTL model selection
	Monte Carlo simulation

	Implementation
	Results
	Monte Carlo simulation
	QTL mapping in Populus
	Candidate gene investigations

	Discussion
	Conclusion
	Additional files
	Abbreviations
	Availability of data and material
	Funding
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

