Beccuti et al. BMC Bioinformatics (2017) 18:516

DOI 10.1186/512859-017-1923-2 BMC BiOinfO rmatics

HashClone: a new tool to quantify the @
minimal residual disease in B-cell lymphoma
from deep sequencing data

Marco Beccuti'T, Elisa Genuardi?’, Greta Romano', Luigia Monitillo?, Daniela Barbero?,
Mario Boccadoro?, Marco Ladetto?, Raffaele Calogero®, Simone Ferrero? and Francesca Cordero!”

Abstract

Background: Mantle Cell Lymphoma (MCL) is a B cell aggressive neoplasia accounting for about the 6% of all
lymphomas. The most common molecular marker of clonality in MCL, as in other B lymphoproliferative disorders, is
the ImmunoGlobulin Heavy chain (IGH) rearrangement, occurring in B-lymphocytes. The patient-specific IGH
rearrangement is extensively used to monitor the Minimal Residual Disease (MRD) after treatment through the
standardized Allele-Specific Oligonucleotides Quantitative Polymerase Chain Reaction based technique. Recently,
several studies have suggested that the IGH monitoring through deep sequencing techniques can produce not only
comparable results to Polymerase Chain Reaction-based methods, but also might overcome the classical technique in
terms of feasibility and sensitivity. However, no standard bioinformatics tool is available at the moment for data
analysis in this context.

Results: In this paper we present HashClone, an easy-to-use and reliable bioinformatics tool that provides B-cells
clonality assessment and MRD monitoring over time analyzing data from Next-Generation Sequencing (NGS)
technique. The HashClone strategy-based is composed of three steps: the first and second steps implement an
alignment-free prediction method that identifies a set of putative clones belonging to the repertoire of the patient
under study. In the third step the IGH variable region, diversity region, and joining region identification is obtained by
the alignment of rearrangements with respect to the international ImMunoGenetics information system database.
Moreover, a provided graphical user interface for HashClone execution and clonality visualization over time facilitate
the tool use and the results interpretation. The HashClone performance was tested on the NGS data derived from MCL
patients to assess the major B-cell clone in the diagnostic samples and to monitor the MRD in the real and artificial
follow up samples.

Conclusions: Our experiments show that in all the experimental settings, HashClone was able to correctly detect the
major B-cell clones and to precisely follow them in several samples showing better accuracy than the state-of-art tool.
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Background

In the last years, the introduction of new drugs and ther-
apeutic schedules have improved the clinical outcome
of patients affected by hematologic disease, especially in
B-cell lymphoma [1]. Despite the significant therapeu-
tic progresses reached, several patients still relapse and
die due to the emergence of resistant new clones. Based
on these reasons, molecular markers detection at diag-
nosis and early identification of patients at high risk
of relapse during the natural history of the disease are
the major objectives of current onco-hematology trans-
lational research. Therefore, a relevant challenge is to
support the clinical therapeutic decisions through the
identification and the monitoring of the clonal subpopu-
lations in a prospective way, using methods that quantify
residual tumour cells beyond the sensitivity level of rou-
tine imaging and laboratory techniques [2].

In B cell lymphoproliferative disease, ImmunoGlobulin
Heavy chain (IGH) gene rearrangements are powerful
markers able to identify the variation patterns of the clonal
subpopulations. The IGH rearrangement is a unique DNA
sequence that is generated during physiological recom-
bination event occurring in pre-B lymphocytes and fur-
ther modified in the germinal center during somatic
hypermutation process [3]. Indeed, deletions as well as
random insertions of nucleotides among the VD] gene
segments of the IGH genes create a huge junctional diver-
sity. Such a highly diverse junctional repertoire gives rise
to unique fingerprint-like sequences that are different
in each healthy B-lymphoid cell (polyclonal), but con-
stant in tumour population (monoclonal) [4] that retains
the IGH rearrangement of the B cell giving rise to the
tumour clone.

Markers detection and Minimal Residual Disease
(MRD) monitoring are currently part of the routine
clinical management of patients affected by Acute
Lymphoblastic Leukemia and currently under validation
in other B-mature lymphoid tumours, as Mantle Cell Lym-
phoma (MCL) [5], Follicular Lymphoma [6] and Multiple
Mieloma [7]. In this context, the term MRD monitoring is
used to define any approach aimed to detect and quantify
residual tumour cells beyond the sensitivity level of rou-
tine imaging and laboratory techniques. Basically, in many
clinical trials MRD is monitored by Polymerase Chain
Reaction (PCR) based methods with the aims to predict
therapeutic responses and guide clinical decisions to min-
imize the likelihood of clinical relapse [8]. Several studies
[9, 10] show that clonal IGH rearrangements detection
and MRD monitoring based on these markers are power-
ful early predictors of therapy response and outcome in
B-mature lymphoid tumours. Currently, Sanger sequenc-
ing and Allele-Specific Oligonucleotides quantitative-PCR
(ASO g-PCR) are the best approach for these purposes
and MRD monitoring techniques standardization has
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been obtained in the context of the international Euro
MRD group.

Although ASO q-PCR is able to detect one clonal cell
out of 500.000 analyzed cells (reaching a sensitivity of up
to a dilution of 179) [4], it has a number of limitations
including (i) failures in marker identification, especially in
somatically hypermutated neoplasms or when the tumour
tissue infiltration is low, (ii) technical complexity, espe-
cially in the design of patient-specific reagents based on
the main clone found in diagnostic samples and (iii) false-
negative results due to clonal evolution events [11].

In this context, Next-Generation Sequencing (NGS)
technology might overcome the limitations of the stan-
dardized ASO q-PCR MRD method thanks to its theoret-
ically higher feasibility and sensitivity. A good correlation
of MRD results between the two techniques has been
already shown in [11] (p-value < 0.001, R = 0.791), with
excellent concordance in 79.6% of the analyzed cases.

Moreover, NGS MRD approach might provide a full
repertoire analysis through multi-clones detection at diag-
nosis and it gives the opportunity to monitor all the
neoplastic clones at several follow ups. However, this issue
requires suitable computational algorithm. Actually, the
large volume of data, collected thanks to the advent of
deep sequencing technologies, raises multiple challenges
in data storage and data analysis, to efficiently extract new
knowledge from the biological processes under study.

In literature, there are several tools as JoinSolver
[12], HighV-QUEST [13], iHMMune-align [14], SoDA2
[15] ,VDJ]Seq-Solver [16], ARRest/Interrogate [17] and
ViDJil [18] currently implemented for marker screening
and detection of IGH rearrangements on a set of reads
obtained from deep sequencing experiment of a single
sample. Details about all cited algorithms are reported in
the Additional file 1.

In this paper we present a new tool called HashClone, an
easy-to-use and reliable bioinformatics suite that provides
B-cells clonality assessment and MRD monitoring over
time. HashClone is composed of four C++ applications for
the data processing and a HTML5+]Javascript application
for the data visualization. The HashClone strategy is com-
posed of three steps: the first and second step implement
an alignment-free prediction method that identifies a set
of putative tumour clones belonging to the repertoire of
the patient under study. In the third step the IGH vari-
able region (IGHV), diversity region (IGHD) and joining
region (IGHJ) identification is obtained by the alignment
of rearrangements with respect to the InMunoGeneTics
information system (IMGT) reference database [19].

In this paper, we tested the performance of HashClone
on data derived from MCL patients, in which IGH rear-
rangements were analyzed using NGS approach in order
to assess the major B-cell clone in the diagnostic sample
and to monitor the MRD. The results were also compared
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with data obtained by the standardized approach for MRD
monitoring, the ASO q-PCR.

Methods

The whole experimental and computational methodol-
ogy presented in this paper is outlined in the Additional
file 2: Figure S1. In the following details about wet lab
procedures and the HashClone algorithm are reported.

Patients and genomic DNA recovering

Biological samples were collected from five patients
affected by MCL enrolled in Fondazione Italiana Linfomi
prospective clinical trial (EudraCT Number 2009-012807-25).
Samples were recovered at diagnosis and for three out
of five patients also during fixed time points planned by
clinical trials. All of them provided written informed con-
sent for the research use of the biological samples and all
the procedures were conducted in accordance with the
Declaration of Helsinki. See Additional file 1 for more
details. Mononuclear cells were obtained using Ficoll
density separation (Sigma-Aldricht; Germany) or blood
lysis from peripheral blood or bone marrow samples;
genomic DNA (gDNA) was extracted according to the
manufacturer instructions (LifeTechnologies). The fea-
tures of the samples analyzed are reported in Additional
file 3: Table S1.

IGH rearrangements screening and MRD monitoring

IGH rearrangements screening and MRD study were per-
formed using both an NGS approach and the gold stan-
dard techniques, i.e. Sanger sequencing and ASO q-PCR.

Next generation sequencing approach

The DNA libraries were prepared using 500 ng and 100 ng
of gDNA by two-steps PCR approach: in the first round,
the IGH regions were amplified using FR1 BIOMED II
primers [20], modified with an universal Illumina adapter
linker sequence; while in the second PCR round, Illumina
specific indexes (Illumina; Sigma-Aldrich) were incorpo-
rated to the first round PCR IGH amplicons [21]. After
a Bioanalyzer QC control (Agilent), the purified PCR
products were serially dilute and pooled to a final con-
centration of 9pM adding 10% PhiX. The sequencing run
was carried out by Illumina V2 kit chemistry 500 cycles
PE on MiSeq platform. A polyclonal sample, called buffy-
coat DNA, and negative control (water or HELA cell line)
were added to each run. More details are reported in the
Additional file 1.

Sanger sequencing and ASO gq-PCR approach

Diagnostic gDNA was screened for IGH rearrange-
ments using consensus primers (Leader and Framework
Regions (FR) 1 and 2), as previously described [22]. Puri-
fied post PCR products were directly sequenced and
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analyzed using the IGH reference database published
in IMGT/V-QUEST tool (http://imgt.org) [23]. MRD
monitoring was conducted by ASO q-PCR on 500 ng
of gDNA, using patient specific primers and consen-
sus probes designed on Complementarity-Determining
Region 2 (CDR2) sequences, on CDR3 and FR3 IGH
regions, respectively [24]. MRD results were interpreted
according to the ESLHO-Euro MRD guidelines [4].

The HashClone algorithm

The HashClone strategy is organized on three steps.
The significant k-mer identification (Step 1) and the
Generation of read signatures (Step 2) implement an
alignment-free prediction method that identifies a set of
putative tumour clones from patient’s samples; while in
Characterization and evaluation of the cancer clones
(Step 3) the IGHV, IGH] and IGHD identification is
obtained via the alignment of rearrangements with
respect to the IMGT reference database [19]. A detailed
description of these three steps is now reported.

HashClone - description of the strategy

Significant k-mer identification (Step 1). In this step
the entire set of reads for each of the # patient’s samples
is scanned and a set of sub-strings of length &, namely k-
mers, is generated using a sliding window approach. For
instance given the read ATCCCGTC the following k-mers
with k = 3 are generated: ATC, TCC, CCC, CCG, CGT
and GTC.

Formally, given an alphabet £ = {A, C, T, G} where the
letters correspond with DNA-bases we define p, namely
read, as a string over L of arbitrary length m, and A as
the set of strings of length k constructed from L. Then,

o __ k k+1 m
A,< = {ozl,ot2 oo O

k generated from p using sliding window approach s.t.
ozll,fﬂg s the sub-string of p starting at position p, span-
ning k characters and ending at k + p — 1. We define the
function:

} is the set of strings of length

C: A} > N (1)

s.t. for each k-mer returns a vector listing the total number
of times this k-mer appears in any patient’s sample (i.e. k-
mer frequencies for patient’s samples). Thus, C(a)[i{]= &
with 1 < i < n, iff k-mer « is present in /4 reads of the
sample i.

Then, a k-mer « is defined as significant iff 31 < i,j <n
such that:

llogio(C()[i]) — logro(C(@) /DI = 7, if C(@)[i] # 0 A C(e)[j] # 0
logio(C()[/]) = 7, if C()[i]=0AC()[j]# 0
logio(C()[]) = 7, if C(@)[i] #0AC(@)[j]=0

2)
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where 7 is a user-defined parameter. The choice of an
appropriated t value can impact on the capability of Hash-
Clone to identify clones. A detailed analysis about this
aspect and the set of t value used in the Pilot] and Pilot2
experiments are reported in the Additional file 1.
Moreover, we introduce the following function:

CH : AY — {TRUE,FALSE} 3)

that takes as input a k-mer « and returns TRUE iff «
is a significant k-mer otherwise FALSE. For instance,
assuming # = 3, = 1,and C(ATC) = (1000, 2000, 25000)
then CH(ATC) returns TRUE because |log1o(C(ATC)[1])
—logio(C(ATO)[3])| = 1.

Thus, CH function is used to derive the set of significant
k-mers W = {yr1,..., Y}

Generation of read signatures (Step 2). This step takes
as input the set W of all the significant k-mers, and it gen-
erates the read signatures. Given a patient’s sample i, for
each read p all its k-mers are analyzed to derive the cor-
responding read signature. A k-mer o € A} is selected
iff « € W, then all the selected k-mers are combined to
generate a read signature according to their positions in p.

For instance, considering the read ATCCCGTC and
assuming CCC, CCQG, CGT the only significant k-mers in
the read the corresponding signature is CCGT. Defined
I'i = {y1,...,Ve} the set of read signatures obtained for
the sample i, the function:

CS:FI'—>IN (4)

returns the total number of reads of sample i in which the
signature y appears (i.e. signature frequency in patient’s
sample ).

When the entire set of reads of sample i is scanned,
the set of generated signatures I'; is processed to iden-
tify those similar (with respect to a fixed number of
mismatches, insertions and deletions) using a Smith-
Waterman algorithm. Practically in this correction step
two signatures y,y’ € T; are considered similar if their
alignment score computed by Smith-Waterman algorithm
is greater than a specified threshold T. Hence, the signa-
ture y with lower frequency is removed from the set of
signatures and its frequency is added to the frequency of
the other signature y’, i.e. CS(y") = CS(y) + CS(y")

Characterization and evaluation of the cancer clones
(Step 3). This step takes as input the sets of signatures
I'1,..., [, generated from each patient’s sample in the
Step 2. We define the set of putative cancer clones A
(initially empty), and the function:

CC: A — IN" (5)
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that for each clone § returns a vector listing the total
number of times this clone appears in any patient’s sample.

A is incrementally updated processing the signatures
into each set I'; (starting from I'; to I'y,). For each signa-
ture y € TI'; a similar putative cancer clone is searched
in A. The similarity between a clone and a signature is
evaluated using the same strategy proposed for the cor-
rection step. If a similar clone is not found then a new
one identified by the signature sequence y is inserted in
A and its associated frequencies are defined as follows: let
y be a signature in I'; and § the corresponding new clone
thenVl < j < mnAj # i = CC@)[jl= 0, while for
j=1i= CCO)[jl= CS(y). Instead, if a similar clone is
found then its frequencies are updated as follows: let y be
a signature in I'; and the § the corresponding similar clone
then CC(8)[{] = CC(8)[i] +CS(y).

Finally, the putative cancer clones in A are veri-
fied exploiting biological knowledge. Indeed, all the
identified putative clones are analyzed and evaluated
using IMGT reference database (http://www.imgt.org/
download/GENE-DB/). For each clone, its best align-
ments with respect to V-GENE, J-GENE, and D-GENE are
reported and ranked according to a similarity measure (i.e.
matched bases divided matched and unmatched bases).

HashClone - implementation details

HashClone strategy described above, has been imple-
mented thanks to tool suite specifically developed for this
purpose. This tool suite, called HashClone, is composed
of four C++ applications for data processing and one
HTML5+]Javascript application for the data visualization.
Moreover, a Java-GUI has been also developed to simplify
the data processing phase.

Data processing applications are:

e HashCheckerFreq takes as input reads of a patient’s
sample and returns the corresponding set of k-mers
associated with their frequency in the input reads.
The k-mers and their frequency are stored in RAM as
an associative array achieved through a C++ hash
table class specifically implemented to optimize the
trade-off between the memory utilization and the
execution time. Observe that this class implements a
separate chaining as collision resolution policy to
deal with the case of different k-mers having a similar
hash value.

e CompCheckerKmer takes as input all the k-mers
derived by all the patient’s samples and their
frequencies, and it analyses the k-mer frequencies in
each patient’s sample to derive the set W of significant
k-mers (as defined in Eq. 2). This is achieved by
exploiting an associative array, implemented through
a red-black tree data structure. Hence, in this


http://www.imgt.org/download/GENE-DB/
http://www.imgt.org/download/GENE-DB/

Beccuti et al. BMC Bioinformatics (2017) 18:516

associative array the array keys are the k-mer
sequences and the array values the k-mer frequencies.
In this application, a red-black tree data structure
was used (instead of hash table) because we are going
to investigate the possibility of implementing an
efficient correction step (up to m mismatches) based
on the characteristic of this data structure.

e HashCheckerSignature takes as input the significant
k-mers and the set of reads of i sample and returns
the set of read signatures for this sample (i.e. I';) with
their frequencies. The k-mers are stored using the
implemented hash table class, while the generated
signatures are stored using red-black tree. A
correction step identifying similar signatures (with
respect to mismatches, insertions and deletions) is
performed exploiting the implementation of the
Smith-Waterman algorithm provided by SIMD
Smith-Waterman C++ library [25]. In our
implementation the T threshold previously
introduced (in the Step 2, Generation of the read
signature) to discriminate between similar reads is
automatically derived as follows:

IF max (sizey,, sizey,) x 0.7 > min (sizey,, sizey, )
THEN RETURN (max(size,,, size,,) * M)

ELSE RETURN

((M*4/5~-MM=2/50—IN %2/10) * max(size,, , size,,))

where size,, and size,, are the lengths of the two
input signatures y1, 2, and M, MM and IN are the
match, mismatch and insertion/deletion scores
defined in the Smith-Waterman algorithm.
Moreover, in our experiment we set M and MM
score values equal to 2, and IN score value equals

to 3. Observe that if the length of the smaller read is
less than 70% of the length of the other then the reads
y1, 2 are always considered different.
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Similar signatures among the samples are identified
using the Smith-Waterman algorithm provided by
SIMD Smith-Waterman C++ library. Then each
identified putative tumour clone is analyzed to
identify its best alignment with respect to V-GENE,
J-GENE, and D-GENE. This task is performed thanks
to a specifically developed aligner which uses a
modified version of Smith-Waterman algorithm to
find the best alignment of such clones with respect to
the IMGT reference database.

Figure 1 shows how the above described C++ applica-
tions are combined in a workflow to implement Hash-
Clone strategy for B-cells clonality assessment and MRD
monitoring from collected samples of a single patient.
Practically, HashCheckerFreq is executed on each patient’s
sample at a time to derive the k-mers and their associ-
ated frequencies. The collected set of k-mers generated by
all the patient’s samples are the input of CompCheckerK-
mer, which computes the set of significant k-mers. Then,
HashCheckerSignature is run on each patient’s sample to
obtain the set of read signatures from the set of significant
k-mers. Finally, CompCheckerRead is executed to derive
the putative clones from the read signatures obtained
by all patient’s samples. It is worth noting that since
HashCheckerFreq and HashCheckerSignature are called
on each patient’s sample then they are independent tasks
and can be performed in parallel. Moreover, a Java GUI is
provided to simplify the execution of this workflow. The
tool suite and its associated Java GUI can be downloaded
at the following address http://tanto.unito.it/ WebVisual/.

Data visualization The developed application is a web
application (http:/tanto.unito.it/WebVisual/) based on
jQuery, a cross-platform JavaScript library which provides
capabilities to create plug-ins on top of the JavaScript

e CompCheckerRead takes as input the sets of library. The web application visualizes the cancer clones
signatures for each patient’s sample (i.e. I'1,...,T), in a data-grid, in which the first column called Signa-
and it derives the set of putative cancer clone A. ture reports all the significant k-mers are combined to

Patient,  Significant k-mer identification G ion of read sig Characterisation and evaluation of the cancer clones

At DIA t:H HashCheckerFreq | —» k-mers,

t.(wcme,qu

CompCheckerKme

k-mer

Fu2
FUn ‘,»N HashCheckerFreq | —» | k-mers,

Fig. 1 HashClone pipeline. The three steps at the basis of HashClone strategy are highlighted: the first step (red box) regards the significant k-mer
identification considering all samples to be analyzed and generating the set of k-mers; the second step (green box) is focused on the generation of
read signatures leading to the identification of the set of putative clones from patient’s samples; the third step (blue box) is dedicated to the

characterization and evaluation of the cancer clones
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generate the read signatures used to define the set of
putative cancer clones; the second column namely Clone
reports a representative read for each read signature; the
next six columns show the best IGHV, IGHD, and IGH]
alignments with their associated identity values, and the
remaining columns report the clone frequency in each
sample.

Exploiting the functionality provided by the jgxGrid
widget, the user can easily manipulate and query the data
presented in the data-grid. For instance all the clones
can be ordered with respect to each column or set of
columns, and they can be filtered according to their fre-
quencies or the occurrence of a specific sub-sequence.
Then, the frequencies of tumour clones can be plotted
and graphically compared using Flot, a JavaScript plot-
ting library for jQuery. The obtained graph can be also
exported as a png file.

Results

Patient samples and study design

Five MCL patients (PatA-E) were investigated for IGH
detection and MRD monitoring using a new designed
amplicon-based NGS approach. Two Pilot studies, namely
Pilot1 and Pilot2 were performed, details about the sam-
ple are summarized in Additional file 3: Table S1. In
Pilot1 the five diagnostic samples and two (for PatD)
and three (for PatA, B, C, and E) artificial dilution sam-
ples were analyzed. These samples were prepared dilut-
ing the diagnostic material in a pooled DNA derived
from healthy subjects (“buffycoat”); the same buffycoat
was included in the experiment, as polyclonal control.
The 19 libraries were prepared using 500 ng of gDNA
and sequenced as described in Material and Methods
section. The data are available at http:/tanto.unito.it/
WebVisual/. The average number of reads in each sam-
ple is equal to 481,289 (range: from 328,950 to 1,042,206
reads). The buffycoat sample contains 301,772 reads
and the negative control (water) contains 466,348 reads.
The quality check of the runs was performed using
FastQC software (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) among the features considered the
base quality (average value equals to 36) and the N content
passed the check.

In Pilot2 the five diagnostic samples and three (PatA) or
four (PatB and E) real FU samples were sequenced. To test
the efficiency of our wet lab procedures, 14 libraries were
prepared reducing the gDNA input to 100 ng each. The
average number of reads is equal to 316,789 (range: from
6,554 to 1,509,538 reads), while the buffycoat sample con-
tains 478 reads and the negative sample (HELA cell line
not carrying IGH rearrangements) contains 788 reads. As
performed in Pilot1, we checked the quality of the data by
FastQC software, but both base sequence quality (average
value equals to 20) and N content features failed the check.
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Strategy for B-cell clones selection and biological
validation

Five and three runs of HashClone were executed, one
for each patient of Pilotl and Pilot2, respectively. Each
run simultaneously analyzed the diagnostic sample and all
artificial or clinical follow ups; the command lines used
are reported in the Additional file 1. HashClone output
displays the entire list of the identified B-cell clones asso-
ciated with the frequency value, the IGH rearrangement
(in terms of VD] genes and alleles), and homology identity
values. Among all the reported B-cell clones, it is nec-
essary to define the predominant clones that should be
followed for MRD purpose. For this reason, we designed a
filtered strategy composed of two phases.

In the Phase-A we selected a set of predominant clones
based on the frequency values observed in the diagnos-
tic samples. As reported by Faham and colleagues in [26]
any clonotype associated with low frequency value was
prudentially not considered representative of the disease.
The authors indicated a threshold of 5% that, in our exper-
iments corresponds to 100 reads. Thus only the clones
associated with a frequency value major than 100 in the
diagnostic sample were considered.

In the Phase-B we considered the identity values asso-
ciated with each B-cell clones: only the clones associated
with more than 80% of homology in each IGHV, IGHD,
and IGH]J genes are considered.

Clonality and major B-cell clone detection

Clonality. The set of B-cell clones obtained by HashClone
on both the Pilotl and Pilot2 are processed following the
filtered strategy presented above. In the diagnostic sam-
ples of the five patients of Pilotl, HashClone identified
an average value of 1547 clonotypes (min 870, PatD; max
2149, PatC). The application of the Phase-A selected on
average 38 clones of which on average 22 B-cell clones
were retained in the analysis after the Phase-B. The aver-
age number of reads supporting these selected clonotypes
is 100,929.

In Pilot2 HashClone identifies an average value of
96 clonotypes (min 77, PatE; max 278, PatB). The
Phase-A filters out around 18% of the clonotypes: on
average 18 clones were passed to the Phase-B. On aver-
age 6 clones passed the Phase-B, the average number of
reads supporting the selected clonotype is 141,570. Details
about the results in both the Pilot studies are reported
in Table 1.

In PilotI each of the five diagnostic samples clearly dis-
played one major clone with an average frequency of 93%
(min 82%, PatB; max 98% PatA); while the other identi-
fied B-cell rearrangements showed an average frequency
value equals to 7% (min 2% PatA; max 18% PatB), see Fig. 2
and Additional file 4: Figure S2. In Pilot2 the predomi-
nant clone is easily identified since its average frequency
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Table 1 Clonotypes identified with HashClone analysis and IMGT

validation
Phase A Phase B
Study  Patient Clonotype Clonotype with  Clonotype with
(only diagnosis identified frequency VDJ homology
samples) >100 >80%
Pilot1 A 1616 12 7
B 1703 59 33
C 2149 72 44
D 870 10 5
E 1398 35 21
Average value 1547 38 22
Pilot2 A 96 18 6
B 278 72 1
E 77 5 0
Average value 150 32 6

For each patient of both Pilot studies the total number of identified clonotypes
(third column) is reported. The number of clonotypes with a frequency greater than
100 were selected and passed the Phase A are reported in fourth column. Then
from the Phase A, clonotypes with a VDJ homology greater than 80% were selected
and passed the Phase B (fifth column). The average value are reported in bold

is 88% (min 73%, PatB; max 99% PatE) while the other B-
cell clones showed an average frequency value of 12%. See
Additional file 4: Figure S2 for more details.

Major B-cell clone detection. Before dealing with the
details about the HashClone results accuracy, we tested
the performance of the IGH alignment implemented in
HashClone (i.e. Step 3) using the Stanford_S22 dataset.
We considered the paper of Jackson et al. [27] in which
the authors evaluated the performance of seven algo-
rithms handling the thousands of IGH rearrangements in
Stanford_S22 dataset to identify the IGHV, IGHD and
IGH] assignments and compare these back to the known
genes from the inferred genotype for the subject. The
overall error for HashClone is equal to 1.8% that is
the lowest value compared to the overall error percent-
ages reported by Jackson, ranging between 7.1% (using
iHMMune-align algorithm) and 13.7% (using Ab-origin
algorithm).

For each patient the predominant clone identified
by HashClone was compared with the IGH mono-
clonal rearrangement identified by Sanger sequencing,
in terms of IGHV, IGHD and IGH] nucleotide homol-
ogy, using BLASTn algorithm http://blast.ncbi.nlm.nih.
gov. Four out of five diagnostic samples of Pilotl (PatA,
C, D and E) showed exactly the same IGH rearrange-
ment, in terms of IGH gene annotation and 100%
nucleotide homology with respect to the Sanger sequence.
Also Patient B showed the same rearrangement excepted
for three nucleotide mismatches. On the other hand, a
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lower nucleotide homology (ranging from 44 to 66%) was
noticed in Pilot2, due to the high number of unknown
base calls (N) introduced by sequencing in the variable
regions. Nevertheless, HashClone was still be able to
assign the correct IGHV and IGH] annotations, perfectly
comparable with the Sanger results. These results are
reported in Table 2.

Minimal residual disease monitoring

To monitor the MRD, HashClone tracks the clonotypes
evolutions analyzing simultaneously the data from the
diagnostic and the serial dilutions (PilotI) or FU samples
(Pilot2). Therefore, we compared the HashClone perfor-
mance with the standardized results of the classical ASO
q-PCR.

To make the MRD quantifications comparable between
the two approaches, we set up a proportion between the
total reads number of the major MCL clone at diagno-
sis (HashClone) and the ASO ¢-PCR value. In details,
patients A, C, D, and E had a high tumour infiltra-
tion (ASO q-PCR value of 1E+00 according to EuroMRD
guidelines) [4]; while patient B started from an ASO
q-PCR value of 1E — 01, according to a lower tumour infil-
tration. These data are confirmed by a 2.5% CD5"/CD19™
MCL cells rate by flow cytometry.

HashClone was able to perfectly extract the MRD trend
kinetics in the dilution/FU samples of the five MCL
patients in both Pilot studies. Figure 3 reports the trends
of PatB and Pat E (Pilotl) and PatA and PatE (Pilot2).
Overall, the correlation analysis showed a high concor-
dance between ASO q-PCR and the NGS technology
(R?=0.86), see Fig. 4 Panel a. Indeed 30 out of 33 points
are concordant: in Pilot] HashClone overestimates the
frequency value in one case point; in Pilot2 ASO q-PCR
overestimates the frequency value in two cases.

Evaluation of Hashclone accuracy with respect to ViDJil
algorithm

We compared the accuracy of HashClone with respect
to ViDJil algorithm. At the best of our knowledge,
ViDJil is the only tool currently able to analyze the
high-throughput sequencing data from lymphocytes,
to extract IGHV, IGHD, and IGH] junctions and to gather
them into clones for quantification. ViDJil quantifies the
clonotype abundances through a first ultrafast predic-
tion of putative rearrangements by a seed-based heuristic
analysis and it outputs a window overlapping the CDR3
with the IMGT reference database. The putative clone
sequence identified is further processed to obtain its full
IGHV, IGHD, and IGH] segmentation. Moreover, ViDJil
can carry out the MRD analysis thanks to a web multi-
sample application able to track selected clones in the
diagnostic samples through different runs on different FU
samples.
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Fig. 2 Clonality analysis in MCL patients. Pie plots showing the distribution of the frequency percentage associated with the B-cell clones passed the
filter strategy in the five diagnostic samples of Pilot1. Into each pie plots it is reported the frequency percentages associated with the major clone.
The histogram reports the number of B-cell clones passed the filter strategy in each patient
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The strategy used to analyze the ViDJil results is com-
posed of two phases: the Phase-A is the same imple-
mented for HashClone, in the Phase-B since ViDJil
associates the clones with the VD] genes and alleles with-
out reporting the homology values, we consider only the
clones associated with one IGH rearrangement.

The set of B-cell clones obtained by ViDJil on both the
Pilot1 and Pilot2 and those filtered by Phase-A and Phase-
B are reported in Additional file 5: Figure S3. More details
about the number of reads associated with each clone are
reported in Additional file 6: Figure S4. In Pilotl ViD-
Jil is able to detect the major B-cell clone in all patients,
the CDR3 regions detected in patients A, C, D and E
have 100% homology with respect to the Sanger sequence,
while patient B has an homology value equal to 93%, as
reveled by HashClone. In Pilot2 the elevated number of N
base calls masking the CDR3 regions did not allow ViDJil
to correctly annotate the IGHV, IGHD, and IGH]J in any
patient, so that the nucleotide homology value dropped
to 0 with respect to the Sanger sequence, see Additional
file 7: Figure S5. In contrast, as described above, the Hash-
Clone performance was not hampered by the number of
N base calls in the Piloz2.

We also compared the MRD quantification of all sam-
ples of both Pilot1 and Pilot2 between ViDJil and the ASO
q-PCR data. Figure 4 reports the correlation analysis of
all samples between HashClone and the ASO q-PCR data
(Panel a) and between ViDJil and the ASO g-PCR data
(Panel b). It is worthwhile to note that the concordance
between HashClone and ASO q-PCR is higher than the
concordance between ViDJil and ASO q-PCR, 86% versus
80% respectively.

Discussion

In this paper we have presented a new tool suite called
HashClone. HashClone is an easy-to-use and reliable
bioinformatics suite that provides B-cells clonality assess-
ment and IGH-based MRD monitoring over time. To test
its performances we analyzed two NGS experiments tar-
geting the IGH rearrangements in samples obtained from
patients affected by MCL.

Our results showed that HashClone was able to detect
the major B-cell clone in MCL patients, these clono-
types are indeed confirmed through the classical Sanger
sequencing approach. Moreover, HashClone efficiently
analyzed NGS data to monitor the MRD, providing highly
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Table 2 HashClone and Sanger Sequence comparison
Study Patient CDR3 Sanger sequence CDR3 HashClone sequence Homology
pilot 1 A GCGAGAGATCCAGGGTATAGCAGTGGCTGGAA GCGAGAGATCCAGGGTATAGCAGTGGCTGGAA 100% (63/63 nt)
CCTGGGATACTACTACTACGGTATGGACGTC CCTGGGATACTACTACTACGGTATGGACGTC
TGTGCGAGAAGCAATTTTGGAGTGGTCTAAAT TGTGTGCGAATCAATTTTGGAGTGGTCTAAAT 93% (42/45 nt)
B TACATGGACGTCT TACATGGACGTCT
C CGAGAGATTACACAGCCCCGGGTATAGCAGAA CGAGAGATTACACAGCCCCGGGTATAGCAGAA 100% (42/42 nt)
CCAGGCCCCT CCAGGCCCCT
TGCGAGAGGCGCGAATAACTGGAACCCCATTG TGCGAGAGGCGCGAATAACTGGAACCCCATTG 100% (36/36 nt)
D ACTA ACTA
E GCGACCCAGCGAAATTACGATATTTTGACCGG GCGACCCAGCGAAATTACGATATTTTGACCGG 100% (43/43 nt)
GTTTGACTACT GTTTGACTACT
Pilot2 A GCGAGAGATCCAGGGTATAGCAGTGGCTGGAA GCGAGANNNNCANNNTATANCANNNGCTGGAA 66% (39/59 nt)
CCTGGGATACTACTACTACGG CNNNGGATACTACTACTACGG
TGTGCGAGAAGCAATTTTGGAGTGGTCTAAAT TGTGCGNNAATGANTTNNNNNGNNGTCTAAAT 64% (28/45 nt)
B TACATGGACGTCT TAAATNNNCNTCT
E GCGACCCAGCGAAATTACGATATTTTGACCGG GCGACNNTGNNNNNTTNNNNNNTTTNGANCNN 44% (19/43 nt)

GTTTGACTACT

NNNTNAANACT

The label of the table should be changed with the following sentence: This table reports the comparison in terms of IGHV, IGHD, and IGHJ nucleotide homology between the
predominant clone identified by HashClone and the IGH monoclonal rearrangement identified by Sanger sequencing for each patient. Last column reports the homology
between the two sequences as difference in nucleotide content and percentage. Bold and underline sequences correspond to the patient specific insertions among IGHV,
IGHD, and IGHJ rearrangement. Red nucleotides in the sequences are those who differ between two sequences. N: unknown base calls
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Fig. 3 MRD trend comparison. MRD trend obtained from ASO g-PCR (blue line) and HashClone (red line) of Patient B and E of Pilot7 and patient A
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Fig. 4 Correlation analysis. Scatter plot of the correlation analysis
between HashClone and the ASO g-PCR data (Panel a) and between
ViDJil and the ASO g-PCR data (Panel b). In Panel a, three discordances
(red dots) are detected, one of them is quantifiable only by HashClone.
While in Panel b there are four samples quantifiable only by ASO

g-PCR. NEG, Negative; PNQ, Positive Not Quantifiable

comparable data with respect to the standardized ASO
q-PCR.

The HashClone strategy to identify a set of putative
clones is composed of three steps: the first two steps
implement an alignment-free prediction method that
identifies the set of putative clones belonging to the reper-
toire of the patient under study. The advantage of using an
alignment-free prediction with respect to alignment pre-
diction methods (based on a reference genome) is twofold:
(i) it may provide new rearrangements because no refer-
ence is used to select the putative clones, (ii) it may be
more robust to detect genome-scale events as rearrange-
ments, recombination, and duplications [28]. Moreover,
the alignment-free prediction method provides an ele-
vate accuracy, because the putative clones are identified
through an integrated analysis of all the patient’s sam-
ples collected over time. Finally, the last step is focused
on the identification of the germline origins of IGH
rearrangements based on alignment of the putative
B-cell clones with respect to the IMGT reference database
[19]. Notice that the current tool implementation allows
the users to exploit different datasets since the database
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is not embedded in the code leading to broadly applica-
tions of HashClone to biological projects dedicated to the
clonality detection from NGS data.

To assess the accuracy of HashClone to identify the
major B-cell clone and to monitor the MRD we compared
its performance with respect to the results obtained by
ViDJil tool. Indeed, at the best of our knowledge, ViD-
Jil is currently the only available tool able to analyze the
high-throughput sequencing data from lymphocytes, to
extract VD] junctions and to gather them into clones for
quantification.

The comparison was done on two MCL pilot studies
generated using either 500 ng (PilotI) or 100 ng (Pilot2) of
gDNA as input in library preparation.

The two experimental protocols considered reflect dif-
ferent clinical/biological situations. Pilot] reproduces in
the NGS setting the optimal requirements of a clas-
sical IGH screening experiment and a dilution curve.
On the other hand Pilot2 investigates the effects of a
decrease in DNA quantity, mimicking a real-life situation
that typically occurs in the routine of haematological lab-
oratories. The restricted DNA availability can be due to
the low cellularity of the biological samples (i.e low disease
infiltration or material lack) or to specific sample con-
ditions (i.e DNA extracted from formalin fixed paraffin
embedded-FFPE- samples, or cell-free DNA from serum,
plasma, or urine).

Our NGS experiments showed that, even though the
mean number of reads obtained from the two studies
was similar (481,298 Pilotl and 316,789 Pilot2), the
base sequence quality was poorer in the Pilot2. This is
reported by the base N content (FastQC check failed for
the Pilot2) and the base sequence quality (mean value of
36 in Pilot] compared to a mean value of 20 in Pilot2).
The limited quality of the Pilot2 data is reflected on a very
low homology level of the CDR3 regions with respect to
the Sanger sequence (average value of 99% in PilotI with
respect to an average value of 58% in Pilot2, p-value=0.02,
computed by Student’s t-test). HashClone and ViDJil
correctly identified the major clones in Pilotl. However,
in Pilot2 the elevate number of N base calls masked the
IGHD region and reduced the nucleotide homology, lead-
ing to a decrement in the efficiency of ViDJil. In contrast,
HashClone was able to identify the major clone in all the
diagnostic samples. Moreover, in MRD monitoring we
computed the concordance between the results obtained
from the algorithms with respect to the ASO q-PCR
data. Also in this analysis the performance of HashClone
outperformed the ViDJil results (concordance percentage:
86% HashClone, 80% ViDJil).

Actually, Hashclone has two main distinct features with
respect to VIDJil, the first is the reference free strategy,
that allows Hashclone not to use biological knowledge
until the last step in which it is necessary to assign to
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the putative clonotype the IGHV, IGHD and IGH]J com-
position. Secondly, Hashclone is specifically designed for
the MRD detection working simultaneously on all sets
of samples belonging to a patient. Instead, VIDJil is not
specifically designed to simultaneously work on all sam-
ples. Indeed, VIDJil provides a set of additional tools able
to fuse the set of rearrangements obtained from each
sample generating the set of clone associated with the
temporal trend.

Future analysis on the clones obtained by Hash-
Clone will be implemented using statistical methodologies
[29, 30]

Conclusions

HashClone tool can efficiently support the researchers
in the identification of B-cell clonality in NGS-based
experiments and in the monitoring of MRD in lympho-
proliferative disorders. Indeed, the reported results on
the considered two experimental settings demonstrated
the HashClone ability to correctly detect the major B-cell
clones and to precisely follow them in several samples
even when the nucleotide sequences are characterized
by the inclusion of substantial proportions uncertain
nucleotide assignment. Moreover, the provided GUI for
HashClone should improve the tool usability and facilitate
the clonality visualization over time.

Additional files

Additional file 1: Experimental and Computational details. Additional
materials in which it is deeply described: the pilot studies, the sample
processing and genomic DNA extraction, the Minimal Residual Disease
analysis using classic PCR approach, the Minimal Residual Disease analysis
using IGH amplicon based on deep sequencing approach, the State of the
art of algorithms for IGH analysis, the Pilot study analysis by HashClone, and
HashClone performance on IGH alignment using StandfordS_22.

(PDF 323 kb)

Additional file 2: Figure S1. Whole methodology. The whole
experimental and computational methodology presented in this paper.
(PDF 885 kb)

Additional file 3: Table S1. Experimental details. The main features of the
samples analyzed. * these samples were analyzed in both PilotT and Pilot2.
(PDF 29.7 kb)

Additional file 4: Figure S2. Clonotypes quantification by Hashclone.
Hashclone identifies an average number of clones equals to 21 in Pilot1
and 32 in Pilot2. In the last column of the table is reported for each major
clone the number of reads associates to it with respect to the total number
of reads. The same data are also reported for the other clones identified.
(PDF 52.7 kb)

Additional file 5: Figure S3. Clonotypes identification by ViDJil. The
clonotypes identified by ViDJil in PilotT and Pilot2 are reported in the third
column. In the fourth column are reported the clones passed the Phase A
while in the fifth column there are the number of clones passed the Phase B.
(PDF 46.4 kb)

Additional file 6: Figure S4. Clonotypes quantification by ViDJil. ViDJil
identifies an average number of clones equals to 37 in Pilot] while in Pilot2
it does not identified any clonotypes. In the last column of the table is
reported for each major clone the number of reads associates to it with
respect to the total number of reads.
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The same data are also reported for the other clones identified.
(PDF 51.9 kb)

Additional file 7: Figure S5. ViDJil and Sanger Sequence comparison.
Nucleotide alignments between the complementary region 3 sequences
(CDR3, indicated in bold and underline) Sanger sequence and the
sequence identified by ViDJil. (PDF 60.9 kb)
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