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Abstract

Background: Autism spectrum disorders (ASD) are hereditary, heterogeneous and biologically complex
neurodevelopmental disorders. Individual studies on gene expression in ASD cannot provide clear consensus
conclusions. Therefore, a systematic review to synthesize the current findings from brain tissues and a search
tool to share the meta-analysis results are urgently needed.

Methods: Here, we conducted a meta-analysis of brain gene expression profiles in the current reported human ASD
expression datasets (with 84 frozen male cortex samples, 17 female cortex samples, 32 cerebellum samples and 4
formalin fixed samples) and knock-out mouse ASD model expression datasets (with 80 collective brain samples). Then,
we applied R language software and developed an interactive shared and updated database (dbMDEGA) displaying
the results of meta-analysis of data from ASD studies regarding differentially expressed genes (DEGs) in the brain.

Results: This database, dbMDEGA (https://dbmdega.shinyapps.io/dbMDEGA/), is a publicly available web-portal for
manual annotation and visualization of DEGs in the brain from data from ASD studies. This database uniquely presents
meta-analysis values and homologous forest plots of DEGs in brain tissues. Gene entries are annotated with meta-values,
statistical values and forest plots of DEGs in brain samples. This database aims to provide searchable meta-analysis
results based on the current reported brain gene expression datasets of ASD to help detect candidate genes
underlying this disorder.

Conclusion: This new analytical tool may provide valuable assistance in the discovery of DEGs and the elucidation of
the molecular pathogenicity of ASD. This database model may be replicated to study other disorders.
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Background
Autism spectrum disorders (ASD) are clinically hetero-
geneous and biologically complex neurobehavioral disor-
ders characterized by social communication deficits,
impaired language development, repetitive activities and
restrictive range of interests [1, 2]. In recent years, the
incidence of autism has quickly increased; Lai et al. [3]
have reported that the worldwide population prevalence

is approximately 1%. Twin studies have suggested that
genetic factors are important in the pathogenesis of ASD
[3–5]; however, genes associated with ASD pathogenicity
still need to be explored.
Microarray technology is a powerful tool used to provide

evidence for the genetic contribution to ASD and other
complex disorders [6–11]. In recent years, this technology
has been applied to detect differentially expressed genes
(DEGs) between autistic and normal individuals and to
explore the pathology of ASD [6, 10–12]. For instance,
Voineagu et al. [11] have further identified discrete mod-
ules of co-expressed genes associated with autism, such as
the neuronal specific splicing factor A2BP1, and have
provided evidence implicating transcriptional and splicing

* Correspondence: fanguangqin@ncu.edu.cn
1Department of Occupational Health and Toxicology, School of Public
Health, Nanchang University, BaYi Road 461, Nanchang 330006, China
4Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang
University, Nanchang 330006, China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zhang et al. BMC Bioinformatics  (2017) 18:494 
DOI 10.1186/s12859-017-1915-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1915-2&domain=pdf
https://dbmdega.shinyapps.io/dbMDEGA
mailto:fanguangqin@ncu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


dysregulation as underlying mechanisms of neuronal
dysfunction in ASD. Moreover, this technology has also
been used on ASD mouse models and facilitates explor-
ation of the possible molecular mechanisms of ASD [13,
14]. Finally, some studies have found significantly
perturbed pathways in ASD, such as synaptic plasticity
[13], neurogenesis and synaptic activity [12]. Collectively,
these studies based on gene expression analysis can
provide clues to guide future research.
Although microarray technology is a strategy to identify

associated genes and underlying biological mechanisms,
genes identified in one study often are not identified in
other studies [15]. Combining information from multiple
reported studies can also improve the reliability and
generalizability of results [16]. Therefore, meta-analysis
approaches have been used to identify consistent changes
across multiple datasets and have already been successfully
applied in different kinds of complex diseases [17–19]. For
example, two meta-analyses of ASD [20, 21] have analyzed
data from three human brain studies together with several
blood studies and have identified some genes and pathways
related to ASD with improved statistical power. Using
RNA samples from either peripheral blood or brain tissue,
these studies have identified many candidate genes such as
ATP5O, SLC25A12, and COX5B [20]. However, they have
mainly focused on mitochondrial [20] or ribosomal func-
tion [21], and currently, there is no potential solution for a
customized query of meta-analysis results. To solve this
problem, we built the database dbMDEGA, a new analyt-
ical tool that enables users to query for the statistical and
meta-analysis values of a specific gene, and that provides
reference datasets for exploring disease biology.
Moreover, another concern in ASD research relates to

heterogeneity and tissue diversity such as the differences
between blood and brain [19] and the differences among
different regions of the brain [11]. For ASD studies, the
advantage of using blood is that it is easier to collect
from patients. However, blood may not be relevant to
ASD or neurodevelopmental disorders, which presum-
ably originate in the brain. Then, there may be constitu-
tive differences in gene expression between the blood
and brain [19, 22]. Voineagu et al. [11] have reported
that gene expression changes associated with autism are
more pronounced in the cortex. Here, to discover
common DEGs in ASD with improved statistical power,
we applied a systematic meta-analysis to three human
brain gene expression datasets [6, 11, 23] with 84
collective frozen male cortex samples. Moreover, given
our ability to visualize the diversity of different brain
regions, states and sexes in people with autism com-
pared with unaffected controls; we also collected 53
collective human brain samples (including 17 female
cortex samples, 32 cerebellum samples and 4 formalin
fixed samples) from three human brain gene expression

datasets. Then, we established a database (dbMDEGA)
including 17,742 human genes as meta-results for query-
ing DEGs in ASD. Furthermore, to support discoveries
in human studies, we also collected the current brain
gene expression datasets for 14 ASD mouse models [24,
25] from 80 brain samples in five mouse datasets.

Construction and content
Data collection
We retrieved datasets from Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/gds) by using the
keyword “autism” on 3 May, 2015. Only expression pro-
files of brain tissue (cortex and cerebellum) from human
ASD studies and mouse ASD models were used in further
analysis (Tables 1, 2). Raw expression data generated by
the providers for 3 human ASD studies (GEO accession
numbers: GSE28475, GSE38322 and GSE28521) and 14
mouse models with ASD-related symptoms (GSE51612,
GSE62594, GSE40630, GSE32012, and GSE47150; Table 3)
were downloaded. Because the downloadable raw expres-
sion data for GSE28475 were already log2 transformed
and normalized via quantile normalization with the lumi
package in R language by the provider, to help ensure com-
parability and consistency, other raw expression datasets
were independently preprocessed through background
correction, log2 transformation and quantile normalization
or Robust Multiarray Average implemented in the“lumi
(for Illumina bead chip) [26]”, “limma (for Agilent bead
chip) [27]” or “affy (for Affymetrix bead chip) [28]” R pack-
age as appropriate (Table 4). Moreover, the downloaded
quantile normalization gene expression data for females
and for fixed brain tissues in GSE28475 were also log2
transformed to ensure consistency with the meta-analysis
data. To ensure comparability and consistency, we
excluded 5 female cortex samples that did not meet the
criteria (detected gene p < 0.05, outlier detection based on
sample distance to “Center”, boxplot of microarray inten-
sity) [6] of GSE28475 according to the reporter. The hu-
man brain sample information that was used in our
database, after removal of duplicated samples, is shown in
Additional file 1: Table S1 and Additional file 2: Table S2.
Mean gene expression values were computed for tech-

nical replicates to attain a single gene expression profile
for each subject. We also conducted “Differential expres-
sion analysis” on each dataset by using limma R package
[27] and obtained p-values for each probe between case
and control. Probes that did not map to a gene were
excluded. Then, all the p-values for each probe were
ranked, for multiple probes that mapped to a gene, only
probe with the lowest p-values was selected. All the gene
expression datasets were corrected for batch effects with
the ComBat function [29] of the R package sva [30].
Among all the datasets, the human studies contained
17,742 genes in common for meta-analysis, whereas in
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the mouse models, there were 12,109 genes in common
with the genes in the human studies.

Meta-analysis of gene expression data
Two meta-analysis methods were applied to the normalized
male cortex sample expression data [31, 32]. These two
methods that were applied to male cortex data were com-
pleted with the wrapper function of metaMA [32] in the R
package MAMA [33]. In brief, the first approach (effect size
combination method [32]) combines effect sizes from each
dataset into a meta-effect size to estimate the amount of
change in expression across all datasets. Datasets for each
of the three human gene expression studies were generated
from Illumina expression bead chips. The genes in com-
mon across studies were selected. Effect sizes for these
unpaired datasets were calculated from moderated t-tests
for each study, and then, these effect sizes were combined
by using an explicitly random-effect model [32]. The result,
denoted TestStatistic, is a vector with test statistics (“com-
bined effect size”) in the meta-analysis. Then, according to
the results of the test statistics, two-tailed p-values of the

effect size combination method for each gene were
computed, and Benjamini-Hochberg correction was used
to correct the p-values for multiple hypothesis testing [34].
A second approach (P-value combination method) that

combines P-values from individual experiments to iden-
tify genes with a large effect size in all datasets was also
used. In the P-value combination method, P-values for
these unpaired datasets were calculated from moderated
t-tests for each study, and then, these P-values were
combined by using an explicitly random-effect model [32].
The TestStatistic result is also a vector with test statistics
(“combined P-values”) in meta-analysis. Then, according
to the results of test statistics, two-tailed p-values of the
effect size combination method for each gene were com-
puted, and Benjamini-Hochberg correction was used to
correct the p-values for multiple hypothesis testing [34].
Overall, P-value combination methods usually outper-

formed effect size combination approaches regarding
sensitivity and gene ranking. Effect size combination
methods were found to be more conservative. The
ability of effect sizes to handle variance components

Table 1 Datasets of human brain used for Meta-Analysis

Data sets Platform Reference Tissue type Number of samples
ASD;Control

Brain (male)

GSE28475 GPL6883 (Illumina) Chow et al. (2012) Cortex 15;18

GSE28521 GPL6883 (Illumina) Voineagu et al. (2011) Frontal Cortex 9;14

GSE28521 GPL6883 (Illumina) Voineagu et al. (2011) temporal Cortex 7;11

GSE38322 GPL10558 (Illumina) Ginsberg et al. (2012) Occipital Cortex 4;6

35;49 = 84

Brain (female)

GSE28475 GPL6883 (Illumina) Chow et al. (2012) Cortex 5;4

GSE28521 GPL6883 (Illumina) Voineagu et al. (2011) Frontal Cortex 4;1

GSE28521 GPL6883 (Illumina) Voineagu et al. (2011) Temporal Cortex 3;1

Brain (other) 12;6 = 18

GSE28475 GPL6883 (Illumina) Chow et al. (2012) Formalin fixed Cortex 1;3

GSE28521 GPL6883 (Illumina) Voineagu et al. (2011) Cerebellum 5;11

GSE38322 GPL10558 (Illumina) Ginsberg et al. (2012) Cerebellum 8;8

Table 2 Datasets of mouse ASD model

Data sets Platform Reference Tissue type Number of samples ASD;Control

Brain

GSE62594 GPL13912 (Agilent) Shpyleva et al. (2014) Cerebellum 8;8

GSE51612 GPL7202 (Agilent) Sgadò et al. (2013) Cerebellum 3;3

GSE40630 GPL6246 (Affymetrix) Kong et al. (2014) Cerebellum 8;8

GSE47150 GPL1261 (Affymetrix) Lanz TA et al. (2013) Cortex 30;4

GSE32012 GPL6246 (Affymetrix) Horev G et al. (2011) Cerebellum, Cortex 5;3

54;26 = 80

Zhang et al. BMC Bioinformatics  (2017) 18:494 Page 3 of 8



was matched by P-value combination by using these
moderated t-tests [32].
In addition, forest plots of the human brain samples and

mouse brain samples were generated with the metacont
function of the R package meta [35]. Random effects
estimates for the meta-analyses were calculated with con-
tinuous outcome data, and the p value that was calculated
in these forest plots described a heterogeneity test. For
human brain samples, we applied the meta-analysis in the
metacont function [35] to generate three forest plots that
contained an only male cortex plot, an only cerebellum
plot and separate cortex plot of the male cortex, female
cortex and formalin cortex samples. For mouse model
brain samples, we also applied the meta-analysis to gener-
ate three separate forest plots that contained only the
cortex plot and two cerebellum plots of Affymetrix chip
and Agilent chip.

Design of database
After completion of the meta-analysis, the portal
dbMDEGA was established in R language by using the
Shiny R package [36], and it shows the calculated meta-
analysis results of the genes, the corresponding forest
plots and bean plots of the gene expression comparison
between cases and controls. The bean plot visualizes
univariate data between groups and shows data charac-
teristics such as density curves, repeated observations
and multimodal distribution. Users can access the estab-
lished database online to obtain the corresponding
meta-analysis results of this study.

Database content
The dbMDEGA was able to integrate ASD meta-analysis
results from human brain tissues and mouse models and
to display diverse annotations (Fig. 1). To help users and
to ensure that they obtain the results for genes in this
database, in the Common Gene Data of the Index sidebar
panel, a downloadable file is provided containing all the
common gene symbols used in the human studies and
mouse ASD models. When a user clicks the “Download”
mark below Common Gene Data, a common gene symbol
file can be downloaded to the user’s computer. Here, the
meta-analysis genes related to ASD, identified in three hu-
man studies (GSE28475, GSE28521, GSE38322), are anno-
tated with three data panels: (i) In the Meta-summary
panel, when users submit a gene, the unique meta-analysis
results for the male cortex, determined through our calcu-
lations, are shown for each gene along with a forest plot
showing the standardized mean difference in each of the
three human ASD studies. For comparing the influence of
brain regions, sex, and tissue state, this database provides
an additional two separate forest plots (one for cerebellum
samples and one for cortex samples, including female
cortex and formalin cortex samples) to show the standard-
ized mean difference in different parts of brain tissue and
the different sexes and states. (ii) In the Human-tissue
panel, statistical values of male cortex gene expression in

Table 3 Mouse models of ASD in five datasets

Mouse model Tissue type Dataset Experimental; Control

16p11.2(df/+) Cortex GSE32012 2;3

16p11.2(dp/+) Cortex GSE32012 2;3

MEF2D-KO Cortex GSE47150 3;4

NLGN1-KO Cortex GSE47150 4;4

PTEN-KO Cortex GSE47150 4;4

SHANK3-KO Cortex GSE47150 3;4

Fmr1-KO Cortex GSE47150 4;4

MeCP2-KO Cortex GSE47150 4;4

MEF2A-KO Cortex GSE47150 4;4

NLGN3-KO Cortex GSE47150 4;4

16p11.2(df/+) Cerebellum GSE32012 2;3

16p11.2(dp/+) Cerebellum GSE32012 3;3

Fmr1-KO Cerebellum GSE40630 5;5

Tsc2+/− Cerebellum GSE40630 3;3

En2−/− Cerebellum GSE51612 3;3

BTBR T + tf/J Cerebellum GSE62594 8;8

Table 4 Data processing of all gene expression datasets

Dataset Chip Type Data Processing R Package

Human

GSE28475 Illumina Quantile normalization and log2 transformation lumi

GSE28521 Illumina Quantile normalization and log2 transformation lumi

GSE28521 Illumina Quantile normalization and log2 transformation lumi

Mouse

GSE62594 Agilent Quantile normalization and log2 transformation limma

GSE51612 Agilent Quantile normalization and log2 transformation limma

GSE40630 Affymetrix RMA affy

GSE47150 Affymetrix RMA affy

GSE32012 Affymetrix RMA affy
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people with ASD compared with normal individuals in
each human study are displayed with a bean plot and a
summary of mean, median and quartile values for cases
and controls. (iii) In addition, we include a Mouse-model
panel for comparison, which shows three separate forest
plots (one for cortex samples and two cerebellum plots of
Affymetrix chip and Agilent chip) of DEGs between
mouse model and wild-type in 14 ASD models.

Utility and discussion
Search and display of dbMDEGA
User can click the “Download” button below Common
Gene Data to download the common gene symbols we
used in this database. The information in our database
can be searched and visualized in several ways. A typical
search result of our database is illustrated in Fig. 2. In this
case, searching for a gene in the common gene symbols
shows a list of information for this ASD-associated gene
in the Web sidebar and main panel. This list contains the
meta-analysis results, the candidate gene’s expression in
different human studies, annotated with bean plot and
summary results, and the results of mouse model studies,
as shown in forest plots. The list shows the following: (i)
In the Meta-summary panel, the user first inputs a gene
symbol or gene name into the sidebar panel and submits
the query. Then, the main panel reveals not only the
values of effect size, P-value and false discovery rate (FDR)
in the meta-analysis for this gene but also a forest plot of
male cortex data from three human brain studies. Add-
itionally, we provide two additional separate forest plots
(one forest plot is for only the cerebellum and another for-
est plot is for cortex, including female and formalin fixed
cortex) (Fig. 2a). (ii) In the Human-tissue panel, the user
can select a GSE number from the human ASD studies
(GSE28475, GSE38322, and GSE28521) and submit a
query in the sidebar. The main panel displays the query
gene’s expression diversity by using an intuitive bean plot
of only the male cortex in ASD individuals and normal

controls in the selected human ASD study. Additionally,
concrete summary data of the gene’s expression in cases
(human ASD) and controls (human non-ASD) is provided
(Fig. 2b). (iii) The Mouse-model panel also presents three
separate forest plots (one for cortex samples and two cere-
bellum plots of Affymetrix chip and Agilent chip) of the
queried gene among the 14 mouse model ASD studies, for
comparison (Fig. 2c). All the data in dbMDEGA are freely
available for academic users. dbMDEGA can be accessed
via (https://dbmdega.shinyapps.io/dbMDEGA/).

Discussion
In our study, a meta-analysis was performed on current
gene expression profiles of different brain tissues in human
ASD studies and mouse ASD model studies; then, an
open-access visualization database, dbMDEGA, was estab-
lished with our meta-analysis results. dbMDEGA is the
first database that displays the meta-analysis results of
candidate DEGs in ASD, and it facilitates the exploration
of unknown genetic causes of ASD. The corresponding
results in the database are available for online searching,
and may provide a reference for other researchers and
follow-up studies. Furthermore, our database model could
be replicated to study other disorders and establish corre-
sponding databases of meta-analysis results.
Compared with other databases related to ASD (such

as AutDB [37] and SFARI [24]), our database content is
based on a systematic analysis of the existing gene
expression datasets to indicate the overall differential
expression of ASD candidate genes in different ASD
studies. However, SFARI [24] and AutDB [37] both place
emphasis on classifying and summarizing the candidate
genes reported by published ASD studies. dbMDEGA
can be used more intuitively to detect genetic causes of
ASD. dbMDEGA can complement these two databases
by providing systematic gene expression profile data on
ASD, and it may help other researchers to further exam-
ine their genes of interest in ASD.

Fig. 1 A flow diagram for the collection, annotation and presentation of associated genes for ASD. (1) The data in this database were obtained from
our meta-analysis results and gene expression datasets of human and mouse ASD studies obtained from GEO DataSets (http://www.ncbi.nlm.nih.gov/
gds). (2) Gene entry is organized for searching in the database. (3) The developed database is presented
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Genes contained in the visualization database dbMDEGA
all have corresponding meta-analysis results and Forest
plots together with bean plots, thus providing researchers
with relatively more information that is intuitively un-
derstandable. For example, the reported neuronal specific
splicing factor A2BP1, identified in previous ASD studies
[10, 11], is statistically significant in dbMDEGA (TestStatis-
tic = 2.73, p-value = 0.00, FDR = 0.07). In addition, com-
pared with other existing meta-analysis reports, the
visualization database dbMDEGA based on meta-analysis
results has been consistent and inclusive. For instance,
significant cellular respiration genes such as ATP5O
(Meta P-value = 1.83 × 10–5), SLC25A12 (Meta P-
value = 2.98 × 10–4), and COX5B (Meta P-
value = 5.37 × 10–4) have been identified in other
meta-analysis results [20]; in dbMDEGA, these genes
also have a corresponding presentation (TestStatis-
tic = 2.92, p-value = 0.00, FDR = 0.05; TestStatis-
tic = 2.40, p-value = 0.01, FDR = 0.09; TestStatistic
=2.11, p-value = 0.02, FDR = 0.13).
Heterogeneity between tissue samples and different

studies is a considerable problem in expression profile
analysis. Observations in diverse tissues such as the dif-
ference between blood and brain [19] and the difference
among different regions of the brain [11] may be

inconsistent and have not been fully explored in other
meta-analysis studies of ASD. In our studies, only brain
samples were used to perform the meta-analysis. For
ASD studies, blood samples are easier to collect, but
changes in the gene profile in the blood may not be
observed in the brain, owing to tissue specificity [19, 22].
Hence, it is crucial to perform meta-analyses based on
human brain samples for ASD studies.
Moreover, Voineagu et al. [11] have proposed gene

expression differences between the cerebellum and cortex,
and have indicated that gene expression changes associated
with autism are more pronounced in the cerebral cortex.
Ch’ng et al. [20] have also separated the cerebellum tissue
and used the cortex of ASD cases and controls to conduct
a meta-analysis. However, the verdict on gene expression
changes between the cerebellum and cortex remains
unclear. To intuitively show the difference among different
regions of ASD in our database, we applied meta-analysis
to obtain two separate forest plots: an only male cortex
plot and an only cerebellum plot. Data from mouse models
have been applied to the meta-analysis to obtain three
forest plots that contain an only cortex plot and two
cerebellum plots of Affymetrix chip and Agilent chip
separately. To account for differences in sex and tissue
state, we also applied the meta-analysis to generate one

Fig. 2 Online display of dbMDEGA search results. The example shows retrieval of a candidate gene, ITPR1, in dbMDEGA, (a) The meta-analysis results
for male cortex together with three forest plots (for human male cortex samples; for human cerebellum samples; and for male, female and formalin
fixed cortex) are displayed. b The statistical values of the candidate gene in one human dataset and a bean plot of the cases and controls are presented.
c The candidate gene is also annotated with three forest plots of 14 mouse ASD model studies
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forest plot that contains a cortex plot of separate male
cortex, female cortex and formalin cortex.

Perspective
The occurrence of ASD, a severe neurodevelopmental
disease, has increased significantly in recent years. Accumu-
lating evidence suggests that genetic changes contribute to
ASD, and studies reporting candidate genes associated with
ASD are quickly accumulating. Here, we developed
dbMDEGA to facilitate the discovery of candidate genes
associated with ASD, on the basis of meta-analyses. In the
future, when more ASD studies have been performed, we
will update dbMDEGA accordingly.

Conclusions
dbMDEGA is a publicly available web-portal and new
analytical tool that allows for searchable meta-analysis
results based on the current reported brain gene expres-
sion ASD datasets. This database is designed to share
our meta-analysis results and provides valuable assist-
ance in the discovery of DEGs and the molecular patho-
genicity of ASD. Moreover, our database model could be
replicated to study other disorders.

Additional files

Additional file 1: Table S1. Brain samples of cortex included in the
meta-analysis. (DOC 93 kb)

Additional file 2: Table S2. Brain samples of cerebellum included in
the meta-analysis. (DOC 52 kb)
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