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Abstract

Background: Classification of biological samples of gene expression data is a basic building block in solving several
problems in the field of bioinformatics like cancer and other disease diagnosis and making a proper treatment plan.
One big challenge in sample classification is handling large dimensional and redundant gene expression data. To
reduce the complexity of handling this high dimensional data, gene/feature selection plays a major role.

Results: The current paper explores the use of biological knowledge acquired from Gene Ontology database in
selecting the proper subset of genes which can further participate in clustering of samples. The proposed feature
selection technique is unsupervised in nature as it does not utilize any class label information in the process of gene
selection. At the end, a multi-objective clustering approach is deployed to cluster the available set of samples in the
reduced gene space.

Conclusions: Reported results show that consideration of biological knowledge in gene selection technique not
only reduces the feature space dimensionality in great extent but also improves the accuracy of sample classification.
The obtained reduced gene space is validated using strong biological significance tests. In order to prove the
supremacy of our proposed gene selection based sample clustering technique, a thorough comparative analysis has
also been performed with state-of-the-art techniques.

Keywords: Feature selection, Gene Ontology (GO), Sample classification, Gene-GO term annotation matrix,
Multi-objective clustering

Background
Analysis of microarray gene expression data plays a key-
role in solving several problems related to the field of
bioinformatics like cancer or other disease diagnoses,
which help to make the plan for appropriate treatment
technique for patients. Clustering [1] and bi-clustering [2]
of tissue samples are some strong data mining strategies
to do such analysis. With the increase in the available bio-
logical information, the gene space is also becoming huge.
The analysis of gene expression data becomes infeasible
and complex in the presence of high dimensional gene
space. Thus the immediate solution could be to reduce
the gene space by attentively selecting the relevant subset
of genes from the large collection of genes. The selected
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subset of genes can further take part in delicately clus-
tering the available set of samples. The effectiveness of
gene selection in the analysis of gene expression data sets
is supported by various state-of-the-art research studies
[3, 4]. The existing gene selection approaches can be either
supervised [5] or unsupervised [6] depending on the use
of actual class label information during the gene selec-
tion process. Supervised gene selection techniques [5] are
widely applied but less attention is given in developing
gene selection techniques using unsupervised learning [6].
Grouping semantically related genes using biological

knowledge extracted from existing databases is an emerg-
ing field of research in recent years. A genuine source of
such biological knowledge is Gene Ontology(GO) (http://
www.geneontology.org/). To describe cellular functions
of proteins and genes, a potential dynamic vocabulary is
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Gene Ontology(GO). The GO comprises of three ontolo-
gies which are, Biological process(BP), Cellular compo-
nent(CC) and Molecular function(MF). Each of them is a
complete ontology containing several processes and sub-
processes, which are referred as GO terms having direct
and indirect relationships with each other. Genes from
various organism databases are annotated with specific
GO terms and are available for download from the GO
website (http://www.geneontology.org/). It is increasingly
gaining interests in defining functional relatedness using
“semantic similarity” of genes based on GO annotations
[7–9]. In several literatures [10–12] authors have pro-
posed different gene-clustering methods based on GO
based similarity measures. Though biological information
of GO rigorously has been used for grouping semantically
related genes, but in the field of gene selection the usage
of biological knowledge extracted from GO database has
not been explored much.
Motivated by this fact, in this paper we have proposed

an unsupervised feature selection technique utilizing bio-
logical knowledge extracted from GO. Here as biological
knowledge we have used gene annotation data.

Related works andmotivation
There are several existing works on development of fea-
ture selection algorithms. For example, Yang et al. pro-
posed the methods for gene selection (GS) namely GS1
and GS2 which can handle unbalanced sample class sizes
and no explicit statistical model on the gene expression
values was considered by them [13]. Tsai et al. [14] pro-
posed an innovative generalization of signal-to-noise ratio
(SNR) for multiclass cancer classification. In [15], Liu
et al. proposed a method combining statistical similar-
ity measure and supervised learning named as recursive
feature addition (RFA) for feature(gene) selection. A fea-
ture selection approach termed as effective range based
gene selection (ERGS) is proposed by Chandra and Gupta
[16]. Genetic algorithm based feature selection was intro-
duced by Gunavathi and Premalatha [17]. In Saha et al.
[18] authors have proposed multi-objective (MO) semisu-
pervised clustering as well as feature-selection technique
called SemiFeaClustMOO which encodes feature com-
bination and the set of cluster centers in the form of a
string.
All the above mentioned feature selection techniques

do not explore biological knowledge for designing the
gene selection algorithm. But the use of biological knowl-
edge could be a potential source for designing alternative
feature selection methods. For example in [19], authors
have proposed a GO based feature selection method
where they have developed a hybrid similarity measure
between genes using both semantic similarity extracted
from GO and Pearson distance. Further they have used
feature selection technique, HykGene, and Minimum

Redundancy Maximum Relevance (MRMR) with pro-
posed hybrid similarity measure on two data sets.
In [20], authors have proposed a feature selection

method utilizing biological knowledge followed by clus-
tering of samples on gene expression data. They have
adopted CLARANS (Clustering Large Applications based
upon RANdomized Search) for feature(gene) selection.
Medoids of different biologically enriched obtained gene
clusters are chosen as members of the reduced feature
set. A similar work has been done in [21] where instead
of CLARANS, a fuzzy clustering technique, FCLARANS,
has been adopted for feature selection.
In this paper we have proposed a novel unsupervised

gene selection based sample clustering technique utiliz-
ing gene annotation information available at GO database.
The annotation data for each gene contains the complete
information about the processes and the sub-processes
for which the gene is responsible. Two genes having same
annotation patterns signify that both of them are involved
in similar processes and sub-processes. Here genes are
represented as features. So throughout this article we
have used the word ‘gene’ and ‘feature’ alternatively. The
proposed technique first performs unsupervised feature
selection to reduce the dimensionality of large gene space
of microarray data using annotation information of genes
retrieved from GO. Performing feature(gene) selection in
the proposed way guarantees to generate a set of most
informative, semantically discriminative set of genes. This
obtained feature/gene set is biologically validated using
existing GO tool. In the second step, a multi-objective
clustering technique is applied on samples of microarray
data over the reduced gene-set to partition the samples
into some homogeneous groups. Finally. different com-
parative analyses of the obtained results with existing
state-of-the-art techniques are carried out to illustrate
the power of the proposed gene selection based sample
clustering technique.

Methods
Our proposed unsupervised gene selection based sam-
ple clustering technique can be divided into two modules
which are as follows,

• In the first module we have proposed an unsupervised
feature selection technique utilizing gene annotation
data of GO to select most informative and
semantically discriminative set of genes. Several
biological validation tests are also performed to get
most biologically enriched feature(gene) set.

• In the second module we have investigated the utility
of proposed feature/gene selection method by
performing a multi-objective based clustering on
samples of gene expression data over both original
and reduced gene space. A rigorous comparative
study has been performed for this purpose.

http://www.geneontology.org/
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The flowchart of the proposed gene selection based
sample clustering technique is shown in Fig. 1. A detailed
description of the overall proposed methodology is given
below.

Module 1: feature selection and partitioning around
medoids (PAM)
This is the very first module of the proposed fea-
ture selection methodology. At first gene-GO term
annotation matrix corresponding to a chosen gene
expression data set is formed using knowledge of
GO (http://www.geneontology.org/). Next on the pre-
pared annotation matrix, PAM clustering algorithm is
applied to get groups of semantically related genes.
Note that our proposed feature selection technique is
unsupervised in nature so no class label information
is used in it. Following tasks are performed in this
module.

Fig. 1 Flowchart of the proposed framework

Preparing gene-GO term annotation data for PAM based
clustering
As our proposed feature selection method utilize the bio-
logical knowledge from GO only, therefore, instead of
gene-expression data gene-GO term annotation data is
considered in it. For a chosen data set GO tool like Gene
Ontology consortium1 is used to annotate genes by one or
more GO terms. From the annotation data significant GO
terms i.e., GO terms having degree of functional enrich-
ment (p-value) <0.5 are chosen for further analysis. Next
two tasks as mentioned below are performed,

1. Calculation of structure based information
content(StructIC) for all mapped significant GO
terms.

2. Creation of gene-GO term annotation matrix using
StructIC of each GO term.

1) Calculating structure based information content
of mapped GO terms:
The information content (IC) [22] of a GO term is

related to how often the term is applied to genes in the
database, such that rarely used terms are ascribed higher
IC values. So it can be treated as a measure of importance
of GO terms. IC can be of two types, Corpus based IC [23]
and Structure based IC [23]. The corpus based IC of a GO
term depends on how many number of genes are anno-
tated with that term. But according to [24], IC of a GO
term should be independent of the annotation distribu-
tion of that term. Because it suffers from corpus bias and
semantics of a term can not be measured properly.
Inspired by this fact, authors of [23] have proposed

a structure of GO based IC measurement methodology
where both level and the number of descendants of a GO
term are considered while computing its IC. It is based on
the convention that, IC of a term is dependent on it’s depth
in GO tree. IC value increases with increase in the depth
of a term as it contains more specific information. Also it
depends on another factor i.e., the number of descendants
of a term. The more number of descendants means less
specific information. Depending on these factors authors
of [23] have proposed a structure based IC of a GO term.
The full GO tree2 topology is needed for this calculation.
It is calculated as follows,

StructIC(t) = depth(t) × semantic_coverage(t) (1)

where, the maximum depth of a term is taken as its
depth, and semantic_coverage(t) =

(
1 − log(desc(t)+1)

log(total−terms)

)
is

a function of number of descendants of the term. Accord-
ing to this formula, overall semantic coverage of a term
having less number of descendants is more.
In the above mentioned way the StructIC values for all of

our obtained significant GO terms are calculated.

http://www.geneontology.org/
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2. Creating gene-GO term annotation matrix using
StructIC of each GO term:
Suppose for biological, molecular and cellular compo-

nents, for an input set of n genes, total significant GO
term-counts are x, y and z respectively. Thus a matrix of
size n × (x + y + z) is generated. Entries in the matrix
are either ‘0’ or ‘StructIC ’ value of the corresponding GO
term based on the condition that the gene is mapped to
that particular GO term or not. Each row of an annotation
matrix is a weighted gene-GO term annotation vector.
Mathematically it can be described as follows:
If ∃ n genes and x, y, z number of significant Biologi-

cal function GO terms, Molecular function GO terms and
Cellular component GO terms, respectively, then |M| =
n × (x + y + z).
Suppose Gi represents ith gene where i ∈ [ 1, n].
Bio_GOk represents kth significant term of Biological

process ontology, where k ∈ [ 1, x].
MF_GOl represents lth significant term of Molecular

function ontology, where l ∈ [ 1, y].
CC_GOm represents mth significant term of Cellular

component ontology, wherem ∈ [ 1, z].
The entries of annotation matrix are computed as

follows,

M[ i] [Bio_GOk]=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

StructIC(Bio_GOk), if Gi
annotated
with
Bio_GOk

0, otherwise

where i ∈ [1, n] and k ∈ [ 1, x].

M[ i] [MF_GOl]=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

StructIC(MF_GOl), if Gi
annotated
with
MF_GOl

0, otherwise

where i ∈ [1, n] and l ∈ [ 1, y].

M[i] [CC_GOm]=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

StructIC(CC_GOm), if Gi
annotated
with
CC_GOm

0, otherwise

where i ∈ [1, n] andm ∈ [1, z].
After generation of annotation matrix, the distance

between two gene annotation vectors is measured using
three well known distances alternatively, viz. Euclidean
[25], City block [25, 26] and Cosine distance [25] as
demonstrated in the following equations.

Euclistruct(Gi,Gj) =

√√√√√
x+y+z∑
p=1

(M[ i] [ p]−M[ j] [ p] )2 (2)

Citystruct(Gi,Gj) =
x+y+z∑
p=1

|M[ i] [ p]−M[ j] [ p] | (3)

Cosinestruct(Gi,Gj) =
(
1 − M[ i] ·M[ j]

|M[ i] ||M[ j] |
)

(4)

where,

• M[ i] is complete annotation vector of gene Gi.
• M[ i] [ p] is the entry of the matrix for gene Gi

corresponding to pth GO term where,
if 1 ≤ p ≤ x, then pth GO term is from Biological
process ontology,
if (x + 1) ≤ p ≤ (x + y), then pth GO term is from
Molecular function ontology,
if (x + y + 1) ≤ p ≤ (x + y + z), then pth GO term is
from Cellular component ontology.

• |M[ i] | =
√∑x+y+z

p=1 (M[ i] [ p] )2.
• M[ i] ·M[ j] is dot product of two annotation vector

M[i] and M[j] corresponding to gene Gi and Gj.

The adaptation of these three distance measures
(Euclidean, city block and cosine distance) is motivated by
the fact that these are some popular distances widely used
as underlying similarity measures of different clustering
algorithms as revealed by the literature survey [25, 26].
A sample StructIC based gene-GO term annotation

matrix is shown in Fig. 2.
The formed StructIC based gene-GO term annotation

matrix and the corresponding distance measures are used
in gene selection process as described in next section.

Performing PAM clustering on gene-GO term datamatrix and
selectingmost informative reduced gene space
Grouping of genes based on GO annotation data helps
to capture different aspects of gene association patterns
in terms of associated BP, CC and MF terms. There-
fore, instead of performing clustering on gene expression
data we have performed clustering on generated gene-GO
term annotation matrix to identify functionally similar
groups of genes. The Partitioning AroundMedoids(PAM)
[27] algorithm is a clustering algorithm related to the
K-means algorithm and the medoid shift algorithm. K-
means attempts to minimize the total squared error, while
PAMminimizes the sum of dissimilarities between points
which are in a single cluster with respect to the medoid,
a point designated as the center of that cluster. In con-
trast to the K-means algorithm, PAM chooses any real
data point from the existing cluster as the center. It is
more robust to noise and outliers as compared to K-
means because it minimizes a sum of general pairwise
dissimilarities instead of a sum of squared Euclidean dis-
tances. Additionally it is very fast as K-means. Because of
these reasons we have chosen PAM to perform clustering
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Fig. 2 StructIC based gene-GO term annotation matrix representation

on gene-GO term annotation matrix utilizing three dis-
tances (euclidean, city block, cosine) alternatively to get
functionally similar groups of genes. The steps of PAM
clustering algorithm to get reduced gene space is given
below,

1. Initializing ‘K’: According to “Input parameters for
PAM” section select ‘p’ different values of ‘K’. So that,
∀Ki, i ∈ [ 1 . . . p]. For each Ki perform Step 2 to 7.

2. Initializing solution: Randomly select Ki
medoids(genes) from total available ‘n’ gene points.

3. Each non-medoid data point is assigned to it’s closest
medoid. (‘closest’ here is defined using any one of
the distance measures as described in Eqs. 2, 3
and 4)

4. For each medoid m and non-medoid data point o:
Swap m and o and compute the cost(sum of
distances of points to their medoid.).

5. Select the configuration with the lowest cost.
6. Repeat Steps 3 to 5 until there is no change in the

medoid.
7. Calculate Silhouette index value of finally obtained

solution. Let us denote the Silhouette value as
Sil(Soli), where Soli is the finally obtained clustering
solution by PAM having Ki medoids.

8. Choose Soli havingmax(Sil(Soli)).
9. Validate the solution Soli with biological significance

test.
10. Extract Ki number of medoids(representative genes)

from Soli. Suppose the size of set containing Ki
medoids is represented by nm. It is the extracted
reduced feature set.

11. Validate nm features with biological significance test.

Module 2: sample clustering over reduced feature(gene)
space
After extracting the biologically significant and informa-
tive set of genes from module 1, in the next module
the utility of obtained feature set is investigated through
sample clustering. Suppose the dimension of original
gene expression data is d × n, where d is the number
of available samples and n is the number of available

genes. After applying our proposed gene selection algo-
rithm, the number genes in the reduced feature set is
nm. So, the dimension of gene-expression data in the
reduced space becomes d×nm. Existing literature [28, 29]
proved the utility of multi-objective optimization(MOO)
over single objective optimization in solving different real-
life optimization problems. Inspired by this, in recent
years several multi-objective optimization based clus-
tering techniques are also developed in the literature
[29, 30]. These approaches perform better than their sin-
gle objective counter parts. Motivated by this, in the
current study we have executed a multi-objective based
clustering technique on samples of both original i.e. d ×
n and d × nm gene expression matrices. Here sam-
ple classification problem is solved by clustering algo-
rithm. A popular multi-objective optimization strategy,
AMOSA(archived multi-objective simulated annealing)
[28], is utilized as the backbone of the usedmulti-objective
clustering technique. Here the main aim of clustering
is to determine the homogeneous groups of samples by
simultaneously optimizing a set of cluster validity indices
capturing different cluster qualities. It has been shown in
the literature that AMOSA excels in the field of MOO as
compared to several other existing multi-objective evolu-
tionary algorithms. The steps of AMOSA based proposed
clustering technique are mentioned below,

String representation and archive initialization
In AMOSA [28] it uses the concept of string to rep-
resent each solution. At the beginning of execution it
initializes the archive with some random solutions. Each
archive member represents one complete clustering solu-
tion. Archive member length can vary from each other.
Suppose in our chosen gene expression data set there are d
number of samples and for each sample, expression value
of n number of genes are there. n and d are specific to a
data set.

Assignment of points and computation of objective functions
Once the archive members are initialized with some
randomly selected cluster centroids from the set of input
data points (here d samples represent d number of data
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points), assignment of rest of the d samples to different
clusters is performed. This assignment can be done based
on any standard distance measure. In this article we have
used Euclidean distance for this purpose. The sample is
assigned to that cluster with respect to which its Euclidean
distance is the minimum. Next, we compute three clus-
ter quality measures, XB index [31], PBM index [31], FCM
index [31] which are used as three objective functions
for each solution or string. The XB and FCM index val-
ues should be minimized and PBM index value should be
maximized to get the optimal solution. Thereafter using
the search methodology of AMOSA, we simultaneously
optimize these three objective functions.

Search operators
In AMOSA perturbation operations are applied on cur-
rent solution to generate new solutions to explore the
search space effortlessly. In this work we have applied
three different perturbation operations which are given as
follows, A clustering solution can be changed in the three
different ways,
1. Encoded cluster centers can be modified by some

small values. By using Laplacian distribution we have
randomly selected some values near the old values of
cluster centers and then updated the existing centers.

2. Number of encoded clusters in a solution can be
decreased by one. This is done by deleting a randomly
selected cluster center from the given solution.

3. Number of encoded clusters in a solution can be
increased by one. This is done by randomly selecting
a point from the data set as the new cluster center
and then inserting this in the solution.

Any one of these above mentioned search operators is
applied on a string at a particular time.

Selecting best clustering solution from the Pareto Optimal
front
It is the property of any MOO technique [28] to gener-
atemore than one non-dominating clustering solutions on
it’s Pareto front. Each of these non-dominated solutions
corresponds to a complete assignment of all data-points
of chosen data set to different clusters. In the absence
of additional information, any of those solutions can be
selected as the optimal solution. In this approach we
have selected the best solution using one internal cluster
validity index, Silhouette index [31]. The solution hav-
ing highest Silhouette index value is selected as the best
solution.

Chosen data sets and their description
Wehave applied our proposed unsupervised feature selec-
tion algorithm on gene-GO term annotation matrices and
finally executed AMOSA based clustering on samples of
gene expression data sets for 1) Yeast3, 2)Multiple tissues4

data sets. Yeast microarray data is a collection of 2884
genes (features) under 17 samples (time points). These 17
time points are categorized into two broad phases. Each of
these two phases has four sub-phases named as G1, S, G2,
and M [32]. Similarly, Multiple tissues data set comprises
of 103 samples with 5565 genes(features). The samples
are categorized into four normal tissue types of humans
which are breast, prostate, lung and colon. In [32, 33] true
class label information of Yeast data set is provided and
described in detail. The true class label information for
Multiple tissues is available in link5.

Gene-GO term annotation matrix generation
We have used Gene Ontology Consortium6 to obtain the
significant GO terms corresponding to mapped gene sets
for both data sets. The chosen genomes for Yeast and
Multiple tissues data sets are Saccharomyces cerevisiae
andHomosapiens, respectively. Also the full GO tree7 was
downloaded in .obo format. Originally in Yeast data set,
2260 number of genes out of 2884 genes are mapped to
one or more GO terms under one or more gene ontologies
(BP, MF, CC). For Yeast data set, the number of obtained
significant GO terms is 166 (number of GO terms under
BP is 100, under MF is 43, and under CC is 23). Similarly
for Multiple tissues data set, 4673 number of genes out of
5565 genes are mapped to one or more GO terms. The
obtained significant number of GO terms forMultiple tis-
sues data set are 147 (number of GO terms under BP are
71, under MF are 42, and under CC are 34).
So the sizes of gene-GO term annotation matrices for

Yeast and Multiple tissues data set are 2260 × 166 and
4673×147, respectively. Finally the entries of these matri-
ces are calculated according to “Preparing gene-GO term
annotation data for PAM based clustering” section.

Results
Setting of input parameters
Input parameters for PAM
For PAM clustering algorithm, priori information about
the number of clusters (K) is needed. As the medoid of
each cluster is selected as themember of reduced gene set,
therefore the size of the reduced gene set is as same as the
initial value of K. It is known that if no information about
the number of clusters is given, then for n number of data
points, the maximum number of clusters can be chosen as√
n [34]. According to that, for Yeast and Multiple tissues

data sets, the maximum number of clusters can be
√
2260

or 48 and
√
4673 or 68, respectively. To explore different

reduced gene sub-spaces, we have varied the value ofK for
both data sets as shown in Table 1.

Input parameters of AMOSA
We have executed AMOSA based clustering technique
with the following parameter combinations:
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Table 1 Chosen K values for PAM clustering algorithm

Data sets K

Yeast 5 10 20 30 40 50 - -

Multiple tissues 5 10 20 30 40 50 60 70

Tmin = 0.0001,Tmax = 100,α = 0.9, HL = 50, SL = 100
and iter = 100.

The parameter values are determined after conducting
a thorough sensitivity study.

Experiments conducted
1. At the beginning, we have applied three different

well known and widely used distance measure
(Euclidean, city block and cosine distance) based
PAM algorithm on gene-GO term annotation data
alternatively for both data sets. Among these three
versions of PAM, one version is identified as best
with respect to Silhouette index value of its
corresponding produced clustering solution. The
clustering solution of that version is used further to
produce reduced gene space.

2. Once the reduced gene space is formed and
biologically validated, then we have performed
AMOSA [28] based clustering on samples of gene
expression data over original and reduced gene
spaces. After obtaining different clustering solutions
we have compared their qualities based on three

Table 2 Silhouette index values for clustering solutions
produced by PAM with different values of K

Data set K Silho
Eucli-PAM

Silho
City-PAM

Silho
Cosine-PAM

Yeast 5 0.3792 0.367 0.381

10 0.4531 0.452 0.442

20 0.4415 0.437 0.435

30 0.4075 0.411 0.426

40 0.40 0.421 0.423

50 0.397 0.432 0.419

Multiple tissues 5 0.354 0.361 0.359

10 0.383 0.372 0.368

20 0.394 0.379 0.382

30 0.406 0.394 0.392

40 0.4299 0.419 0.404

50 0.429 0.402 0.418

60 0.415 0.398 0.416

70 0.414 0.391 0.409

The data in boldface represents optimal value of ‘K’ i.e. dimension of gene space
corresponding to optimal Silhouette index for all of three distance based PAM
versions

internal validity measures which are Silhouette index
[35], Davies-Bouldin or DB index [36] and Dunn
index [37].

3. Also we have performed a comparative study of our
proposed feature selection based sample clustering
approach with other existing approaches with
respect to one external validity measure which is
Classification Accuracy(%CoA).

Objectives of experiments
1. To identify the most biologically informative

feature(gene) set for clustering of samples in gene
expression data.

2. To determine whether the generated reduced
number of biologically significant genes leads to the
improved performance for sample clustering.

Chosen internal and external cluster validity measures for
comparison
We have chosen three internal validity measures for com-
parison purpose. These are Silhouette index [35], DB
index [36] and Dunn index [37]. For a good quality clus-
ter the corresponding Silhouette and Dunn index values
should be as large as possible where as smaller value of
DB index signifies a better clustering solution. Also one
external cluster quality measure, Classification Accuracy
(%CoA), has been used to compare performance of pro-
posed algorithm with other existing methods. As for both
Yeast and Multiple tissues data sets, the true class label
information are also available, therefore in order to ver-
ify our framework Classification Accuracy (%CoA) metric
has been utilized.

Discussion
Discussion on results of Yeast data
After applying PAM based clustering algorithm on gene-
GO term annotation matrix of Yeast data set utilizing
three distances (Euclidean, city block and cosine) alter-
natively with different values of K as shown in Table 1,
we have calculated the Silhouette index [35] values for
different obtained clustering solutions corresponding to
different K values. Those are reported in Table 2. It can
be seen that PAMwith Euclidean distance obtains optimal
clustering solution with respect to Silhouette index for
K=10. Similarly obtained optimal K values correspond-
ing to city block and cosine distance based PAM are also
highlighted in Table 2.
If we closely observe the reported results in Table 2,

we can see that for Yeast data set though the optimal
value of K with respect to Silhouette index is same for all
of the distances but the maximum value of this index is
obtained by Euclidean based PAM. Therefore we consider
the clustering solution obtained by Euclidean based PAM
for further analysis.
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Table 3 Results for biological significance test: first two obtained clusters by PAM on Yeast data

Cluster GO term Cluster % Genome%

Cluster 1 GO:0022625 57.1% 34.5%

245 genes cytosolic large ribosomal subunit

GO:0042221 40.63% 28.29%

response to chemical

GO:0006325 38.62% 22.86%

chromatin organization

GO:0055085 47.94% 18.33%

transmembrane transport

Cluster 2 GO:0015934 44.1% 22.82%

156 genes large ribosomal subunit

GO:0006974 37.74% 14.92%

cellular response to DNA damage stimulus

GO:0006366 36.94% 18.58%

transcription from RNA polymerase II promoter

GO:0006811 38.37% 19.47%

ion transport

To verify whether the clusters of the solution
obtained by PAM (with euclidean distance) are biolog-
ically enriched or not, we have performed biological
significance test with the help of GOTERMMAPPER8.
The results for first two clusters out of three clusters for
euclidean distance based PAM are shown in Table 3. In

each table we have summarized significant GO terms
shared by genes of corresponding cluster.
For each GO term, the percentage of genes sharing

that term among the genes of that cluster and among the
whole genome have been reported. Results clearly signify
that genes of same cluster share the higher percentage of

Fig. 3 Cluster profile plot of one cluster (having 156 genes and 17 samples) after performing PAM based clustering on gene-GO term annotation
matrix of Yeast dataset
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Table 4 Results for biological significance test: first two obtained clusters by PAM onMultiple tissues data

Cluster GO term Cluster % Genome%

Cluster 1 GO:0009987 73.00% 59.72%

102 genes cellular process

GO:0008152 75.00% 46.46%

metabolic process

GO:0050789 69.00% 36.75%

regulation of biological process

GO:0050896 67.00% 26.47%

response to stimulus

GO:0032501 55.00% 16.69%

multicellular organismal process

Cluster 2 GO:0043170 52.48% 35.46%

107 genes macromolecule metabolic process

GO:0009058 44.55% 22.22%

biosynthetic process

GO:0032501 40.59% 16.69%

multicellular organismal process

GO:0007154 32.67% 19.46%

cell communication

GO:0007275 28.71% 11.47%

multicellular organismal development

Fig. 4 Cluster profile plot of one cluster (having 102 genes and 103 samples) after performing PAM based clustering on gene-GO term annotation
matrix ofMultiple tissue dataset
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Table 5 Comparative analysis of AMOSA based sample
clustering outcomes with respect to three internal validity indices

Data set Genes(features) Samples Silho DB Dunn

Yeast 2884(Original) 17 0.2365 0.149 0.5268

10(Reduced) 0.4531 0.081 0.9038

Multiple tissues 5565(original) 103 0.2527 0.998 0.6246

40(Reduced) 0.4299 1.0065 1.432

The obtained optimal values for Silhouette , DB and Dunn index for both datasets
are represented in bold font

GO terms compared to the whole genome. This indicates
that the genes of a particular cluster are more involved
in similar biological processes compared to the remain-
ing genes of the genome. For rest 8 clusters the same
behaviour was observed. Also to show the coherence
between genes within same cluster the cluster profile
plot is shown in Fig. 3 for one obtained cluster having
156 genes. In this plot the normalized expression val-
ues of genes within a cluster over all samples are plotted.
The given cluster profile plot shows that genes within
that cluster have good coherence among them for Yeast
dataset. For other obtained clusters similar profile plots
can be drawn to visualize the coherence among genes.
After biologically validating the solution obtained by

euclidean based PAM algorithm, the most representative
genes ormedoids of different clusters are selected as genes
of reduced gene set. The IDs of these 10 selected genes
(as here K=10) are YLR068W, YMR143W, YDR379W,
YPL150W, YGR152C, YFL008W, YBL084C, YDR361C,
YLR325C, YDR165W. We have also evaluated the
biological significance of these medoids(genes) using
GOTERMMAPPER.We found all of themwere annotated
by one or more GO terms.

Once the reduced feature set is obtained, we perform
AMOSA [28] based sample clustering over both orig-
inal and reduced gene space. The obtained solutions
are compared with each other with respect to some
external cluster validity indices, namely Silhouette index
[35], DB index [36] and Dunn index [37]. These results
are shown in Table 5. Also, the results are plotted in
graph as shown in Fig. 5. From both the table and
figure it is clear that according to Silhouette, DB and
Dunn indices, clustering of samples over reduced gene
space is better than those over the full set. The clus-
tering of samples over the reduced gene space contains
more homogeneous clusters/partitions than the origi-
nal space. The clusters obtained over the reduced gene
space are more compact in shape and well-separated from
each other.
Also we have performed comparative study with out-

comes from other existing approaches on the same data
sets with respect to one external validity measure, i.e.,
classification accuracy (%CoA). The results are shown in
Table 6 and graphically shown in Fig. 6. In [20] %Coa
of different classifiers after performing CLARANS based
feature selection method were reported. They have also
used these datasets with the corresponding true class label
information for classification purpose.We have compared
our proposed feature selection based sample clustering
technique with reported approaches in [20] with respect
to %CoA values. According to reported results in Table 6
and Fig. 6, it can be seen that our proposed method of
sample clustering with reduced gene space provides best
%CoA compared to other reported existing approaches.
Also in our approach the dimension of reduced gene space
is less than the reported reduced dimension of gene space
in [20].

Fig. 5 Graphical comparative analysis of AMOSA based sample clustering outcomes with respect to three internal cluster validity indices
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Table 6 The comparative results of our proposed feature
selection based sample clustering technique with other existing
techniques

Data set Number of genes Algorithms %CoA

Yeast 10 Proposed(PAM+AMOSA) 95.63

15

CLARANS+k-NN 86.78

CLARANS+C4.5 94.12

CLARANS+RF 94.12

CLARANS+MLP 94.12

CLARANS+NB 94.12

Multiple tissues 40 Proposed(PAM+AMOSA) 92.14

42

CLARANS+k-NN 81.03

CLARANS+C4.5 65.0

CLARANS+RF 76.0

CLARANS+MLP 89.32

CLARANS+NB 92.23

The obtained optimal (maximum) Classification accuracy (%CoA) for both datasets
are represented in bold font

Discussion on results ofMultiple tissues data
Similar experiments are conducted for Multiple tissues
data. The corresponding Silhouette index values of dif-
ferent clustering solutions after performing three distance
based PAM on genes of gene-GO term annotation matrix
for this data set with different chosen K values are shown
in Table 2. From this table, we can see that the best clus-
tering solution is obtained for K=40 by Euclidean based
PAM. The optimal K values are also highlighted for other
distance based PAM. But among all these three distances,
Euclidean based PAM produces optimal solution hav-
ing maximum Silhouette index value. Therefore, similar
to Yeast data set, we have considered optimal clustering
solution obtained by Euclidean based PAM for Multiple
tissues data set for further analysis.

Similar to Yeast data set we have cross validated the
obtained clusters of solution with K=40 by euclidean
based PAM using biological significance test with the help
of GOTERMMAPPER9. For first two clusters the bio-
logical significance test outcomes are shown in Table 4.
Similar test was done for other 38 clusters. Also in Fig. 4,
cluster profile plot for one obtained cluster having 102
number of genes is shown. From the plot it is clearly evi-
dent that genes within that cluster have good coherence
among them. For other obtained clusters, the coherence
can be checked similarly with the help of cluster profile
plot. Next we form the reduced feature set by consider-
ing only the medoid genes from each of 40 clusters. The
IDs of these selected medoids/genes are CCL22, CD8B1,
CORO2B, CSTF1, EPHX1, GA17, KIAA0350, KIAA0460,
KIAA0980, RAB9P40, RPL10A, SEC22L1, SMARCC1,
STAC, TAF1C, HIPK3, TMEM1, TNFRSF25, ZFR,
TPM3, HIST2H2AA, HOXC5, ISGF3G, MYLK, ORM1,
PSMD12, PTGER1, RECK, RGS3, SEC31L1, ZNF629,
NPIP, KIAA0792, BAT2D1, DC12, WBSCR20C, ST5,
MAPK1, ALM2-AKAP2, SEPW1. During biological sig-
nificance test of this feature set using GOTERMMAPPER,
we found that all of them are annotated using one or more
GO terms.
After obtaining the reduced gene space, AMOSA based

sample clustering is performed on Multiple tissues gene
expression data set over both original and reduced gene
space. The comparative analysis is shown in Table 5.
Also, these results are graphically shown in Fig. 5.
According to this table and figure, from the obtained
results, it is clearly evident that the reduced set of
genes for this data set provides better clustering solu-
tion with respect to Silhouette and Dunn index values
in almost all cases. With respect to DB index value,
the quality of clustering of samples over original gene
space is slightly better than that of the reduced gene

Fig. 6 Graphical comparative analysis of our proposed feature selection based sample clustering technique with other existing techniques
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space. But in this case the difference is very negligible
(by the value 0.0085). As the dimension of gene space
reduces by a large scale, it significantly reduces the com-
putational costs of the sample clustering/classification
process.
Again the results are compared with the reported results

of [20] with respect to %CoA values. These results are
reported in Table 6 and graphically shown in Fig. 6. From
the obtained results we have seen that our approach pro-
vides better %CoA values than all other approaches except
CLARANS + NB approach. That approach outperforms
our approach by a small scale (0.09%). Here also our
obtained gene space dimension is lower compared to the
obtained dimension in [20].
So, overall we can say that our proposed method pro-

vides a most informative and discriminative reduced set of
genes(features) compared to existing approaches for both
data sets and this argument is supported by most of the
cases in our conducted comparative analysis.

Conclusions
In this paper we have proposed an unsupervised feature
selection technique utilizing available biological knowl-
edge extracted from GO. Here as biological knowl-
edge we have utilized gene annotation data, where each
gene is represented as structural IC based gene-GO
term annotation vector which intuitively forms gene-
GO term annotation matrix for a selected data set. The
proposed method of performing PAM based cluster-
ing on annotation matrix to identify biologically infor-
mative and discriminative set of features(genes) is a
contribution of the current work. To visualize the coher-
ence between genes of obtained clusters, cluster profile
plot is used for both datasets. Also we have validated
the selected features with proper biological significance
test.
Finally AMOSA based clustering is performed on sam-

ples on gene-expression data with reduced gene set.
From the obtained results we have observed that uti-
lizing biological knowledge in feature selection step not
only reduces the dimension of the gene space in large
scale but also improves the classification accuracy of
samples.
In future we would like to apply some other clustering

algorithms in place of PAM to identify the appropriate
gene subset where the dimensionality of gene subset can
be determined automatically. We are currently working in
that direction.

Endnotes
1 http://www.geneontology.org/
2 http://www.geneontology.org/page/download-

ontology
3 http://arep.med.harvard.edu/

4 http://portals.broadinstitute.org/cgi-bin/cancer/
datasets.cgi

5 http://portals.broadinstitute.org/cgi-bin/cancer/
datasets.cgi

6 http://www.geneontology.org/
7 http://www.geneontology.org/page/download-

ontology
8 http://go.princeton.edu/cgi-bin/GOTermMapper
9 http://http://go.princeton.edu/cgi-bin/

GOTermMapper
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